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Abstract

Many text generation applications require the001
generated text to be factually consistent with002
input information. Automatic evaluation of fac-003
tual consistency is challenging. Previous work004
has developed various metrics that often de-005
pend on specific functions, such as natural lan-006
guage inference (NLI) or question answering007
(QA), trained on limited data. Those metrics008
thus can hardly assess diverse factual incon-009
sistencies (e.g., contradictions, hallucinations)010
that occur in varying inputs/outputs (e.g., sen-011
tences, documents) from different tasks. In012
this paper, we propose ALIGNSCORE, a new013
holistic metric that applies to a variety of fac-014
tual inconsistency scenarios as above. ALIGN-015
SCORE is based on a general function of infor-016
mation alignment between two arbitrary text017
pieces. Crucially, we develop a unified train-018
ing framework of the alignment function by019
integrating a large diversity of data sources,020
resulting in 4.7M training examples from 7021
well-established tasks (NLI, QA, paraphras-022
ing, fact verification, information retrieval, se-023
mantic similarity, and summarization). We024
conduct extensive experiments on large-scale025
benchmarks including 22 evaluation datasets,026
where 19 of the datasets were never seen in the027
alignment training. ALIGNSCORE consistently028
achieves substantial improvement over a wide029
range of previous metrics, highlighting the ef-030
fectiveness and generalizability of the proposed031
approach.032

1 Introduction033

Recent systems for natural language generation,034

such as summarization and dialogue systems, can035

produce fluent and coherent text. However, studies036

show the generated text can often contain factual037

consistency errors, such as contradictions with in-038

put information, or hallucinations irrelevant to the039

context (Cao et al., 2018; Kryscinski et al., 2019;040

Nie et al., 2019a; Maynez et al., 2020; Honovich041

et al., 2022).042

It is thus crucial to develop automatic metrics 043

that evaluate factual consistency of a claim (e.g., 044

generated text) with regard to a context (e.g., model 045

input). The evaluation, however, has long been a 046

challenge. Recent work has devised various met- 047

rics based on specific pretrained functions, such as 048

natural language inference (NLI) (Honovich et al., 049

2022; Mishra et al., 2021; Kryscinski et al., 2020; 050

Utama et al., 2022; Laban et al., 2022) and question 051

answering (QA) (Durmus et al., 2020; Fabbri et al., 052

2022; Honovich et al., 2021; Fabbri et al., 2022). 053

Specifically, an NLI-based metric measures if the 054

claim is entailed by the context; while a QA-based 055

metric first creates (question, answer) pairs from 056

the claim and then checks if answering the ques- 057

tions with a QA model conditioning on the context 058

will lead to the same answers. 059

However, by relying on specific functions trained 060

with only narrow data (i.e., NLI or QA datasets), 061

previous metrics have limited generalizability and 062

fail to apply to diverse evaluation scenarios, in- 063

cluding different types of factual consistency er- 064

rors and varying lengths and characteristics of con- 065

texts/claims from different tasks and domains. For 066

instance, a metric trained exclusively with NLI data 067

of sentences in a certain domain tends to have diffi- 068

culty in evaluating summaries of long documents 069

in a different domain (Mishra et al., 2021; Laban 070

et al., 2022). The limitations motivate a more holis- 071

tic metric that develops a general understanding 072

of factual consistency and generalizes to diverse 073

evaluation scenarios. 074

In this paper, we propose ALIGNSCORE, a new 075

general factual consistency metric based on a uni- 076

fied text-to-text information alignment function. In 077

particular, we unify a wide range of data sources, 078

and use the massive diverse data to train a gen- 079

eral information alignment model that estimates 080

an alignment score given two arbitrary text pieces. 081

More specifically, we reformat and aggregate 15 082

datasets from 7 popular language tasks, including 083
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NLI, QA, paraphrasing, fact verification, informa-084

tion retrieval, semantic similarity, and summariza-085

tion. This results in a total of 4.7M training ex-086

amples with diverse characteristics, and yields an087

alignment function with great generalizability. We088

then build ALIGNSCORE using the alignment func-089

tion as a building block. In particular, to handle090

long text and accommodate the different roles of091

context and claim, we develop a splitting strategy092

that breaks a context into coarse-grained chunks093

and a claim into fine-grained sentences. Aggregat-094

ing the alignment scores between context-chunks095

and claim-sentences leads to the final factual con-096

sistency score.097

We evaluate ALIGNSCORE on the latest large-098

scale evaluation benchmarks, including SummaC099

(Laban et al., 2022), TRUE (Laban et al., 2022),100

and other testbeds, which contain a total of 22 chal-101

lenging evaluation datasets. Our approach sub-102

stantially outperforms the previous state-of-the-art103

metrics in terms of different quality measures. In104

particular, ALIGNSCORE shows strong generaliz-105

ability on the 19 zero-shot datasets that were never106

seen during the alignment function training. We107

also conduct extensive ablation studies to demon-108

strate the effectiveness of the splitting strategy and109

other modeling choices.110

2 Related Work111

Factual Consistency Metrics Traditionally, gen-112

erative systems are evaluated using n-gram based113

metrics (Papineni et al., 2002; Lin, 2004; Baner-114

jee and Lavie, 2005; Popović, 2015). Recently,115

factual consistency metrics are often built lever-116

aging task specific language understanding capa-117

bilities, such as NLI and QA. To improve per-118

formance when evaluating generative tasks with119

long texts, NLI-based metrics adopt training sets120

with long premises (Honovich et al., 2022; Mishra121

et al., 2021), use large synthetic datasets (Kryscin-122

ski et al., 2020; Utama et al., 2022), or use sen-123

tence level evaluation (Laban et al., 2022). A124

separate line of research formulates factual con-125

sistency evaluation as QA (Durmus et al., 2020;126

Fabbri et al., 2022; Honovich et al., 2021; Fabbri127

et al., 2022). Other consistency evaluation methods128

that use pretrained language models (LMs) include129

embedding matching (Zhang et al., 2020; Deng130

et al., 2021), finetuning LMs as token level consis-131

tency discriminator (Deng et al., 2021), finetuning132

LMs to directly regress human evaluation scores133

(Sellam et al., 2020), and using LMs to score can- 134

didates based on weighted log probability (Yuan 135

et al., 2021; Liu et al., 2022). 136

Task Unification Task unification is the process 137

of converting related but different tasks into a uni- 138

fied input-output format (Xie et al., 2022). Raffel 139

et al. (2020) propose to unify text generation tasks 140

into a text-to-text conditional generation problem. 141

Sanh et al. (2022) further show that the text-to- 142

text generation framework, combined with natural 143

language prompting, improves zero-shot task gen- 144

eralization to unseen tasks. In the field of NLG 145

evaluation, Zhong et al. (2022b) develop a unified 146

automatic evaluation metric by framing different 147

aspects of NLG evaluation as a Boolean Question 148

Answering problem. Recent studies also present 149

task unification as an effective approach to improve 150

model performance and generalizability in multi- 151

modal tasks (Zhang et al., 2021; Wang et al., 2022). 152

3 Methods 153

Now we introduce ALIGNSCORE, the factual con- 154

sistency metric built on top of a unified align- 155

ment function. We first train the alignment func- 156

tion by unifying a large diversity of data sources 157

(Section 3.1). We then define ALIGNSCORE by 158

combining the alignment function with a new con- 159

text/claim splitting and aggregation strategy (Sec- 160

tion 3.2). 161

3.1 Unified Alignment Function 162

Given two pieces of text a and b, we consider b to 163

be aligned with a if all information in b is present 164

in a and does not contradict a. Conceptually, we 165

model information alignment as a function that 166

maps the text pair (a, b) to a label y that character- 167

izes the level of alignment: 168

f : (a, b) → y . (1) 169

A holistic and generalizable alignment function 170

must account for all types of consistency errors, 171

domains, and data distributions. Therefore, in or- 172

der to learn the alignment function, we want to 173

adapt and aggregate diverse language tasks to form 174

a unified alignment training corpus (Figure 1). In 175

this work, we collect 15 datasets spanning 7 well- 176

established tasks, including NLI, fact verification, 177

paraphrase, semantic textual similarity, QA, infor- 178

mation retrieval, and summarization (Table 4 in 179

appendix gives full details of the datasets). 180
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Unified Alignment Dataset

Contradict
3-way classification

Neutral
3-way classification

Aligned
binary classification

Score: 0.32
regression

Aligned
binary classification

Aligned
binary classification

Not Aligned
binary classification

premise: Children smiling and waving at camera
hypothesis: The kids are frowning

Natural Language Inference

evidence: Manchester is a major city […]
claim: Manchester had a population of […]

original: How do I lose weight fast?
paraphrase: What is the best way to reduce […]

Fact Verification

Paraphrase

sent 1: The man is playing the piano.
sent 2: The man is playing the guitar. text a: The man is playing the piano.

text b: The man is playing the guitar.

context: Understanding the process of […]
question: It can be inferred that [BLANK].
answer: career decision is misunderstood […]

text a: Understanding the process of […]
text b: It can be inferred that career decision […]

query: why do nails get rusty
answer: Nails rust in water because water […]
document: what to Do If I Stepped on Rusty […]

text a: what to Do If I Stepped on Rusty […]
text b: Nails get rusty because water allows […]

document: If you're a photographer, keep all […]
summary: Keep related supplies in the same […]

text a: If you're a photographer, keep all […]
text b: Keep related supplies in the same […]

Semantic Textual Similarity

Question Answering

Information Retrieval

text a: Children smiling and waving at camera
text b: The kids are frowning

text a: Manchester is a major city […]
text b: Manchester had a population of […]

text a: How do I lose weight fast?
text b: What is the best way to reduce weight fast?

Unified 
Alignment 
Function

Summarization

Figure 1: A diagram illustrating the information alignment problem and how we unify various tasks into the
alignment task. We convert each sample in the tasks we consider into a text pair (a, b), and the alignment function
predicts a label y characterizing the level of alignment. The underlined text indicates items in the original dataset
(e.g., question and answer in a QA dataset) are combined to form part of the text pair in the alignment dataset.

The vast diversity of input/output formats across181

the above tasks poses significant challenge for uni-182

fying them into a uniform alignment training cor-183

pus. To unify input formats, we convert each sam-184

ple into a text pair (a, b). For tasks that do not185

cleanly fit into the text pair format, such as QA186

(where each sample contains a question, an answer,187

and a context) and information retrieval (where188

each sample contains a query, an answer, and a sup-189

porting document), we use a sequence-to-sequence190

model (Song, 2022) to convert the question answer191

pair into a single declarative sentence (underlined192

items in Figure 1; See Section C.1 for examples).193

To unify output formats, while we can transform194

all tasks into binary classification, instead we con-195

vert them into a set of related alignment problems196

to preserve as much information as possible from197

the original datasets (Figure 1). Specifically, we198

devise 3 options for the alignment label y:199

ybin ∈ {ALIGNED, NOT-ALIGNED},200

y3way ∈ {ALIGNED, CONTRADICT, NEUTRAL},201

yreg ∈ [0, 1].202

More concretely, for tasks that come with discrete203

labels, depending on their setup, the alignment204

function predicts either the binary classification205

label ybin (paraphrase, QA, information retrieval,206

and summarization) or the 3-way classification la-207

bel y3way (NLI, and fact verification); for tasks with208

continuous labels (semantic textual similarity), the209

alignment function predicts the regression label 210

yreg. Here a higher yreg indicates that more infor- 211

mation in b is supported by a. 212

We build the alignment model consisting of a lan- 213

guage model (e.g., RoBERTa; Liu et al., 2019) and 214

3 individual linear layers as the 3-way classification 215

(y3way), binary classification (ybin), and regression 216

(yreg) heads. First, we feed into the language model 217

the concatenation of the text pair (a, b) and use 218

the contextual embedding of the special begin-of- 219

sentence token as the encoded representation, h. 220

Then, the classification and regression heads map 221

h into an estimation of y3way, ybin, and yreg through 222

logistic regression and linear regression, respec- 223

tively. We use cross entropy loss for both 3-way 224

and binary classification, and mean square error 225

loss for regression. The joint loss function is: 226

Ltotal = λ1L3way + λ2Lbin + λ3Lreg, (2) 227

where λ1, λ2, λ3 are scalar weights. In our experi- 228

ments, we set λ1 = λ2 = λ3 = 1. 229

3.2 The ALIGNSCORE Metric 230

As the definition of factual consistency is closely 231

related to the information alignment problem, one 232

naive way of building a factual consistency metric 233

is simply using the alignment model to estimate 234

the alignment score of the text pair (context, claim). 235

However, this approach (also referred to as "doc- 236

ument level evaluation"; Laban et al., 2022) has 237

several drawbacks. 238
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Hull were beaten 2-0 by 
Southampton at St mary 's 

stadium on Saturday .

Steve Bruce is adamant 
he can keep Hull City in 
the Barclays Premier 
League after a 2-0 defeat 
by Southampton […]

We're bang in it but I'm 
still convinced we'll get 
out of it.' Bruce puts their 
struggles down to several 
long-term injuries to […]

Steve Bruce is confident he 
can keep Hull City in the 

Premier League .

But Bruce insists : ' 
everyone is up for the 
challenge and I 'm […]

split into 350 token chunks split into sentences

Context

𝑜′1

𝑜′2

𝑙′1

𝑙′2

𝑙′3

Claim

𝑝(𝑦3way = ALIGNED|𝒐′𝒊, 𝒍′𝒋)

Figure 2: Illustration of ALIGNSCORE. The context is
split into roughly 350-token chunks. Then, each sen-
tence in the claim is evaluated against the context chunks
using the alignment function. The highest alignment
score of each claim sentence is selected and then aver-
aged to derive the factual consistency score.

First, generative tasks often contain long inputs,239

especially long contexts, that go beyond the in-240

put length limit of a language model (e.g., source241

documents in summarization tasks can easily ex-242

ceed the 512-token limit of a RoBERTa model).243

Consequently, if long inputs are not explicitly han-244

dled (Kryscinski et al., 2020; Mishra et al., 2021),245

language-model-based metrics could silently drop246

important information because of truncation.247

Second, information contained in a claim often248

spreads across multiple sentences in the context.249

To verify the factual consistency of a claim, a met-250

ric needs access to long context spans. Therefore,251

evaluating the claim against individual context sen-252

tences (as in previous sentence level evaluation; La-253

ban et al., 2022; Amplayo et al., 2022) can degrade254

metric performance as paragraph- and document-255

level semantic information is lost.256

Third, humans typically assign consistency257

scores in a continuous spectrum that reflect the258

amount of consistency errors in the samples. Sim-259

ilarly, good metrics should produce fine-grained260

scores. Unfortunately, as classification tasks make261

up most of the training data (only semantic textual262

similarity datasets provide continuous labels), our263

alignment model tends to assign scores close to264

the two extremes, limiting its effectiveness if used265

directly as a factual consistency metric.266

Conceptually, to resolve the first challenge, we267

need to split the context into chunks such that when268

concatenated with a claim, the resulting sequence269

does not exceed the input length limit. By picking270

a large enough chunk size, we allow the model to 271

reason over longer context spans, mitigating the 272

second issue. Since sentences in a claim tend to be 273

self-contained statements, an effective way to make 274

the metric produce more fine-grained scores is to 275

evaluate claim sentences independently of each 276

other (Laban et al., 2022). Specifically, for each 277

sentence in the claim (green rectangles in Figure 2), 278

we evaluate it against all context chunks (yellow 279

rectangles in Figure 2) using the alignment func- 280

tion. Then, we select the highest alignment score 281

(lines labeled with numbers in Figure 2) for each 282

claim sentence. On an intuitive level, this step iden- 283

tifies the context chunk that most strongly supports 284

each claim sentence, and the highest score reflects 285

how well the claim sentence is supported. Finally, 286

we use the average value of all highest scores as 287

the factual consistency score. This addresses the 288

third challenge, as taking the average prevents a 289

single inconsistent claim sentence from dominating 290

the final score. Alternatively, the average value of 291

highest scores can be roughly interpreted as "what 292

faction of claim sentences are consistent with re- 293

spect to the context", which naturally leads to a 294

more fine-grained metric. As we show in exper- 295

iments, our novel chunk level evaluation method 296

consistently outperforms document level (which 297

risks truncation) and sentence level evaluation. 298

We formally define ALIGNSCORE as: 299
300

ALIGNSCORE(o, l) 301

= mean
j

max
i

alignment(o′
i, l

′
j) , (3) 302

where o is the context, l is the claim, {o′
i} is the 303

set of context chunks, {l′j} is the set of claim sen- 304

tences, and alignment(·) is the probability of the 305

model predicting the ALIGNED label in the 3-way 306

classification setting. In practice, for RoBERTa 307

models (that have an input length limit of 512 to- 308

kens) we split the context into chunks at sentence 309

boundaries such that each chunk contains roughly 310

350 tokens. We use the output of the 3-way clas- 311

sification head, our ablation studies reveal that it 312

performs better than the binary classification head 313

and the regression head (Section 4.5). 314

4 Experiments 315

In this section, we evaluate ALIGNSCORE on a 316

wide range of benchmarks and show it consis- 317

tently outperforms existing metrics (Section 4.1- 318

4.4). We also conduct extensive ablation study in 319

Section 4.5. 320
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Type Metric CGS XSF PolyTope FactCC SummEval FRANK AVG

FEQA 53.7 47.6 54.3 47.9 48.8 37.2 48.3
QuestEval 60.4 63.6 77.0 74.2 74.3 85.8 72.5QA
QAFactEval 83.4 66.1 86.4 89.2 88.1 89.4 83.8

ROUGE-1 69.7 64.5 82.5 75.8 87.2 85.0 77.4
ROUGE-2 70.5 65.9 83.7 76.0 87.2 85.3 78.1
ROUGE-L 70.2 62.9 81.9 76.3 87.3 85.3 77.3
BLEU 71.8 55.8 86.9 75.0 83.8 84.5 76.3
BERTScore 63.1 49.0 85.3 70.9 79.6 84.9 72.1
NER-Overlap 51.1 64.9 72.1 49.8 56.6 68.1 60.4

Similarity
Matching

SimCSE 56.2 62.2 75.2 59.0 77.2 74.8 67.4

Regression BLEURT 60.8 64.7 76.7 59.7 71.1 82.5 69.2

MNLI 44.9 46.6 45.0 48.3 43.5 59.3 47.9
DAE 52.4 76.7 72.8 54.2 66.1 78.9 66.8
SummaC-ZS 73.6 58.0 87.5 83.7 85.8 85.3 79.0NLI

SummaC-CONV 67.2 70.3 81.8 92.3 86.1 88.5 81.0

UniEval 84.7 65.5 93.4 89.9 86.3 88.0 84.6
CTC 76.5 65.9 89.5 82.6 85.6 87.3 81.2
BARTScore 74.3 62.6 91.7 82.3 85.9 88.5 80.9
FactCC 64.9 55.1 78.5 72.7 71.8 69.8 68.8

Misc

BLANC 54.1 53.5 74.7 56.4 68.6 83.4 65.1

ALIGN-base 83.7 79.4 87.8 93.3 89.9 90.5 87.4Ours ALIGN-large 86.4 75.8 92.4 93.7 91.7 91.4 88.6

Table 1: The AUC-ROC of different metrics on the SummaC benchmark. The last column (AVG) is the average
performance of each metric. The dark green indicates the best metric on each dataset or on average. And the light
green indicates the second best. CGS and XSF are abbreviations for CoGenSumm and XSumFaith, respectively.

4.1 Implementation321

We use RoBERTa (Liu et al., 2019) to implement322

the alignment model. We denote ALIGNSCORE323

based on RoBERTa-base/large as ALIGNSCORE-324

base/large.325

We follow common practice (Liu et al., 2019;326

Devlin et al., 2019) and train the model for 3 epochs327

with a batch size of 32 in all the experiments. Train-328

ing samples are randomly sampled across the con-329

verted upstream NLP tasks. Due to resource con-330

straints we only use the first 500k samples in each331

dataset for training, resulting in a total of 4.7 mil-332

lion training samples. Training details are listed in333

Appendix A.3.334

4.2 Benchmarks335

Following Deng et al. (2021), Fabbri et al. (2022),336

Zhong et al. (2022a) and Gabriel et al. (2021), we337

evaluate factual consistency metrics using TRUE338

benchmark (Honovich et al., 2022) (consists of 11339

datasets in diverse domains), SummaC benchmark340

(Laban et al., 2022) (includes 6 large summariza-341

tion datasets), and a set of other latest datasets342

including XSumFaith (Maynez et al., 2020), Sum-343

mEval (Fabbri et al., 2021), QAGS-XSum (Wang344

et al., 2020), QAGS-CNNDM (Wang et al., 2020),345

FRANK (Pagnoni et al., 2021) and SamSum346

(Gliwa et al., 2019). 347

SummaC benchmark standardizes the task of 348

summary inconsistency detection by casting it as 349

a binary classification problem. Following Laban 350

et al. (2022), we 1) tune the threshold of metrics on 351

the validation sets, and then compute the balanced 352

accuracy (Brodersen et al., 2010) on the test sets, 353

2) report the AUC-ROC (Bradley, 1997) of each 354

metric. 355

TRUE benchmark covers summarization, dia- 356

logue, paraphrase and fact verification tasks. It also 357

assigns binary labels to samples based on whether 358

the entire claim is factually consistent with the con- 359

text. We report AUC-ROC of each metric following 360

Honovich et al. (2022). 361

We also collect 6 popular factual consistency 362

evaluation datasets, namely XSumFaith, Sum- 363

mEval, QAGS-XSum, QAGS-CNNDM, FRANK 364

and SamSum. We compute instance-level Pear- 365

son, Spearman, and Kendall’s tau correlation coeffi- 366

cients between metric scores and human annotated 367

consistency scores. 368

4.3 Baselines 369

We compare ALIGNSCORE with state-of-the-art 370

metrics, which we categorize into question answer- 371

ing (QA), similarity matching, regression, NLI, and 372
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Type Metric SE PAWS Q2 VitC FVR FRK DF MNBM Q-C Q-X BEGIN AVG AVG-ZS

FEQA 49.5 50.0 53.2 49.9 51.1 63.0 50.5 48.8 50.1 49.4 53.0 51.7 52.2
QuestEval 69.7 69.0 72.2 66.6 72.5 84.0 77.2 64.8 64.5 55.2 83.9 70.9 71.4QA
QAFactEval 80.9 86.1 75.8 73.6 86.0 88.5 81.8 67.3 83.9 76.1 81.0 80.1 79.4

ROUGE-1 80.4 50.2 59.7 60.9 57.8 83.6 65.3 64.8 77.3 60.1 84.6 67.7 72.0
ROUGE-2 79.4 68.6 61.4 59.9 55.5 84.5 67.7 65.0 78.4 60.2 82.8 69.4 72.4
ROUGE-L 80.4 75.9 60.6 59.7 56.4 83.6 65.4 62.8 77.6 59.3 85.0 69.7 71.8
BLEU 74.8 71.3 55.2 56.1 51.7 84.1 61.2 56.7 77.4 54.7 74.6 65.2 67.3
BERTScore 72.3 78.6 70.2 58.2 54.2 84.0 68.6 52.5 70.6 44.3 86.4 67.2 68.6
NER-Overlap 56.6 51.7 59.1 57.8 62.4 65.5 62.7 68.4 48.4 63.6 50.6 58.8 59.3

Similarity
Matching

SimCSE 70.2 69.2 66.2 63.8 72.7 72.9 70.6 64.6 74.9 56.5 86.1 69.8 70.3

Regression BLEURT 68.0 68.4 72.9 61.8 59.5 81.6 73.0 65.5 71.2 56.2 86.6 69.5 71.9

MNLI 44.6 81.3 71.8 80.2 93.1 57.2 76.5 59.1 42.6 50.1 81.5 67.1 60.4
DAE 60.3 55.8 57.7 60.2 77.8 77.9 54.7 81.0 56.9 67.5 69.4 65.4 65.7
SummaC-ZS 77.6 89.0 81.8 97.2 92.8 86.9 87.1 58.0 76.0 75.3 83.2 82.2 78.2NLI

SummaC-CONV 79.1 88.2 77.5 97.5 92.0 89.0 81.2 67.2 77.7 76.0 81.6 82.5 78.7

UniEval 81.2 80.1 70.4 79.1 92.1 88.1 80.4 66.8 86.5 76.7 73.6 79.5 78.0
CTC 79.8 63.1 66.8 65.0 72.5 87.1 63.7 65.0 77.3 67.7 72.0 70.9 72.4
BARTScore 78.9 77.1 65.1 64.2 66.1 87.8 60.8 63.5 83.9 60.2 86.7 72.2 73.4
FactCC 68.6 53.4 59.3 54.7 58.7 70.7 55.0 56.1 70.1 64.4 57.6 60.8 62.7

Misc

BLANC 63.3 56.0 62.9 55.7 53.6 82.1 63.8 54.2 60.9 50.9 73.7 61.6 64.0

ALIGN-base 80.8 97.3 76.1 97.8 94.6 90.0 83.1 79.9 87.7 79.6 82.4 86.3 82.5Ours ALIGN-large 82.9 98.4 78.6 98.3 94.9 92.1 85.1 76.1 89.5 83.5 82.7 87.4 83.8

Table 2: The AUC-ROC of various metrics reported on TRUE benchmark. We compute both the overall average
performance in the AVG column and the average without VitaminC, FEVER and PAWS datasets in the AVG-ZS
column. The color format is the same as in Table 1. The full names of the datasets are listed in Table 6.

miscellaneous. We use open-source code and mod-373

els released by authors.374

QA Based Metrics adapt question generation375

(QG) and question answering (QA) models to auto-376

matically evaluate factual consistency. We include377

the latest QAFactEval (Fabbri et al., 2022), QuestE-378

val (Scialom et al., 2021), and FEQA (Durmus379

et al., 2020) as our baselines.380

Similarity Matching Based Metrics vary in381

their granularity and matching functions. We re-382

port BLEU (Papineni et al., 2002) and ROUGE-383

1/2/L (Lin, 2004), which compute token-level384

string matching scores. We also include the385

named-entity level metric NER-Overlap introduced386

in Laban et al. (2022). BERTScore (Zhang387

et al., 2020) uses token-level embedding to com-388

pute scores, for which we use the best vari-389

ant (microsoft/deberta-xlarge-mnli) recom-390

mended by the authors1. We also use SimCSE391

(Gao et al., 2021) as sentence-level embedding392

matching function, with the best released model393

sup-simcse-roberta-large2.394

Regression Based Metrics learn to estimate395

ground truth scores directly. We use BLEURT (Sel-396

lam et al., 2020) with its recommended checkpoint397

(BLEURT-20)3 as our baseline.398

NLI Based Metrics methods also vary in their399

1https://github.com/Tiiiger/bert_score
2https://github.com/princeton-nlp/SimCSE
3https://github.com/google-research/bleurt

granularity. We use a RoBERTa-large (Liu et al., 400

2019) model finetuned4 on MultiNLI (Williams 401

et al., 2018a) as a baseline for document-level 402

evaluation, where the model evaluates a candi- 403

date against the entire context. Our baselines also 404

include the DAE (Goyal and Durrett, 2020) met- 405

ric, which decomposes text at the level of depen- 406

dency arcs. For sentence-level baseline, we use 407

SummaC-ZeroShot and SummaC-Conv introduced 408

in the SummaC Benchmark (Laban et al., 2022) 409

and FactCC (Kryscinski et al., 2020) which is 410

trained on synthetic data. 411

Miscellaneous Besides the above metrics, we 412

also use competitive metrics including UniEval 413

(Zhong et al., 2022a), CTC (Deng et al., 2021), 414

BARTScore (Yuan et al., 2021) and BLANC (Vasi- 415

lyev et al., 2020) as baselines. 416

UniEval is a unified multi-dimensional metric, 417

capable of evaluating different aspects of text gen- 418

eration. We use the Consistency variant as the 419

baseline. Deng et al. (2021) propose CTC, which 420

is based on token-level information alignment. We 421

use its discriminative variant trained on synthetic 422

CNN/DailyMail (See et al., 2017) (D-CNNDM) as our 423

baseline. For BARTScore, we use the pretrained 424

BART-Large-CNN5 checkpoint. 425

4https://huggingface.co/roberta-large-mnli
5https://github.com/neulab/BARTScore
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Type Metric XSF SE Q-X Q-C FRK-X FRK-C SSum AVG

FEQA 1.3 -2.9 -7.3 -3.9 3.0 -0.4 2.7 -1.0
QuestEval 41.9 29.7 11.7 36.3 19.5 46.5 0.4 26.6QA
QAFactEval 30.3 61.6 44.2 68.4 32.1 64.6 38.9 48.6

ROUGE-1 36.1 41.1 15.7 58.2 6.8 37.1 16.7 30.3
ROUGE-2 27.6 40.9 14.4 59.2 4.9 38.7 19.1 29.3
ROUGE-L 30.6 42.3 12.5 58.2 8.0 37.7 17.4 29.5
BLEU 18.9 41.5 10.9 64.9 8.7 36.6 16.2 28.2
BERTScore 13.0 33.1 -10.6 51.7 13.0 51.7 10.9 23.3
NER-Overlap 21.9 24.9 31.2 0.3 11.4 30.1 16.7 19.5

Similarity
Matching

SimCSE 30.9 28.5 11.9 48.6 13.5 34.5 10.7 25.5

Regression BLEURT 38.7 23.8 13.2 45.2 15.6 37.5 8.1 26.0

MNLI 15.8 -1.8 6.1 -11.0 19.7 -2.2 28.0 7.8
DAE 42.5 41.5 37.5 42.7 32.9 40.5 18.6 36.6
SummaC-ZS 6.4 50.1 43.7 56.1 14.7 53.7 13.7 34.0NLI

SummaC-CONV 10.2 50.3 36.4 63.6 17.6 58.7 12.4 35.6

UniEval 23.9 57.8 45.5 66.7 27.2 58.3 23.2 43.2
CTC 27.2 54.7 30.6 64.5 20.0 54.5 16.9 38.3
BARTScore 29.3 35.5 16.3 71.5 23.7 51.9 15.0 34.7
FactCC 4.9 34.8 28.8 38.6 8.3 34.8 -4.4 20.8

Misc

BLANC 8.3 21.3 1.8 25.7 6.4 34.3 8.3 15.2

ALIGN-base 38.2 61.1 49.5 72.3 33.2 60.0 23.9 48.3Ours ALIGN-large 31.1 66.3 52.7 78.1 38.3 67.7 44.6 54.1

Table 3: Instance-level Pearson correlation coefficients on human annotated factual consistency datasets. The
average performance of each metric is in column AVG. The color format is the same as in Table 1. The full names
of the datasets are listed in Table 7.

4.4 Results426

4.4.1 Results on SummaC Benchmark427

We report AUC-ROC on the test set of the Sum-428

maC Benchmark in Table 1. A higher AUC-ROC429

score indicates the metric is better at detecting fac-430

tual consistency errors. Our ALIGNSCORE-large431

achieves the best average performance on the Sum-432

maC benchmark, scoring the highest in 4 out of 6433

datasets.434

We also present the balanced accuracy in Ap-435

pendix (Table 8), where ALIGNSCORE-large also436

establishes new state-of-the-art results.437

4.4.2 Results on TRUE Benchmark438

The results on the TRUE benchmark are shown in439

Table 2, where ALIGNSCORE-large gets the high-440

est average AUC-ROC score. It outperforms base-441

lines on 7 out of 11 tasks while staying competitive442

on the rest. For a fair comparison, we also re-443

port the average AUC-ROC (denoted as AVG-ZS)444

excluding datasets that the alignment function is445

trained on (PAWS, VitaminC and FEVER). The446

performance of ALIGNSCORE remain to be on top,447

outperforming strong baselines like QAFactEval,448

UniEval, and SummaC-CONV. This demonstrates449

ALIGNSCORE generalize well to unseen data (e.g.,450

DialFact dataset in the dialogue domain).451
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Figure 3: The performance of ALIGNSCORE-base us-
ing different classification heads on 6 tasks. ALIGN-
SCORE-REG indicates the usage of regression head
and ALIGNSCORE-BIN the binary classification head.
ALIGNSCORE indicates the setting mentioned in Sec-
tion 3.2.

4.4.3 Results on Other Datasets 452

We present Pearson correlation coefficients on 453

other factual consistency datasets in Table 3. We 454

also report Spearman correlation and Kendall’s tau 455

coefficients in Appendix (Table 9 and 10). The 456

ALIGNSCORE-large metric outperforms previous 457

metrics in terms of overall performance, includ- 458

ing the competitive QAFactEval metric. We note 459

that DAE and QuestEval perform better on XSum- 460

Faith dataset. Similar to Fabbri et al. (2022), we 461
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Figure 4: The performance of ALIGNSCORE-base us-
ing different splitting methods on 6 tasks. ALIGN-
SCORE-SMART-L and ALIGNSCORE-SMART-N in-
dicate SMART-L and SMART-N splitting method, re-
spectively. ALIGNSCORE-DOC indicates no splitting
method is used (i.e. the inputs are directly fed to the
model). And ALIGNSCORE indicates our proposed split-
ting method in Section 3.2.

speculate it is because the relatedness between the462

token-level annotation in XSumFaith and the fine-463

grained metrics.464

4.5 Ablation Study465

To understand 1) which classification head is466

more suitable for factual consistency evaluation,467

2) which splitting method is more effective, and468

3) which upstream NLP task contributes the most469

to the superior performance of ALIGNSCORE, we470

conduct 3 ablation studies. The experiments in this471

section are all based on ALIGNSCORE-base.472

Classification Head We keep the same splitting473

method as in Section 3.2 and change the heads that474

generate alignment scores. We first use the regres-475

sion head (ALIGNSCORE-base-REG) and the bi-476

nary classification head (ALIGNSCORE-base-BIN).477

Then, we compare these two heads with our pro-478

posed ALIGNSCORE-base, which adopts the 3-way479

classification head. We present the results in Fig-480

ure 3, which shows the 3-way classification head481

consistently performs better than the regression482

head and the binary classification head.483

Splitting Method Then, we keep the 3-way clas-484

sification head and change the splitting method.485

Following Amplayo et al. (2022), we implement486

SMART-L and SMART-N, and use our alignment487

model as the sentence matching function. SMART-488

L uses sentence-level evaluation and aggregates the489

alignment scores through a soft version of Longest490

Common Subsequence (LCS), while SMART-N491

aggregates using greedy matching between N-492
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Figure 5: The absolute performance change of deduct-
ing one task when training alignment model. -X indi-
cates the X task is removed from the alignment training.

sentences. In our experiments, we set N=1. We 493

also implement ALIGNSCORE without any split- 494

ting (denoted as ALIGNSCORE-base-DOC) where 495

the inputs are directly fed into the model. The 496

result in Figure 4 shows that our chunk level split- 497

ting method performs best compared to the other 3 498

methods. It demonstrates that our splitting method 499

helps ALIGNSCORE capture salient information 500

from long contexts. 501

Upstream NLP Task We study the contribution 502

of each upstream NLP task by excluding one task 503

at a time to train the alignment model. The re- 504

sults are shown in Figure 5. When the QA task 505

is removed, the performance of the metric is the 506

worst, indicating QA datasets make the biggest 507

contribution to metric performance. Similarly, fact 508

verification task has the second largest contribu- 509

tion. Surprisingly, with the removal of the NLI 510

task, the model performs better on a majority of 511

benchmarks, showing the NLI task plays a negative 512

role in the training. We speculate that it is because 513

1) premises and hypothesises in NLI datasets are 514

generally shorter, which differs from most factual 515

consistency benchmarks and datasets, 2) other NLP 516

tasks have larger-scale and higher quality datasets. 517

5 Conclusion 518

We propose ALIGNSCORE, a holistic factual con- 519

sistency metric based on a unified alignment func- 520

tion. To learn the alignment function, we adapt 7 521

well established language understanding tasks into 522

a general alignment task with diverse training data. 523

ALIGNSCORE achieves state-of-the-art results on 524

the SummaC and TRUE benchmark, has higher cor- 525

relation with human judgements than competing 526

metrics, and generalizes well to unseen data. 527
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Limitations528

Interpretability. Although ALIGNSCORE shows529

high correlation with human judgments, it is hard530

to interpret the reasoning behind its predictions.531

Therefore, an interesting future research direction532

is to develop interpretable factual consistency met-533

rics that can accurately identify words or spans in534

the input that contain factual consistency errors and535

(or) produce human readable explanations justify-536

ing its predictions.537

Synthetic data. Our alignment training data538

contains datasets augmented with synthetic data.539

While ablation studies show that synthetic data540

helps improve metric performance, our rule-based541

method for generating synthetic data could gener-542

ate noisy data that may not accurately model the543

error types and distributions produced by real world544

generative systems. Thus, analyzing the quality of545

synthetic data and developing more effective ways546

to generate synthetic data is an interesting research547

topic.548

Language coverage. While we show ALIGN-549

SCORE generalize well to unseen data, it only cov-550

ers a single language, English. Undoubtedly, fac-551

tual consistency evaluation is also important for552

more resource-constrained languages or in a multi-553

lingual setting. Consequently, future research could554

focus on extending the Align metric to multiple lan-555

guages, including resource-constrained languages.556

Ethics Statement557

ALIGNSCORE is intended as an automatic metric558

to be used in NLP research. While it has state-of-559

the-art performance, it can produce false positives560

and false negatives, and may not be appropriate561

for applications other than its intended use. As it562

is trained on publicly available datasets, the met-563

ric might be affected by biases inherent to those564

datasets.565
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A Implementation Details 1038

A.1 Unifying Language Understanding Tasks 1039

We adapt datasets from 7 NLP tasks into the in- 1040

formation alignment format. An overview of our 1041

unified training sets is shown in Table 4. 1042

Tasks that cleanly fit into the form of the align- 1043

ment problem, including NLI, fact verification, and 1044

paraphrase datasets are adapted by mapping the 1045

original labels into either binary or 3-way classifi- 1046

cation alignment labels. Next, we discuss how we 1047

adapt semantic textual similarity (STS), QA, and 1048

information retrieval (IR) tasks. 1049

STS STS datasets contain pairs of sentences la- 1050

beled with semantic similarity scores. We use STS 1051

datasets in the regression task by normalizing the 1052

score to between 0 and 1. 1053

QA A QA sample consists of a context paragraph, 1054

a question, and a ground truth answer. One can 1055

derive the ground truth answer given the context 1056

and the question. To convert QA samples into a 1057

format suitable for binary classification, we use a 1058

pretrained sequence-to-sequence model to convert 1059

question-answer pairs into declarative sentences 1060

(Song, 2022; Demszky et al., 2018). Sentences gen- 1061

erated from ground truth answers form ALIGNED 1062

pairs with corresponding contexts, while sentences 1063

generated from wrong options form NOT-ALIGNED 1064

samples. For samples with unanswerable ques- 1065

tions, we first use a QA model6 to generate wrong 1066

answers, and then turn them into NOT-ALIGNED 1067

samples using the above method. 1068

See Section C.1 for converted samples. 1069

IR A sample in an information retrieval dataset 1070

consists of a query-answer pair and a list of pas- 1071

sages, some of which can be used to answer the 1072

query. Similar to QA datasets, we adapt informa- 1073

tion retrieval datasets for binary classification by 1074

6https://huggingface.co/valhalla/
t5-base-qa-qg-hl
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NLP Task Dataset Training Task Avg. Word Count Sample Count

Context Claim

NLI SNLI (Bowman et al., 2015) 3-way classification 13 7 550k
MultiNLI (Williams et al., 2018b) 3-way classification 20 10 393k
Adversarial NLI (Nie et al., 2020) 3-way classification 54 10 163k
DocNLI (Yin et al., 2021) binary classification 285 43 942k

Fact Verification NLI-style FEVER (Nie et al., 2019b) 3-way classification 50 8 208k
Vitamin C (Schuster et al., 2021) 3-way classification 25 11 371k

Paraphrase
QQP (Csernai) binary classification 11 11 364k
PAWS (Zhang et al., 2019) binary classification 18 18 707k
WikiText-103* (Merity et al., 2017) binary classification 22 21 8M

STS SICK (Marelli et al., 2014) regression 10 10 4k
STS Benchmark (Cer et al., 2017) regression 10 10 6k

QA SQuAD v2 (Rajpurkar et al., 2018) binary classification 119 11 130k
RACE (Lai et al., 2017) binary classification 273 14 351k

Information Retrieval MS MARCO (Nguyen et al., 2016) binary classification 56 15 5M

Summarization WikiHow* (Koupaee and Wang, 2018) binary classification 508 46 157k

Table 4: The training datasets of our alignment model. Datasets marked with a * (WikiText-103, WikiHow) are
augmented with synthetic samples (see Appendix A.2). Note due to resource constraints, we only use at most 500k
samples from each dataset to train the alignment model.

converting query-answer pairs into declarative sen-1075

tences and then pairing them with passages. If a1076

passage can be used to answer the corresponding1077

query, we consider the sample to have ALIGNED1078

label. Otherwise it is assigned NOT-ALIGNED.1079

A.2 Synthetic Data1080

We further augment our training set with synthetic1081

data based on the WikiText-103 corpus (Merity1082

et al., 2017) and the WikiHow summarization1083

dataset (Koupaee and Wang, 2018).1084

To generate ALIGNED samples, we create a para-1085

phrase of each sentence in WikiText-103 through1086

back translation using a neural machine translation1087

model (Junczys-Dowmunt et al., 2018). For the1088

WikiHow dataset, we use source documents as text1089

a, and the ground truth summaries together with1090

extractive summaries generated by an extractive1091

summarizer (Barrios et al., 2016) as text b to form1092

ALIGNED samples.1093

Inspired by recent work in creating factually in-1094

consistent samples (Deng et al., 2021; Kryscinski1095

et al., 2020), we randomly mask 25% of the tokens1096

in text b from the ALIGNED samples and infill with1097

a masked language modeling model (Sanh et al.,1098

2019). The resulting sentences are semantically1099

different from the originals and are used in NOT-1100

ALIGNED samples.1101

A.3 Training the Alignment Model 1102

We use the Transformers7 library to implement 1103

the proposed model, and the PyTorch Lightning 1104

framework to train our model. 1105

The alignment model is optimized with AdamW 1106

(Loshchilov and Hutter, 2019). The learning rate 1107

is first warmed up to a peak of 1e-5, and then lin- 1108

early decayed. The hyperparameters used to train 1109

ALIGNSCORE-base and ALIGNSCORE-large are 1110

shown in Table 5. 1111

We don’t split the context and claims into chunks 1112

in the training for simplicity. 1113

Hyperparameter ALIGN-base ALIGN-large

Base Model RoBERTa-base RoBERTa-large
Parameters 124M 355M
Batch Size 32 32
Epochs 3 3
Optimizer AdamW AdamW
Learning Rate 1e-5 1e-5
Weight Decay 0.1 0.1
Adam ϵ 1e-6 1e-6
Warmup Ratio 0.06 0.06
Random Seed 2022 2022
GPU 2×3090 4×A5000
GPU Hour 100h 532h

Table 5: The hyperparameters used to train the align-
ment model.

7https://huggingface.co/docs/transformers/
index
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A.4 Cleaning Evaluation Datasets1114

Certain datasets we use for evaluation contain arti-1115

facts that could hurt model performance. Notable1116

issues include claims having escape sequences1117

(-LRB- and -RRB- instead of parentheses) and be-1118

ing uncased (all lower case) while contexts do not1119

have escape sequences and are cased.1120

We use rule-based methods to remove these arti-1121

facts. Specifically, we replace escape sequences in1122

claims with the original characters, capitalize the1123

first letter of the first word in a sentence, and for1124

words that appear in contexts, we fix their capital-1125

ization in the corresponding claims according to1126

their occurrences in the contexts.1127

A.5 Computing Correlations1128

We first split the inputs to sentences with NLTK sent-1129

enizer. Then ALIGNSCORE computes the instance-1130

level factual consistency score as stated in Section1131

3.2. We use scipy to compute Pearson correlation,1132

Spearman correlation and Kendall’s tau correlation.1133

Dataset Abbreviation

SummEval SE
PAWS PAWS
Q2 Q2
VitaminC VitC
FEVER FVR
FRANK FRK
DialFact DF
MNBM MNBM
QAGS-CNNDM Q-C
QAGS-XSum Q-X
BEGIN BEGIN

Table 6: The abbreviations of each dataset in TRUE
benchmark.

Dataset Abbreviation

XSumFaith XSF
SummEval SE
QAGS-Xsum Q-X
QAGS-CNNDM Q-C
FRANK-XSum FRK-X
FRANK-CNNDM FRK-C
SamSum SSum

Table 7: The abbreviations of each dataset in Table
3/9/10.

B Additional Experiment Details/Results1134

B.1 SummaC Benchmark1135

SummaC benchmark consists of 6 summarization1136

datasets: CogenSum (Falke et al., 2019), XSum-1137

Faith (Maynez et al., 2020), Polytope (Huang et al., 1138

2020), FactCC (Kryscinski et al., 2020), Sum- 1139

mEval (Fabbri et al., 2021) and FRANK (Pagnoni 1140

et al., 2021). The datasets are standardized by bi- 1141

narizing each labels. Metrics are evaluated as clas- 1142

sifiers on SummaC benchmark. 1143

The SummaC Benchmark considers samples 1144

in PolyTope with Addition8, Omission9, 1145

Inaccuracy Intrinsic10, Inaccuracy 1146

Extrinsic11 and Positive-Negative Aspect12 1147

errors to be negative samples. However, Addition 1148

and Omission do not imply factual consis- 1149

tency errors. Thus, we only consider samples 1150

with Inaccuracy Intrinsic, Inaccuracy 1151

Extrinsic and Positive-Negative Aspect 1152

errors to be factually incorrect. The reported 1153

PolyTope result uses this definition of errors. 1154

We also report balanced accuracy, which deals 1155

with imbalanced datasets, in Table 8. 1156

B.2 TRUE Benchmark 1157

TRUE benchmark is for evaluating factual con- 1158

sistency metrics in summarization, dialogue, fact- 1159

verification and paraphrasing tasks. There are 1160

totally 11 datasets in this benchmark: FRANK 1161

(Pagnoni et al., 2021), SummEval (Fabbri et al., 1162

2021), MNBM (Maynez et al., 2020), QAGS- 1163

CNNDM (Wang et al., 2020), QAGS-XSum (Wang 1164

et al., 2020), BEGIN (Dziri et al., 2022), Q2
dataset 1165

(Honovich et al., 2021), DialFact (Gupta et al., 1166

2022), PAWS (Zhang et al., 2019), FEVER (Nie 1167

et al., 2019c; Thorne et al., 2018) and VitaminC 1168

(Schuster et al., 2021). TRUE also treats factual 1169

consistency evaluation as a binary classification 1170

task and reports AUC-ROC. 1171

The full names of the datasets in Table 2 are 1172

listed in Table 6. 1173

B.3 Other Datasets 1174

In addition to the Pearson correlation reported in 1175

Table 3, we also report the Spearman correlation 1176

and Kendall’s tau correlation on 9 datasets in Table 1177

9 and 10, respectively. The full names of the abbre- 1178

viations in Table 3, Table 9 and Table 10 are listed 1179

8Defined as: Unnecessary and irrelevant snippets from the
source are included in the summary

9Defined as: Key point is missing from the output
10Defined as: Terms or concepts from the source are mis-

represented and thus unfaithful.
11Defined as: The summary has content not presented in

the source and factually incorrect
12Defined as: The output summary represents positive state-

ments whereas the source segment is negative, and vice versa.

15



Type Metric CGS XSF PolyTope FactCC SummEval FRANK AVG

FEQA 51.9 49.5 53.7 46.6 51.4 41.4 49.1
QuestEval 53.1 57.6 69.3 66.8 69.8 77.7 65.7QA
QAFactEval 50.6 61.2 60.2 73.8 54.9 74.9 62.6

ROUGE-1 61.1 62.4 74.4 68.0 80.0 79.1 70.8
ROUGE-2 61.2 62.2 75.1 67.8 78.8 78.8 70.7
ROUGE-L 61.5 57.4 74.0 67.7 79.7 78.8 69.8
BLEU 64.2 55.2 78.3 67.0 77.6 79.3 70.3
BERTScore 52.7 49.0 76.9 65.3 72.7 78.5 65.8
NER-Overlap 51.1 64.9 72.1 49.8 56.6 68.1 60.4

Similarity
Matching

SimCSE 54.4 57.3 68.9 57.3 71.3 68.5 62.9

Regression BLEURT 57.7 58.7 69.0 56.2 63.7 74.9 63.4

MNLI 46.0 48.7 46.3 52.2 50.7 55.2 49.8
DAE 52.4 76.7 72.8 54.2 66.1 78.9 66.8
SummaC-ZS 62.6 57.8 81.0 82.8 77.8 78.1 73.4NLI

SummaC-CONV 59.8 66.4 73.7 89.2 79.8 81.0 75.0

UniEval 77.1 61.2 85.3 84.7 79.4 80.9 78.1
CTC 69.1 61.7 82.1 77.6 78.4 80.5 74.9
BARTScore 56.9 58.7 84.6 73.3 79.6 78.3 71.9
FactCC 64.9 55.1 78.5 72.7 71.8 69.8 68.8

Misc

BLANC 49.8 52.0 66.3 55.7 58.3 78.4 60.1

ALIGN-base 77.8 72.2 78.9 87.4 83.7 83.6 80.6Ours ALIGN-large 75.0 70.0 88.0 89.2 83.4 86.3 82.0

Table 8: Balanced accuracy of various metrics on SummaC benchmark. We compute the averaged performance of
each metric in the last column AVG. The color format follows Table 1.

Type Metric XSF SE Q-X Q-C FRK-X FRK-C SSum AVG

FEQA 1.7 0.2 -6.5 -7.2 1.5 -2.9 0.0 -1.9
QuestEval 42.1 26.3 11.9 30.8 19.1 40.5 3.9 25.0QA
QAFactEval 31.9 42.8 44.1 63.1 25.5 53.7 35.9 42.4

ROUGE-1 34.2 38.1 18.1 53.6 5.6 35.2 15.1 28.6
ROUGE-2 26.8 37.8 17.7 55.2 2.8 37.2 17.5 27.9
ROUGE-L 28.9 38.5 16.5 53.7 8.2 35.8 16.3 28.3
BLEU 18.2 34.7 10.1 55.4 6.3 34.0 13.7 24.6
BERTScore 13.4 31.5 -8.9 46.2 12.7 45.1 13.1 21.9
NER-Overlap 23.9 21.4 31.2 0.2 11.3 27.8 16.7 18.9

Similarity
Matching

SimCSE 29.2 26.4 11.2 47.2 13.3 31.3 7.9 23.8

Regression BLEURT 37.0 23.6 12.4 43.4 13.9 37.6 6.7 24.9

MNLI 7.0 -6.6 0.7 -16.4 11.7 -5.5 31.1 3.1
DAE 47.0 36.2 37.5 37.1 32.1 36.9 18.6 35.1
SummaC-ZS 5.7 38.3 43.7 51.1 12.8 46.2 15.1 30.4NLI

SummaC-CONV 21.7 41.4 45.0 58.4 11.0 52.4 9.8 34.2

UniEval 25.3 44.3 50.0 67.6 26.7 54.0 22.8 41.5
CTC 29.8 41.7 30.6 57.3 20.4 49.4 17.7 35.3
BARTScore 29.8 39.1 17.0 68.1 20.0 53.3 16.3 34.8
FactCC 6.8 33.5 28.8 40.3 7.9 35.3 -4.4 21.2

Misc

BLANC 8.4 19.0 1.6 22.2 6.5 34.2 9.1 14.4

ALIGN-base 43.8 43.4 51.9 69.0 28.0 54.7 23.4 44.9Ours ALIGN-large 33.3 46.6 57.2 73.9 29.0 60.9 43.8 49.3

Table 9: Instance-level Spearman correlation coefficients on human annotated factual consistency datasets. The
table format follows Table 3.
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Type Metric XSF SE Q-X Q-C FRK-X FRK-C SSum AVG

FEQA 1.1 0.2 -5.3 -5.7 1.3 -2.2 0.0 -1.5
QuestEval 28.7 20.8 9.7 23.9 15.6 31.1 3.2 19.0QA
QAFactEval 23.2 34.0 36.2 50.5 22.4 42.2 30.1 34.1

ROUGE-1 23.4 30.3 14.8 42.9 4.6 26.8 12.4 22.2
ROUGE-2 18.4 30.0 14.5 44.2 2.3 28.4 14.5 21.8
ROUGE-L 19.6 30.6 13.6 42.8 6.7 27.3 13.3 22.0
BLEU 14.6 27.5 9.0 44.7 6.1 25.9 12.2 20.0
BERTScore 9.2 24.9 -7.3 36.3 10.4 34.7 10.7 17.0
NER-Overlap 19.6 20.6 31.2 0.2 11.3 25.7 16.7 17.9

Similarity
Matching

SimCSE 19.9 20.9 9.1 36.7 10.8 23.8 6.4 18.2

Regression BLEURT 25.3 18.6 10.1 33.9 11.4 28.8 5.5 19.1

MNLI 4.7 -5.2 0.5 -12.8 9.5 -4.2 25.4 2.6
DAE 38.6 34.8 37.5 34.7 32.1 34.1 18.6 32.9
SummaC-ZS 3.9 30.4 35.8 40.5 10.5 35.8 12.3 24.2NLI

SummaC-CONV 15.0 33.1 36.8 46.5 9.0 41.3 8.0 27.1

UniEval 17.0 35.3 40.9 54.4 21.8 42.4 18.7 32.9
CTC 20.2 33.2 25.1 45.7 16.6 38.2 14.4 27.6
BARTScore 20.2 31.0 13.9 55.6 16.3 41.4 13.3 27.4
FactCC 5.6 32.2 28.8 37.7 7.9 32.6 -4.4 20.0

Misc

BLANC 5.6 14.9 1.3 17.1 5.3 26.0 7.5 11.1

ALIGN-base 30.1 34.7 42.5 55.4 22.9 42.9 19.1 35.4Ours ALIGN-large 22.7 37.4 46.8 61.3 23.7 48.5 35.8 39.5

Table 10: Instance-level Kendall’s tau correlation coefficients on human annotated factual consistency datasets. The
table format follows Table 3.

in Table 7.1180

B.3.1 Why BLEU Metric Performs Relatively1181

Well?1182

We notice that the BLEU metric has comparable1183

performance with some neural model based meth-1184

ods, which seems to contradict some previous find-1185

ings. We attribute it to the case matching in the1186

pre-processing, since BLEU is case sensitive.1187

C Sample Training Data1188

C.1 Converted QA Samples1189

Below are converted SQuAD v2 (Rajpurkar et al.,1190

2018) samples, where questions and answers are1191

combined into declarative claims using a sequence-1192

to-sequence model (Song, 2022; Demszky et al.,1193

2018). The conversion process in discussed in Sec-1194

tion A.1.1195

Context: The Times Literary Supplement (TLS)1196

first appeared in 1902 as a supplement to The1197

Times, becoming a separately paid-for weekly1198

literature and society magazine in 1914. The1199

Times and the TLS have continued to be co-1200

owned, and as of 2012 the TLS is also pub-1201

lished by News International and cooperates1202

closely with The Times, with its online ver- 1203

sion hosted on The Times website, and its 1204

editorial offices based in Times House, Pen- 1205

nington Street, London. 1206

Question: The editorial offices of The Times Lit- 1207

erary Supplement is based in what location in 1208

London? 1209

Answer: Times House, Pennington Street 1210

Generated claim: The editorial offices of The 1211

Times Literary Supplement is based in Times 1212

House, Pennington Street in London. 1213

Label: ALIGNED 1214

Context: The 25,000 cotton growers in the United 1215

States of America are heavily subsidized at 1216

the rate of $2 billion per year although China 1217

now provides the highest overall level of cot- 1218

ton sector support. The future of these subsi- 1219

dies is uncertain and has led to anticipatory 1220

expansion of cotton brokers’ operations in 1221

Africa. Dunavant expanded in Africa by buy- 1222

ing out local operations. This is only possible 1223

in former British colonies and Mozambique; 1224

former French colonies continue to maintain 1225

tight monopolies, inherited from their former 1226

colonialist masters, on cotton purchases at 1227
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low fixed prices.1228

Question: How many subsidized cotton growers1229

are in the US?1230

Answer: 25,0001231

Generated claim: 25,000 subsidized cotton grow-1232

ers are in the US.1233

Label: ALIGNED1234

Context: On October 28, 2015, IBM announced1235

its acquisition of digital assets from The1236

Weather Company—a holding company of1237

Bain Capital, The Blackstone Group and1238

NBCUniversal which owns The Weather1239

Channel, including its weather data plat-1240

forms (such as Weather Services Interna-1241

tional), websites (Weather.com and Weather1242

Underground) and mobile apps. The acquisi-1243

tion seeks to use Watson for weather analytics1244

and predictions. The acquisition does not in-1245

clude The Weather Channel itself, which will1246

enter into a long-term licensing agreement1247

with IBM for use of its data. The sale closed1248

on January 29, 20161249

Question: When did the sale of Weather Company1250

assets close?1251

Answer: January 29, 20161252

Generated claim: The sale of Weather Company1253

assets closed on January 29, 2016.1254

Label: ALIGNED1255

Context: The dipole component of the magnetic1256

field at the magnetic equator of Neptune is1257

about 14 microteslas (0.14 G). The dipole1258

magnetic moment of Neptune is about 2.2 ×1259

1017 T·m3 (14 µT·RN3, where RN is the ra-1260

dius of Neptune). Neptune’s magnetic field1261

has a complex geometry that includes rela-1262

tively large contributions from non-dipolar1263

components, including a strong quadrupole1264

moment that may exceed the dipole moment1265

in strength. By contrast, Earth, Jupiter and1266

Saturn have only relatively small quadrupole1267

moments, and their fields are less tilted from1268

the polar axis. The large quadrupole moment1269

of Neptune may be the result of offset from1270

the planet’s centre and geometrical constraints1271

of the field’s dynamo generator.1272

Question: What is the dipole component of the 1273

magnetic field at the magnetic equator of nep- 1274

tune? 1275

Answer: 14 microteslas (0.14 G) 1276

Generated claim: The dipole component of the 1277

magnetic field at the magnetic equator of nep- 1278

tune is 14 microteslas (0.14 G). 1279

Label: ALIGNED 1280

Context: Qing dynasty rule in Tibet began with 1281

their 1720 expedition to the country when 1282

they expelled the invading Dzungars. Amdo 1283

came under Qing control in 1724, and east- 1284

ern Kham was incorporated into neighbour- 1285

ing Chinese provinces in 1728. Meanwhile, 1286

the Qing government sent resident commis- 1287

sioners called Ambans to Lhasa. In 1750 the 1288

Ambans and the majority of the Han Chinese 1289

and Manchus living in Lhasa were killed in 1290

a riot, and Qing troops arrived quickly and 1291

suppressed the rebels in the next year. Like 1292

the preceding Yuan dynasty, the Manchus of 1293

the Qing dynasty exerted military and admin- 1294

istrative control of the region, while granting 1295

it a degree of political autonomy. The Qing 1296

commander publicly executed a number of 1297

supporters of the rebels and, as in 1723 and 1298

1728, made changes in the political structure 1299

and drew up a formal organization plan. The 1300

Qing now restored the Dalai Lama as ruler, 1301

leading the governing council called Kashag, 1302

but elevated the role of Ambans to include 1303

more direct involvement in Tibetan internal 1304

affairs. At the same time the Qing took steps 1305

to counterbalance the power of the aristocracy 1306

by adding officials recruited from the clergy 1307

to key posts. 1308

Question: What did the Qing commander do in 1309

1732 and 1728? 1310

Answer: Unanswerable 1311

Generated claim: The Qing commander publicly 1312

executed a number of supporters of the rebels 1313

in 1732 and 1728. 1314

Label: NOT-ALIGNED 1315
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