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Abstract

We introduce point affiliation into feature upsampling, a notion that describes the1

affiliation of each upsampled point to a semantic cluster formed by local decoder2

feature points with semantic similarity. By rethinking point affiliation, we present a3

generic formulation for generating upsampling kernels. The kernels encourage not4

only semantic smoothness but also boundary sharpness in the upsampled feature5

maps. Such properties are particularly useful for some dense prediction tasks such6

as semantic segmentation. The key idea of our formulation is to generate similarity-7

aware kernels by comparing the similarity between each encoder feature point and8

the spatially associated local region of decoder features. In this way, the encoder9

feature point can function as a cue to inform the semantic cluster of upsampled10

feature points. To embody the formulation, we further instantiate a lightweight11

upsampling operator, termed Similarity-Aware Point Affiliation (SAPA), and inves-12

tigate its variants. SAPA invites consistent performance improvements on a number13

of dense prediction tasks, including semantic segmentation, object detection, depth14

estimation, and image matting. Code will be available online.15

1 Introduction16

We introduce the notion of point affiliation into feature upsampling. Point affiliation defines a relation17

between each upsampled point and a semantic cluster1 to which the point should belong. It highlights18

the spatial arrangement of upsampled points at the semantic level. Considering an example shown19

in Fig. 1 w.r.t. ×2 upsampling in semantic segmentation, the orange point of low resolution will20

correspond to 4 upsampled points of high resolution, in which the red and yellow ones should be21

assigned the ‘picture’ cluster and the ‘wall’ cluster, respectively. Designating point affiliation is22

difficult and sometimes can be erroneous, however.23

In ×2 upsampling, nearest neighbor (NN) interpolation directly copies 4 identical points from the24

low-res one, which assigns the same semantic cluster to the 4 points. On regions in need of details,25

the 4 points probably do not share the same cluster but are forced to share. Bilinear interpolation26

assigns point affiliation with distance priors. Yet, when tackling points of different semantic clusters,27

it not only cannot inform clear point affiliation, but also blurs the boundary between different28

semantic clusters. Recent dynamic upsampling operators have similar issues. CARAFE [1] judges the29

affiliation of an upsampled point with content-aware kernels. Certain semantic clusters will receive30

larger weights than the rest and therefore dominate the affiliation of upsampled points. However, the31

affiliation near boundaries or on regions full of details can still be ambiguous. As shown in Fig. 2, the32

boundaries are unclear in the feature maps upsampled by CARAFE. The reason is that the kernels33

are conditioned on decoder features alone; the decoder features carry little useful information about34

high-res structure.35

1A semantic cluster is formed by local decoder feature points with the similar semantic meaning.
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Figure 1: Left: Similarity between an encoder point and different semantic clusters in the
decoder. Right: Point affiliation mechanism of ideal upsampling kernels. Left: If the red-box
encoder feature point is classified into the semantic cluster C1, then it is more similar to C1 than C2.
Right: The upsampling kernels can be a ‘soft’ selector in a local window to assign point affiliation.
For an upsampled point, the kernel selects a/some representative points from its most relative semantic
cluster. E.g., according to the encoder feature, the red upsampled feature point should belong to the
‘picture’ cluster. Then we expect the kernel can assign large weights on picture-related points and
small weights on wall-related points. In this way, after the weighted sum, the upsampled point will
be revalued and assigned the ‘picture’ cluster.

Inferring structure requires high-res encoder features. For instance, if the orange point in Fig. 1 lies36

on the low-res boundary, it is difficult to judge to which cluster the 4 upsampled points should belong.37

However, the encoder feature in Fig. 1 actually tells that, the yellow point is on the wall, and the red38

one is on the picture, which suggests one may extract useful information from the encoder feature to39

assist the designation of point affiliation. Indeed IndexNet [2] and A2U [3] have attempted to encode40

such information to improve detail delineation in encoder-dependent upsampling kernels; however,41

the encoder feature can easily introduce noise into kernels, engendering discontinuous feature maps42

shown in Fig. 2. Hence, the key problem seems to be how to extract only required information into43

the upsampling kernels from the encoder feature while filtering out the rest.44

To use encoder features effectively, an important assumption of this paper is that, an encoder feature45

point is most similar to the semantic cluster into which the point will be classified. Per the left of46

Fig. 1, suppose that the encoder point in the red box is assigned into the cluster C1 by its semantic47

meaning, then it is similar to C1, while not similar to C2. As a result, by comparing the similarity48

between the encoder feature point and different semantic clusters in the decoder feature, the affiliation49

of the upsampled point can be informed according to the similarity scores. In particular, we propose50

to generate upsampling kernels with local mutual similarity between encoder and decoder features.51

For every encoder feature point, we compute the similarity score between this point and each decoder52

feature point in the spatially associated local window. For the green point in Fig. 1, since every point53

in the window shares the same semantic cluster, the encoder feature point is as similar as every point54

in the window. In this case we expect an ‘average kernel’ which is the key characteristic to filter55

noise, and the upsampled 4 points would have the same semantic cluster as before. For the yellow56

point in the encoder, since it belongs to the ‘wall’ cluster, it is more similar to the points on the wall57

than those on the picture. In this case we expect a kernel with larger weights on points related to the58

‘wall’ cluster. This can help to assign the affiliation of the yellow point to be in the ’wall’ cluster.59

By modeling the local mutual similarity, we derive a generic form of upsampling kernels and show60

that this form implements our expected upsampling behaviors: encouraging both semantic smoothness61

and boundary sharpness. Following our formulation, we further instantiate a lightweight upsampling62

operator, termed Similarity-Aware Point Affiliation (SAPA), and investigate its variants. We evaluate63

SAPA across a number of mainstream dense prediction tasks, for example: i) semantic segmentation:64

we test SAPA on several transformer-based segmentation baselines on the ADE20K dataset [4], such65

as SegFormer [5], MaskFormer [6], and Mask2Former [7], improving the baselines by 1% ∼ 2.7%66

mIoU; ii) object detection: SAPA improves the performance of Faster RCNN by 0.4% AP on MS67

COCO [8]; iii) monocular depth estimation: SAPA reduces the rmse metric of BTS [9] from 0.41968

to 0.408 on NYU Depth V2 [10]; and iv) image matting: SAPA outperforms a strong A2U matting69

baseline [3] on the Adobe Composition-1k testing set [11] with a further 3.8% relative error reduction70

in the SAD metric. SAPA also outperforms or at least is on par with other state-of-the-art dynamic71

upsampling operators. Particularly, even without additional parameters, SAPA outperforms the72

previous best upsampling operator CARAFE on semantic segmentation.73
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Figure 2: Top: Upsampled feature maps and upsampling kernel maps of different upsampling
operators. Down: Additional upsampling kernel maps of SAPA generated from various sam-
ples. The visualization is produced with SegNet [12] as the baseline on the SUN RGBD [13] dataset.
For each upsampling operator, we choose the first three channels from the feature maps of the last
upsampling stage for visualization. Only SAPA shows both smooth regions and sharp boundaries.
The kernel map of CARAFE is coarse and lacking in details, while IndexNet and A2U generate
kernels with too much detail from encoder to preserve semantics. Please refer to supplementary
materials for additional visualizations.

2 Related Work74

We review work related to feature upsampling. Feature upsampling is a fundamental procedure in75

encoder-decoder architectures used to recover the spatial resolution of low-res decoder feature maps76

and has been extensively used in dense prediction tasks such as semantic segmentation [12, 5, 6, 7]77

and depth estimation [14, 15, 9].78

Standard upsampling operators are hand-crafted. NN and bilinear interpolation measure the semantic79

affiliation in terms of relative distances in upsampling, which follows fixed rules to designate point80

affiliation, even if the true affiliation may be different. Max unpooling [12] stores the indices of81

max-pooled feature points in encoder features and uses the sparse indices to guide upsampling. While82

it executes location-specific point affiliation which benefits detail recovery, most upsampled points83

are assigned with null affiliation due to zero filling. Pixel Shuffle [16] is widely-used in image/video84

super-resolution. Its upsampling only includes memory operation – reshaping depth channels to85

space ones. The notion of point affiliation does not apply to this operator, however.86

Another stream of upsampling operators implement learning-based upsampling. Among them,87

transposed convolution or deconvolution [17] is known as an inverse convolutional operator. Based88

on a novel interpretation of deconvolution, PixelTCL [18] is proposed to alleviate the checkerboard89

artifacts [19] of standard deconvolution. In addition, bilinear additive upsampling [20] attempts90

to combine learnable convolutional kernels with hand-crafted upsampling operators to achieve91

composited upsampling. Recently, DUpsample [21] seeks to reconstruct the upsampled feature map92

with pre-learned projection matrices, expecting to achieve a data-dependent upsampling behavior.93

While these operators are learnable, the upsampling kernels are fixed once learned, still resulting in94

fixed designation of point affiliation.95
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In learning-based upsampling, some recent work introduces the idea of generating content-aware96

dynamic kernels. Instead of learning the parameters of the kernels, they learn how to predict the97

kernels. In particular, CARAFE [1] predicts dynamic kernels conditioned on the decoder features.98

IndexNet [2] and A2U [3], by contrast, generate encoder-dependent kernels. While they significantly99

outperform previous upsampling operators in various tasks, they still can cause uncertain point100

affiliation, resulting in either unclear predictions near boundaries or fragile predictions in regions.101

Our work is closely related to dynamic kernel-based upsampling. We also seek to predict dynamic102

kernels; however, we aim to address the uncertain point affiliation in prior arts to achieve simultaneous103

region smoothness and boundary sharpness.104

3 Dynamic Upsampling Revisited105

We first revisit two key components shared by existing dynamic upsampling operators: kernel106

generation and feature assembly.107

Kernel Generation Given the decoder feature X , if we upsample it to the target feature X ′, which108

is often twice the size of X , then for any point at the location l′ = (i′, j′) in X ′, we generate a109

kernelWl′ based on the neighborhood feature Nl′ that spatially corresponds to l′. In this way, kernel110

generation can be defined by111

Wl′ = norm(ψ(Nl′)) , (1)
where ψ refers to a kernel generation module, which is often implemented by a sub-network used to112

predict the kernel conditioned on Nl′ , and norm is a normalization function. The feature Nl′ can113

originate from two sources, to be specific, from the encoder feature Y or from the decoder feature X .114

If the encoder feature Y is chosen as the source, then a local region of Y centered at l′ is extracted115

to be Nl′ . If the decoder feature X is chosen, one first needs to compute the projective location116

of l′, i.e., l = (b i
′

2 c, b
j′

2 c) according to the spatial location correspondence, then a neighborhood117

region extracted from Xl is regarded asNl′ . The softmax function is often used as the normalization118

function such that relevant points can be softly selected to compute the value of the target point using119

the weightWl′ .120

As illustrated in Fig. 2, the source of Nl′ can affect the predicted kernel. The kernels predicted by121

CARAFE, IndexNet, and A2U show significantly distinct characteristics. With the decoder feature122

alone, the kernel map is coarse and lacking in details. Benefited from the encoder feature, the kernel123

maps generated by IndexNet and A2U have rich details; however, they manifest large similarity to124

the original encoder feature, which means noise is introduced into the kernel.125

Feature Assembly In this step, for each target feature point at l′, we assemble the corresponding126

sub-region of decode feature with the predicted kernelWl′ and assign a value to this target point. If127

the predicted kernel has a kernel size of K ×K, then the sub-region is also of size K ×K centered128

at l, where l = (i, j) = (b i
′

2 c, b
j′

2 c). We compute the weighted sum between the normalized kernel129

and the sub-region of decoder feature to obtain the value of X ′l′ by130

X ′l′ =
r∑

n=−r

r∑
m=−r

Wl′(n,m) · X(i+n,j+m) , r = b
K

2
c . (2)

By executing feature assembly on every target feature point, we can obtain the target upsampled131

feature map. As shown in Fig. 2, the upsampled feature has a close relation to the kernel. A well-132

predicted kernel can encourge both semantic smoothness and boundary sharpness; a kernel without133

encoding details or with too many details encoded can introduce noise. We consider an ideal kernel134

should only response at the position in need of details, while do not response (appearing as an average135

value over an area) at good semantic regions. More importantly, an ideal kernel should assign weights136

reasonably so that each point can be designated to a correct semantic cluster.137

4 Rethinking Point Affiliation with Local Mutual Similarity138

To obtain an expected upsampling kernel mentioned above, we first derive a generic formulation for139

generating upsampling kernels by exploiting local mutual similarity, then explain why the formulation140
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encourages semantic smoothness and boundary sharpness, and finally present an upsampling operator,141

SAPA, that embodies our formulation.142

4.1 Local Mutual Similarity143

We rethink point affiliation from the view of local mutual similarity between encoder and decoder144

features. With a detailed analysis, we explain why such similarity can assist point affiliation.145

We first define a generic similarity function sim(x,y) : RC × RC → R. It scores the similarity146

between a vector x and a vector y of the same dimension C. We also define a normalization147

function involving n real numbers x1, x2, ..., xn by norm(xi : x1, x2, ..., xn) =
h(xi)∑n

j=1 h(xj)
, where148

h(x) : R → R is an arbitrary function, ignoring zero division. Given sim(x,y) and h(x), we can149

define a generic formulation for generating the upsampling kernel150

w =
h (sim(x,y))∑

x′∈Nl′

h (sim(x′,y))
, (3)

where w is the kernel value specific to x and y. To analyze the upsampling behavior of the kernel,151

we further define the following notations.152

Let Y ∈ R2H×2W×C and X ∈ RH×W×C be the encoder and decoder feature maps, respectively.153

Let yi,j = Y(i,j) ∈ RC , (i, j) ∈ {0, 1, ..., 2H − 1} × {0, 1, ..., 2W − 1} denote the encoder feature154

vector and xk,l = X(k,l) ∈ RC , (k, l) ∈ {0, 1, ...,H − 1} × {0, 1, ...,W − 1} be the decoder feature155

vector, where C is the number of channels.156

Let K be the upsampling kernel size. Our operation will be done within a local window of size157

K ×K, between each encoder vector yi,j and all its spatially associated decoder feature vectors,158

xb i
2 c+m,b j2 c+n’s, where m,n = −bK2 c, ..., b

K
2 c.159

To simplify our analysis, we also assume local smoothness. That is, points with the same semantic160

cluster will have a similar value, which means a local region will share the same value on every161

channel of the feature map. As shown in Fig. 1, we define xw = (Rw
1 , R

w
2 , ..., R

w
C)

T and xp =162

(Rp
1, R

p
2, ..., R

p
C)

T as the semantic clusters related to ‘wall’ and ‘picture’, respectively, where Rw
c163

and Rp
c are constants, and c = 1, 2, ..., C. For ease of analysis, we define two types of windows164

distinguished by their contents. When all the points inside a window belong to the same semantic165

cluster, it is called a smooth window; while different semantic clusters appear in a window, it is166

defined as a detail window.167

Next, we explain why the kernel can filter noise and can encourage semantic smoothness in a smooth168

window, and why it can help to recover details when dealing with boundaries/textures in a detail169

window.170

Upsampling in a Smooth Window Without loss of generality, we consider the point yi1,j1 in171

Fig. 1 in the encoder feature. Its corresponding window is a smooth window of with the semantic172

cluster ‘picture’, thus xb i12 c+m,b j12 c+n
= xp,m, n = −bK2 c, ..., b

K
2 c. Then the upsampling kernel173

weight for the upsampled point (i1, j1) at the position (m,n) takes the form174

wi1,j1,m,n = norm(sim(xb i12 c+m,b j12 c+n
,yi1,j1))

=
h(sim(xb i12 c+m,b j12 c+n

,yi1,j1))

bK2 c∑
s=−bK2 c

bK2 c∑
t=−bK2 c

h(sim(xb i12 c+s,b j12 c+t
,yi1,j1))

=
h(sim(xp,yi1,j1))

K2h(sim(xp,yi1,j1))

=
1

K2

, (4)

which has nothing to do with i1, j1,m, and n. Eq. (4) reveals a key characteristic of local mutual175

similarity in a smooth window: the kernel weight is a constant regardless of y. Therefore, the kernel176

fundamentally can filter out noise from encoder features with an ‘average’ kernel.177
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Figure 3: Feature upsampling of SAPA. For every encoder feature point, mutual similarity scores
are computed by a similarity function with the spatially associated local region in the decoder features.
The scores are then transformed into upsampling kernel weights after normalization. In this way
each of the 4 upsampling kernels can select some decoder points from the 3× 3 decoder window,
conditioned on mutual similarity, and assigns the value to the corresponding upsampled point.

Note that, in the derivation above the necessary conditions include: i) x is from a local window in the178

decoder feature map; ii) a normalization function in the form of h(xi)∑
j h(xj)

.179

Upsampling in a Detail Window Again we consider two points yi2w,j2w and yi2p,j2p in Fig. 1 in180

the encoder feature. Ideally yi2w,j2w and yi2p,j2p should be classified into the semantic cluster of181

‘wall’ and ’picture’, respectively. Taking yi2w,j2w as an example, following our assumption, it is182

more similar to points of the ‘wall’ cluster rather than the ‘picture’ cluster. From Eq. (4), we can183

tell that sim(xb i22 c+mw,b j22 c+nw
,yi2w,j2w) is larger than sim(xb i22 c+mp,b j22 c+np

,yi2w,j2w), where184

xb i22 c+mw,b j22 c+nw
and xb i22 c+mp,b j22 c+np

belong to the ‘wall’ cluster and the ‘picture’ cluster,185

respectively. Therefore, after computing similarity scores and normalization, one can acquire a kernel186

with significantly larger weights on points with the semantic cluster of ‘wall’ than that of ‘picture’,187

i.e., wi2w,j2w,mw,nw
>> wi2w,j2w,mp,np

. After applying the kernel to the corresponding window,188

the upsampled point at (i2w, j2w) will be revalued and assigned to the semantic cluster of ‘wall’.189

Similarly, the upsampled point at (i2p, j2p) will be assigned into ‘picture’.190

Note that, in Eq. (4) we have no constraint on y. But here in a detail window, y as an encoder191

feature vector can play a vital role for designating correct point affiliation. Next in our concrete192

implementation, we discuss how to appropriately use y in the similarity function.193

4.2 SAPA: Similarity-Aware Point Affiliation194

Here we embody Eq. (3) by choosing appropriate similarity and normalization functions.195

Normalization Function Though we do not constrain h(x) in theory, in reality it must be carefully196

chosen. For example, to avoid zero division, the scope for the choice of h(x) is narrowed. Following197

existing practices [1, 2, 3], we choose h(x) = ex by default, which is equivalent to softmax198

normalization. We also test some other h(x)’s, such as h(x) = ReLU(x), h(x) = sigmoid(x), and199

h(x) = softplus(x). Their performance comparisons will be given in ablation studies.200

Similarity Function We focus on the choices of similarity functions and study three types of201

functions:202

• Inner-product similarity: sim(x,y) = xTy ,203

• (Low-rank) bilinear similarity [22]: sim(x,y) = xTPT
x Pyy ,204

• Gated (low-rank) bilinear similarity: sim(x,y) = gxTPT
x Pxyy + (1− g)xTPT

x Pxxx ,205

where Px ∈ Rd×C , Py ∈ Rd×C , Pxy ∈ Rd×C , and Pxx ∈ Rd×C are the linear projection matrices,206

d is the embedding dimension, and g ∈ (0, 1) is a gate unit learned by linear projection. The gate-207

modulated bilinear similarity is designed to further filter out the encoder noise. The gate is generated208

by learning a linear projection matrix used to project the decoder feature X to a single-channel mask,209

and then it is normalized to (0, 1) by sigmoid function. Then, we have Y = GY + (1 − G)X210

(nearest neighbor interpolation is used for matching the resolution), where G is the matrix form of the211
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Table 1: Computational complexity and parameters of CARAFE and SAPA. I: inner-product similar-
ity; B: bilinear similarity; G: gated bilinear similarity.

Module Operation FLOPs (×HW ) Params

CARAFE Kernel generation Cd + 36K2d Cd + 36K2d
Feature assembly 4K2C 0
Total Cd + 36K2d + 4K2C Cd + 36K2d

IndexNet Kernel generation 128C2 + 512C 32C2 + 128C
Feature assembly 4C 0
Total 128C2 + 516C 32C2 + 128C

A2U Kernel generation 2K2C + 4K2 + C 4K2C + 2C
Feature assembly 4K2C 0
Total 6K2C + 4K2 + C 4K2C + 2C

SAPA Y embedding 4Cd Cd
X embedding Cd Cd
Gated addition C + 8d C
Kernel generation 4K2d 0
Feature assembly 4K2C 0
I Total 8K2C 0
B Total 5Cd + 4K2d + 4K2C 2Cd
G Total 5Cd + 4K2d + 4K2C + C + 5d 2Cd + C

gate unit. The use of the gate implies we reduce noise in some spatial regions by replacing encoder212

features Y with decoder features X . Its vector-form explains that in the area of noise it tends to switch213

to self-similarity mode. We will prove the effectiveness of the gating mechanism by comparing the214

gate-modulated bilinear similarity with a baseline without the gating mechanism.215

As shown in Fig. 3, our implementation is similar to the previous dynamic upsampling operators,216

which first generates the upsampling kernels and then assembles the decoder feature conditioned217

on the kernels. We highlight the kernel generation module. By setting a kernel size of K, for each218

encoder feature point, we compute the similarity scores between this point and each K ×K neighbor219

in the decoder. Then, the softmax normalization is applied to generate the upsampling kernels.220

SAPA is lightweight and can even work without additional parameters (with inner-product similarity).221

To intuitively understand its lightweight property, we compare the computational complexity and222

number of parameters of different dynamic upsampling operators in Table 1. For example, when223

C = 256 and d = 64, the FLOPs areH ∗W ∗199K,H ∗W ∗17M ,H ∗W ∗28K, andH ∗W ∗228K224

for CARAFE, IndexNet, A2U, and SAPA-B, respectively.225

We visualize the feature maps of upsampling kernels and upsampled features in Fig. 2. Our up-226

sampling kernels show more favorable responses than other upsampling operators, with weights227

highlighted on boundaries and noise suppressed in regions, which visually supports our proposition228

and is a concrete embodiment of Eq. (4).229

5 Experiments230

We first focus our experiments on semantic segmentation to justify the effectiveness of SAPA. We then231

showcase its universality across three additional dense prediction tasks, including object detection,232

depth estimation, and image matting. All our experiments are run on a server with 8 NVIDIA GeForce233

RTX 3090 GPUs.234

5.1 Data Sets, Metrics, Baselines, and Protocols235

For semantic segmentation, we conduct experiments on the ADE20K dataset [4] and report the mIoU236

metric. Three strong transformer-based models are adopted as the baselines, including SegFormer-237

B1 [5], MaskFormer-Swin-Base [6] and Mask2Former-Swin-Base [7]. All training settings and238

implementation details are kept the same as the original papers. We only modify the upsampling239

stages with specific upsampling operators.240

For object detection, we use the MS COCO [8] dataset, which involves 80 object categories. We use241

AP as the evaluation metric. Faster RCNN [23] with ResNet-50 [24] is adopted as the baseline. We242

use mmdetection [25] and follow its training configurations.243
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Table 2: Semantic segmentation results on ADE20K. I: inner-product similarity; B: bilinear similarity;
G: gated bilinear similarity. Best performance is in boldface and second best is underlined.

SegFormer B1 [5] MaskFormer [6] Mask2Former [7]

mIoU↑ FLOPs Params mIoU↑ FLOPs Params mIoU↑ FLOPs Params

Nearest – – – 52.70 195 102 – – –
Bilinear 41.68 15.91 13.74 – – – 53.90 223 107
CARAFE [1] 42.82 +1.83 +0.44 53.53 +1.67 +0.22 53.94 +6.02 +0.07
IndexNet [2] 41.50 +30.66 +12.60 52.92 +17.60 +6.30 54.71 +13.40 +2.10
A2U [3] 41.45 +0.41 +0.12 52.73 +0.24 +0.06 54.40 +0.72 +0.02
SAPA-I 43.05 +1.50 +0 53.25 +0.86 +0 55.05 +2.62 +0
SAPA-B 43.20 +3.32 +0.20 53.15 +1.91 +0.10 54.98 +5.83 +0.03
SAPA-G 44.39 +3.34 +0.20 53.78 +1.92 +0.10 55.22 +5.86 +0.03

Table 3: Evaluation of object detection on MS COCO, monocular depth estimation on NYU Depth
V2, and image matting on Adobe Composition-1k. Best results are in boldface and second best are
underlined. Full metrics can be found in the supplementary material.

Faster RCNN [23] BTS [9] A2U Matting [3]

AP↑ Params RMSE↓ δ1 < 1.25 ↑ Params SAD↓ Grad↓ Params

Nearest 37.4 41.53 0.419 0.865 49.53 37.51 19.07 8.05
CARAFE [1] 38.6 +0.22 0.418 0.864 +0.41 41.01 21.39 +0.26
IndexNet [2] 37.6 +6.30 0.416 0.866 +44.20 34.28 15.94 +12.26
A2U [3] 37.3 +0.12 0.429 0.860 +0.15 32.15 16.39 +0.04
SAPA-I 37.7 +0 N/A N/A N/A 35.14 19.16 +0
SAPA-B 37.8 +0.10 0.410 0.871 +0.31 32.47 16.20 +0.07
SAPA-G 37.8 +0.10 0.408 0.872 +0.49 30.98 15.59 +0.07

For depth estimation, we use NYU Depth V2 dataset [10] and its default train/test split. We choose244

BTS [9] with ResNet-50 as the baseline and follow its training configurations. The inlier measure245

δ1 < 1.25 and RMSE are reported as the evaluation metrics. We replace all upsampling stages but246

the last one for SAPA, due to no available high-res feature map for the last stage.247

For image matting, we train the model on the Adobe Image Matting dataset [11] and report four248

metrics on the Composition-1k test set, including SAD, MSE, Gradient, and Connectivity [26]. A2U249

matting [3] is adopted as the baseline. We use the code provided by the authors and follow the same250

training settings as in the original paper.251

5.2 Main Results252

We compare SAPA and its variants against different upsampling operators on the three strong253

segmentation baselines. Results are shown in Table 2, from which we can see that SAPA consistently254

outperforms other upsampling operators. Note that SAPA can work well even without parameters255

and achieves the best performance with only few additional #Params and #Flops.256

Results on other three dense prediction tasks are shown in Table 3. SAPA outperforms other257

upsampling operators on depth estimation and image matting, but falls behind CARAFE on object258

detection. One plausible explanation is that the demand of details in object detection is low (Section 6259

presents a further in-depth analysis). In detail-sensitive tasks like image matting, SAPA significantly260

outperforms CARAFE. Qualitative comparisons are provided in supplementary material.261

5.3 Ablation Study262

Here we conduct ablation studies to compare the choices of similarity function and normalization263

function, the effect of different kernel sizes, and the number of embedding dimension. For the default264

setting, we use the bilinear similarity function, apply the normalization function h(x) = ex, set the265

kernel size K = 5 and the embedding dimension d = 64. Quantitative results are shown in Table 4.266
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Table 4: Ablation studies. I: inner-product similarity; B: bilinear similarity; P: plain addition; G:
gated bilinear similarity.

Baseline Sim func Norm func Kernel size Embedding dim

SegFormer B1 I B P G ex relu sigmoid softplus 3 5 7 16 32 64 128

mIoU 43.1 43.2 43.2 44.4 44.4 42.2 43.5 43.3 43.1 43.2 42.5 43.0 43.4 43.2 43.4

Similarity Function We investigate three types of similarity function aforementioned and an267

additional ‘plain addition’ baseline. It ablates the gating mechanism from the gated bilinear simi-268

larity. Among them, gated bilinear similarity generates the best performance, which highlights the269

complementarity of semantic regions and boundary details in kernel generation.270

Normalization Function We also investigate different normalization functions. Among validated271

functions, h(x) = ex works the best, which means normalization matters. However, we think272

normalization mainly affects the optimization of the network, the other three have to play with the273

epsilon trick to prevent zero division, which may affect performance.274

Kernel Size The kernel size controls the region that each point in the upsampled feature can attend275

to. Results show that, compared with a large kernel, a small local window is sufficient to distinguish276

between regions and edges.277

Embedding Dimension We further study the influence of embedding dimension in the range of 16,278

32, 64, and 128. Interestingly, results suggest that SAPA is not sensitive to the embedding dimension.279

This also verifies that SAPA extracts existing knowledge rather than learn unknown knowledge.280

6 Discussion281

Understanding SAPA from a Backward Perspective We have explained SAPA in the forward282

pass, here we further discuss how it may work during training. In fact, originally the model does283

not know to which the semantic cluster an encoder point should belong. The working mechanism284

of SAPA assigns each encoder feature point a possibility to choose a cluster. During training, the285

ground truths produce gradients, thus changes the assignment possibility. In SAPA, for every encoder286

point, the semantic clusters in the corresponding local window in decoder features serve as implicit287

labels and cooperate with the ground truths. The correct cluster is the positive label, while the wrong288

one is negative. In the preliminary stage of training, if an encoder feature point is more similar to a289

wrong cluster, it will be punished by gradients and engender large losses, and vice versa. Therefore,290

the encoder feature points can gradually learn its affiliation. We find this process is fast by visualizing291

the epoch-to-epoch feature maps.292

Limitations compared with CARAFE CARAFE is a purely semantic-driven upsampling operator293

able to mend semantic information with a single-input flow. Such a mechanism in CARAFE brings294

advantages in smoothing semantic regions. E.g., we observe it mends holes in a continuous region.295

However, due to its single-input flow, it cannot compensate the details lost in downsampling. Our296

SAPA, by contrast, mainly aims to compensate details such as textures and boundaries. SAPA297

characters in two aspects: semantic preservation and detail delineation. However, as Eq. (4) suggests,298

we do not add any semantic mending mechanism in SAPA. This explains why SAPA is worse299

than CARAFE on object detection, because detection has less demand for details but more for300

regional integrity. In short, CARAFE highlights semantic mending, while SAPA highlights semantic301

preserving and detail delineation.302

7 Conclusion303

In this paper, we introduce similarity-aware point affiliation, i.e., SAPA. It not only indicates a304

lightweight but effective upsampling operator suitable for tasks like semantic segmentation, but also305

expresses a high-level concept that characterizes feature upsampling. SAPA can serve as an universal306

substitution for conventional upsampling operators. Experiments show the effectiveness of SAPA307

and also indicate its limitation: it is more suitable for tasks that favor detail delineation.308
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