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Abstract

We study stochastic monotone inclusion problems, which widely appear in ma-1

chine learning applications, including robust regression and adversarial learning.2

We propose novel variants of stochastic Halpern iteration with recursive variance3

reduction. In the cocoercive—and more generally Lipschitz-monotone—setup, our4

algorithm attains ✏ norm of the operator with O( 1
✏3 ) stochastic operator evalua-5

tions, which significantly improves over state of the art O( 1
✏4 ) stochastic operator6

evaluations required for existing monotone inclusion solvers applied to the same7

problem classes. We further show how to couple one of the proposed variants of8

stochastic Halpern iteration with a scheduled restart scheme to solve stochastic9

monotone inclusion problems with O( log(1/✏)✏2 ) stochastic operator evaluations un-10

der additional sharpness or strong monotonicity assumptions. Finally, we argue via11

reductions between different problem classes that our stochastic oracle complexity12

bounds are tight up to logarithmic factors in terms of their ✏-dependence.13

1 Introduction14

Recent trends in machine learning (ML) involve the study of models whose solutions do not reduce to15

optimization but rather to equilibrium conditions. Standard examples include generative adversarial16

networks, adversarially robust training of ML models, and training of ML models under notions17

of fairness. It turns out that several of these equilibrium conditions (including, but not limited to,18

first-order stationary points, saddle-points, and Nash equilibria of minimax games) can be cast as19

solutions to a monotone inclusion problem, which is defined as the problem of computing a zero of20

a (maximal) monotone operator F : Rd
! Rd (see (MI) for a formal definition). In the context of21

min-max optimization problems, monotone inclusion reduces to a stationarity condition, which for22

unconstrained problems boils down to finding a point with small gradient norm.23

Of particular interest to machine learning are stochastic versions of these problems, in which the24

operator F is not readily available, but can only be accessed through a stochastic oracle bF . Such are25

the settings mentioned above, where the definitions of equilibria involve expectations over continuous26

high-dimensional spaces. The corresponding problem, known as the stochastic monotone inclusion,27

has not been thoroughly studied, particularly in the context of its stochastic oracle complexity.28

Understanding stochastic oracle complexity of monotone inclusion in all standard settings with29

Lipschitz operators, from the algorithmic aspect, is the main motivation of this work.30

1.1 Contributions31

We study three main classes of stochastic monotone inclusion problems with Lipschitz operators,32

defined by the assumptions made about the operator itself: (i) cocoercive class, which is the most33

restricted class, but nevertheless fundamental for understanding monotone inclusion, as it relates to34
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the problem of finding a fixed point of a nonexpansive (1-Lipschitz) operator; (ii) Lipschitz monotone35

class, which is perhaps the most basic class arising in the study of smooth convex-concave min-max36

optimization problems; and (iii) Lipschitz monotone class with an additional sharpness property of37

the operator. Sharpness is a widely studied property of optimization problems, often referred to as the38

“local error bound” condition, which is weaker than strong convexity and roughly corresponds to the39

problem landscape being curved outside of the solution set (see [38] for a survey of classical results).40

From an algorithmic standpoint, we consider variants of classical Halpern iteration [19], which was41

originally introduced for solving fixed point equations with nonexpansive operators. Variants of42

this iteration have recently been shown to lead to (near-)optimal first-order oracle complexity for43

all aforementioned standard problem classes in deterministic settings [10, 11, 50]. However, to the44

best of our knowledge, stochastic variants of these methods have received very limited attention45

prior to our work. The only results we are aware of are for a two-step extragradient-like variant46

of Halpern iteration in co-monotone Lipschitz settings [26] and which show that when variance of47

operator estimates is bounded by order- ✏
2

k in iteration k, the method attains operator norm ✏ after48

O( 1✏ ) iterations. However, [26] does not discuss how such variance control would be obtained.49

Simple mini-batching, as we show, only leads to O( 1
✏4 ) stochastic oracle complexity.50

We show that existing variants of the Halpern iteration [10, 48] can be effectively combined with51

recursive variance reduction [29] to obtain O( 1
✏3 ) stochastic oracle complexity in the cocoercive and52

Lipschitz monotone setups. We then show that the complexity can be further reduced to O
�

1
✏2 log(

1
✏ )
�

53

under an additional sharpness assumption about the operator. The latter two bounds can be certified54

to be near-optimal in ✏, by reductions between different problem classes, as argued in Appendix A.55

To the best of our knowledge, our work is the first to use variance reduction to reduce stochastic56

oracle complexity of monotone inclusion (small gradient norm in min-max optimization settings),57

and the attained bounds are the best achieved to date.58

1.2 Techniques59

Inspired by the potential function originally used by [10] and later used either in the same or slightly60

modified form by [11, 26, 48, 50], we adapt this potential function-based argument to account for61

stochastic error terms arising due to the stochastic oracle access to the operator. We first show that62

in the cocoercive minibatch setting, this argument only leads to O( 1
✏4 ) stochastic oracle complexity,63

and it is unclear how to improve it directly, as the analysis appears tight. We then combine the64

cocoercive variant of Halpern iteration [10] with the PAGE estimator [29] to reduce the stochastic65

oracle complexity to O( 1
✏3 ). The same variance reduced estimator is also used in conjunction with66

the two-step extrapolated variant of Halpern iteration introduced by [48], as a direct application of67

Halpern iteration is not known to converge on the class of Lipschitz monotone operators.68

While the basic ideas in our arguments are simple, their realization requires addressing major technical69

obstacles. First, the variance reduced estimator that we use [29] was originally devised for smooth70

nonconvex optimization problems, where it was coupled with a stochastic variant of gradient descent.71

This is significant, because the proof relies on a descent lemma, which allows cancelling the error72

arising from the variance of the estimator by the “descent” part. Such an argument is not possible73

in our setting, as there is no objective function to descend on. Instead, our analysis relies on an74

intricate inductive argument that ensures that the expected norm of the operator is bounded in each75

iteration, assuming a suitable bound on the variance of the estimator. To obtain our desired result for76

the variance, we propose a data-dependent batch allocation in PAGE estimator [29] (see Corollary77

2.2), which scales proportionally to the squared distance between successive iterates, similar to [3].78

We inductively argue that the squared distance between successive iterates arising in the batch size of79

the estimator reduces at rate 1
k2 in expectation. This allows us to further certify that the estimators do80

not only remain accurate, but their variance decreases as O(✏2/k), where k is the iteration count.81

In the context of the potential function argument, unlike in the deterministic settings, we do not82

establish that the potential function is non-increasing, even in expectation. The stochastic error terms83

that arise due to the stochastic nature of the operator evaluations are controlled by taking slightly84

smaller step sizes than in the vanilla methods from [10, 48], which allows us to “leak” negative85

quadratic terms that are further used in controlling the stochastic error. The argument for controlling86

the value of the potential function is itself coupled with the inductive argument for ensuring that the87

expected operator norm remains bounded.88

2



Finally, while applying a restarting strategy is standard under sharpness conditions [43], obtaining89

the claimed stochastic oracle complexity result of O
�

1
✏2 log(

1
✏ )
�

requires a rather technical argument90

to bound the total number of stochastic queries to the operator.91

1.3 Related Work92

Monotone Inclusion and Variational Inequalities. Variational inequality problems were origi-93

nally devised to deal with approximating equilibria. Their systematic study was initiated by [47].94

The relationship between variational inequalities and min-max optimization was observed soon95

after [41], while one of the earliest papers to study solving monotone inclusion as a generalization of96

variational inequalities, convex and min-max optimization, and complementarity problems is [42].97

For a historical overview of this area and an extensive review of classical results, see [15].98

In the case of monotone operators, standard variants of variational inequality problems (see Section 2)99

and monotone inclusion are equivalent—their solution sets coincide. This is a consequence of the100

celebrated Minty Theorem [32]. However, there is a major difference between these problems when101

it comes to solving them to a finite accuracy. In particular, on unbounded domains, approximating102

variational inequalities is meaningless, whereas monotone inclusion remains well-defined. This103

is most readily seen from the observation that mapping from min-max optimization, variational104

inequalities correspond to primal-dual gap guarantees, while monotone inclusion corresponds to105

a guarantee in gradient norm. For a simple bilinear function f(x, y) = xy which has the unique106

min-max solution at (x, y) = (0, 0), the primal-dual gap is infinite for any point other than (0, 0),107

while the gradient remains finite and is a good proxy for measuring quality of a solution. Further,108

even on bounded domains or using restricted gap functions on unbounded domains as in e.g., [34],109

optimal oracle complexity guarantees for approximate monotone inclusion imply optimal complexity110

guarantees for approximately satisfied variational inequalities (see, e.g., [10]). The opposite does not111

hold in general. In particular, in deterministic settings, standard algorithms such as the celebrated112

extragradient [25, 33], dual extrapolation [34], or Popov’s method [39] that have the optimal oracle113

complexity O( 1✏ ) for approximating variational inequalities are suboptimal for monotone inclusion114

and attain oracle complexity of the order O( 1
✏2 ) [11, 18].115

Halpern iteration. Halpern iteration is a classical fixed point iteration originally introduced by116

[19], and studied extensively in terms of both its asymptotic and non-asymptotic convergence117

guarantees [24, 28, 30, 49]. The first tight nonasymptotic convergence rate guarantee of 1/t was118

obtained in [30, 44]. This rate was also matched by an alternative method proposed by [23].119

The usefulness of Halpern iteration for solving monotone inclusion problems was first observed120

by [10],1 who showed that its variants can be used to obtain near-optimal oracle complexity results121

for all standard classes of monotone inclusion problems with Lipschitz operators also studied in this122

work. The near-tightness (up to poly-logarithmic factors) of the results from [10] was certified using123

lower bound reductions from min-max optimization lower bounds introduced by [36]. These lower124

bounds were made tight for the cocoercive setup in [11].125

The generalization of Halpern iteration from the cocoercive to Lipschitz monotone setup in [10]126

utilized approximating what is known as the resolvent operator, which led to a double-loop algorithm127

and an additional log(1/✏) in the resulting complexity. This log factor was shaved off in [50], who128

introduced a two-step variant of Halpern iteration, inspired by the extragradient method of [25]. The129

results of [10, 50] were further extended to other classes of Lipschitz operators by [26, 48]. Except130

for [26] which considered controlled variance as discussed above, all of the existing results only131

targeted deterministic settings.132

Stochastic Settings and Variance Reduction. Vanilla stochastic gradient methods have constant133

variance of stochastic gradients, which creates a bottleneck in the convergence rate. To improve the134

convergence rate, in the past decade, powerful variance reduction techniques have been proposed.135

For strongly convex finite-sum problems, SAG [45], which used a biased stochastic estimator of136

the full gradient, was the first stochastic gradient method with a linear convergence rate. [22] and137

[9] improved [45] by proposing unbiased estimators of SVRG-type and SAGA-type, respectively.138

1Interestingly, the algorithm proposed by [23] for cocoercive inclusion coincides with the Halpern iteration
for a related nonexpansive operator (see [7, Proposition 4.3]).
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Such unbiased estimators were further combined with Nesterov acceleration [2, 46], or applied139

to nonconvex finite-sum/infinite-sum problems [27, 40]. For nonconvex stochastic (infinite-sum)140

problems, SARAH [35] and SPIDER [16, 51, 52] estimators were proposed to attain the optimal141

oracle complexity of O(1/✏3) for finding an ✏-approximate stationary point. Both estimators are142

referred to as “recursive” variance reduction estimators, as they are biased when taking expectation143

w.r.t. current randomness but unbiased w.r.t. all the randomness in history. PAGE [29] and STORM144

[8] significantly simplified SARAH and SPIDER in terms of reducing the number of loops and145

avoiding large minibatches, respectively. [3] further extended this line of work by incorporating146

second-order information and dynamic batch sizes.147

In the setting of min-max optimization and variational inequalities/monotone inclusion, variance148

reduction has primarily been used for approximating variational inequalities, corresponding to the149

primal-dual gap in min-max optimization; see, for example [1, 5, 6, 21, 31, 37]. Under strong150

monotonicity (or sharpness in the case of [31]), such results generalize to monotone inclusion;151

however, to the best of our knowledge, there have been no results that address monotone inclusion152

under the weaker assumptions considered in this work. In the context of monotone inclusion with153

Lipschitz operators, the tightest complexity result that we are aware of is O( 1
✏4 ), due to [12], and it154

applies to a more general class of structured non-monotone Lipschitz operators, for the best iterate.155

The same oracle complexity can be deduced for the last iterate of a two-step variant of Halpern from156

[26, Theorem 6.1], using mini-batching. All the results in our work are also for the last iterate.157

2 Preliminaries158

We consider a real d-dimensional normed space (Rd
, k·k), where k·k is induced by an inner product159

associated with the space, i.e., k·k =
p

h·, ·i. Let U ✓ Rd be closed and convex; in the unconstrained160

case, U ⌘ Rd. When U is bounded, D = maxu,v2U ku� vk denotes its diameter.161

Classes of Monotone Operators. We say that an operator F : Rd
! Rd is162

1. monotone, if 8u,v 2 Rd
, hF (u)� F (v),u� vi � 0.163

2. L-Lipschitz continuous for some L > 0, if 8u,v 2 Rd
, kF (u)� F (v)k  L ku� vk .164

3. �-cocoercive for some � > 0, if 8u,v 2 Rd, hF (u)� F (v),u� vi � � kF (u)� F (v)k2 .165

4. µ-strongly monotone for some µ > 0, if 8u,v 2 Rd, hF (u)� F (v),u� vi � µ ku� vk2 .166

Note that we can easily specialize these definitions to the set U by restricting u,v to be from U .167

Throughout the paper, the minimum assumption that we make about an operator F is that it is168

monotone and Lipschitz. Observe that any �-cocoercive operator is monotone and 1
� -Lipschitz. The169

converse to this statement does not hold in general.170

Monotone Inclusion and Variational Inequalities. Monotone inclusion asks for u⇤ such that171

0 2 F (u⇤) + @IU (u
⇤), (MI)

where IU is the indicator function of the set U and @IU (·) denotes the subdifferential of IU .172

If F is continuous and monotone, the solution set to (MI) is the same as the solution set of the173

Stampacchia Variational Inequality (SVI) problem, which asks for u⇤
2 U such that174

(8u 2 U) : hF (u⇤) ,u� u⇤
i � 0. (SVI)

Further, when F is monotone, the solution set of (SVI) is equivalent to the solution set of the Minty175

Variational Inequality (MVI) problem consisting in finding u⇤ such that176

(8u 2 U) : hF (u),u⇤
� ui  0. (MVI)

We assume throughout the paper that a solution to monotone inclusion (MI) exists, which implies that177

solutions to both (SVI) and (MVI) exist as well. Existence of solutions follows from standard results178

and is guaranteed whenever e.g., U is compact, or, if there exists a compact set U 0 such that Id�
1
LF179

maps U 0 to itself, where Id is the identity map [15]. As remarked in the introduction, in unbounded180

setups it is generally not possible to approximate (MVI) and (SVI), whereas approximating (MI) is181

quite natural: we only need to find u such that 0 2 F (u) + @IU (u) +B(✏), where 0 denotes the zero182

vector and B(✏) denotes the centered ball of radius ✏.183
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Stochastic Access to the Operator. We consider the stochastic setting for monotone inclusion184

problems. More specifically, we make the following assumptions for stochastic queries to F. These185

assumptions are made throughout the paper, without being explicitly invoked.186

Assumption 1 (Unbiased samples with bounded variance). For each query point x 2 U , we observe187

bF (x, z) where z ⇠ Pz is a random variable that satisfies the following assumptions:188

Ez

⇥ bF (x, z)
⇤
= F (x) and Ez

⇥�� bF (x, z)� F (x)
��2⇤  �

2
.

Assumption 2 (Multi-point oracle). We can query a set of points (x1, . . . ,xn) and receive189

bF (x1, z), . . . , bF (xn, z) where z ⇠ Pz.

Assumption 3 (Lipschitz in expectation). Ez

⇥�� bF (u, z)� bF (v, z)
��2⇤  L

2
ku� vk2, 8u,v 2 U .190

We note that complexity results of the paper will bound the total number of queries made to this191

oracle. In particular, if multiple query points and/or multiple samples z are used in a single iteration,192

our complexity is given by the sum of all those queries throughout all iterations of the method. Also,193

Assumption 3 is primary with parameter L, by which F is also L-Lipschitz using Jensen’s inequality.194

PAGE Variance-Reduced Estimator. We now summarize a variant of the PAGE estimator, origi-195

nally developed for smooth nonconvex optimization by [29], adapted to our setting. In particular,196

given queries to bF , we define the variance reduced estimator eF (uk) for k � 1 by197

eF (uk) =

8
><

>:

1

S(k)
1

PS(k)
1

i=1
bF (uk, z

(k)
i ) w. p. pk,

eF (uk�1) +
1

S(k)
2

PS(k)
2

i=1

⇣
bF (uk, z

(k)
i )� bF (uk�1, z

(k)
i )

⌘
w. p. 1� pk,

(2.1)

where p0 = 1, z(k)i
i.i.d.
⇠ Pz , and S

(k)
1 and S

(k)
2 are the sample sizes at iteration k. Observe that198

Assumption 2 guarantees that we can query bF at uk and uk�1 using the same random seed. Our199

analysis will make use of conditional expectations, and to that end, we define natural filtration Fk200

by Fk := �({ eF (uj)}jk); namely Fk contains all the randomness that arises in the definitions of201

eF (uj) for j  k. Following a similar argument as in [29], we recursively bound the variance of the202

estimator eF , as summarized in the following lemma. The proof is provided in Appendix B.203

Lemma 2.1. Let F be a monotone operator accessed via stochastic queries bF , under Assumptions 1–204

3. Then, the variance of eF defined by Eq. (2.1) satisfies the following recursive bound: for all k � 1,205

206

E[k eF (uk)� F (uk)k
2] 

pk�
2

S
(k)
1

+ (1� pk)
⇣
E[k eF (uk�1)� F (uk�1)k

2] + E
h
L
2
kuk � uk�1k

2

S
(k)
2

i⌘
.

With the choices of pk, S
(k)
1 , S

(k)
2 specified in the following corollary and using induction with the207

inequality from Lemma 2.1, we obtain the following bound on the variance.208

Corollary 2.2. Given a target error ✏ > 0, if for all k � 1, pk = 2
k+1 , S

(k)
1 �

⌃
8�2

pk✏2

⌥
, S

(k)
2 �209

⌃ 8L2kuk�uk�1k2

p2
k✏

2

⌥
, then E

⇥�� eF (uk)� F (uk)
��2⇤  ✏2

k .210

3 Stochastic Halpern Iteration for Cocoercive Operators211

In this section, we consider the setting of 1
L -cocoercive operators F. While cocoercivity is a strong212

assumption that implies that an operator is both Lipschitz and monotone (as discussed in Section 2),213

it is nevertheless the most basic setup for studying the Halpern iteration. In particular, while Halpern214

iteration can be applied directly to the nonexpansive counterpart of a cocoercive operator F (i.e., to215

the linear transformation Id�
2
LF , where 1

L is an upper bound on the cocoercivity parameter of F ),216

convergence does not seem possible to establish for the more general class of Lipschitz monotone217

operators. We begin this section by providing a generic proof of stochastic oracle complexity, which218

we then use to briefly illustrate how to obtain O( 1
✏4 ) oracle complexity with a simple minibatch219
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stochastic estimator of F . We then show how to improve this bound to O( 1
✏3 ) by applying the220

proposed variant of the PAGE estimator from Eq. (2.1) to Halpern iteration.221

The stochastic variant of Halpern iteration that we consider is defined by222

uk+1 = �k+1u0 + (1� �k+1)
⇣
uk �

2

Lk+1

eF (uk)
⌘
, (3.1)

where eF is a stochastic (possibly biased) estimator of F , �k+1 = ⇥( 1k ) is the step size, and223

Lk+1 � L is a parameter of the algorithm. Compared to the classical iteration uk+1 = �k+1u0 +224

(1 � �k+1)T (uk), where T : Rd
! Rd is a nonexpansive (1-Lipschitz) map [19], T is replaced225

by the mapping Id �
2

Lk+1

eF , which is stochastic and may not be nonexpansive (as the stochastic226

estimate eF of F is not guaranteed to be cocoercive even when F is). Compared to the iteration227

variant considered by [10], the access to the monotone operator is stochastic and we also take slightly228

larger (by a factor of 2) values of Lk+1 to bound the stochastic error terms.229

Our argument for bounding the total number of stochastic queries to F is based on the use of230

the following potential function Ck = Ak
Lk

kF (uk)k2 + Bk hF (uk),uk � u0i, where {Ak}k�1 and231

{Bk}k�1 are positive and non-decreasing sequences of real numbers, while the step size �k is defined232

by �k := Bk
Ak+Bk

. Such potential function was previously used for the deterministic case of Halpern233

iteration in [10, 11]. Observe that even though we make oracle queries to bF , the potential function234

Ck and the final bound we obtain are in terms of the true operator value F.235

Compared to the analysis of Halpern iteration in the deterministic case [10, 11], our analysis for the236

stochastic case needs to account for the error terms caused by accessing F via stochastic queries and237

is based on an intricate inductive argument. A generic bound on iteration complexity, under mild238

assumptions about the estimator eF , is summarized in Theorem 3.1. The proof is in Appendix C.239

Theorem 3.1. Given an arbitrary u0 2 Rd
, suppose that iterates uk evolve according to Halpern240

iteration from Eq. (3.1) for k � 1, where Lk = 2L and �k = 1
k+1 . Assume further that the stochastic241

estimate eF (u) is unbiased for u = u0 and E[kF (u0) � eF (u0)k2] 
✏2

8 . Given ✏ > 0, if for all242

k � 1, we have that E
⇥��F (uk)� eF (uk)

��2⇤  ✏2

k , then for all k � 1,243

E[kF (uk))k] 
⇤0

k
+ ⇤1✏, (3.2)

where ⇤0 = 76L ku0 � u⇤
k and ⇤1 = 4

q
2
3 . As a result, stochastic Halpern iteration from Eq. (3.1)244

returns a point uk such that E[kF (uk)k]  4✏ after at most N = d
2⇤0
✏ e = O

�Lku0�u⇤k
✏

�
iterations.245

We remark that the previous result states an iteration complexity bound under a rather high accuracy246

assumption for the operator estimators at each iteration. In order to attain these accuracy requirements,247

we could either use a minibatch at every iteration, or use variance reduction. In what follows we248

explore both approaches. We further remark that we made no effort to optimize the constants in the249

bound above, and thus the constants are likely improvable.250

Finally, observe that due to the required low error for the estimates E[kF (uk) � eF (uk)k2] 
✏2

k ,251

we can certify by Chebyshev bound that P[kF (uk) � eF (uk)k � ✏]  1
k . In particular, after O( 1✏ )252

iterations, once we have kF̃ (uk)k  ✏, kF (uk)k is also O(✏) with probability at least 1� ✏. This is253

particularly important for practical implementations, where a stopping criterion can be based on the254

value of k eF (uk)k, which, unlike kF (uk)k, can be efficiently evaluated.255

3.1 Stochastic Oracle Complexity With a Simple Mini-batch Estimate256

A direct consequence of Theorem 3.1 is that a simple estimator eF (uk) =
1
Sk

PSk

i=1
bF (uk, z

(k)
i ) leads257

to the overall O( 1
✏4 ) oracle complexity, as stated below while the proof is deferred to Appendix C.258

Corollary 3.2. Under the assumptions of Theorem 3.1, if eF (uk) =
1
Sk

PSk

i=1
bF (uk, z

(k)
i ), where259

bF (uk, z
(k)
i ) satisfies Assumption 1 and z

(k)
i

i.i.d.
⇠ Pz , then setting Sk = �2(k+1)

✏2 for all k � 0260

guarantees that E[kF (uk)k]  4✏ after at most O
��2L2ku0�u⇤k2

✏4

�
queries to bF .261
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3.2 Improved Oracle Complexity via Variance Reduction262

We now consider using the recursive variance reduction method from Eq. (2.1) to obtain the variance263

bound required in Theorem 3.1, as summarized in Algorithm 1. Of course, in practice, ku0 � u⇤
k is264

not known, and instead of running the algorithm for a fixed number of iterations N, one could run it,265

for example, until reaching a point with k eF (uk)k  ✏.

Algorithm 1: Stochastic Halpern-Cocoercive (Halpern)
Input: u0 2 Rd

, ku0 � u⇤
k, L, ✏ > 0, �;

Initialize: ⇤0 = 76Lku0�u⇤k
✏ , N = d

2⇤0
✏ e, S(0)

1 = d
8�2

✏2 e, eF (u0) =
1

S(0)
1

PS(0)
1

i=1
bF (u0, z

(0)
i );

for k = 1 : N do
uk = 1

k+1u0 +
k

k+1

�
uk�1 �

1
L
eF (uk�1)

�
;

pk = 2
k+1 , S

(k)
1 = d

8�2

pk✏2
e, S

(k)
2 = d

8L2kuk�uk�1k2

pk
2✏2 e;

Compute eF (uk) based on Eq. (2.1)
Return: uN

266

Notice that convergence is guaranteed by Theorem 3.1; however it does not directly address the267

problem of the oracle complexity (as batch sizes depend on successive iterate distances). To resolve268

this issue, we first provide a bound on kuk � uk�1k, and making the appropriate parameter settings269

for the estimator from Eq. (2.1), it is now possible to apply Theorem 3.1 to obtain the improved270

O( 1
✏3 ) stochastic oracle complexity bound, as stated below while the proof is deferred to Appendix C.271

Corollary 3.3. Given arbitrary u0 2 Rd and ✏ > 0, consider uN returned by Algorithm 1. Then,272

E[kF (uN )k]  4✏ with expected O(�
2Lku0�u⇤k+L3ku0�u⇤k3

✏3 ) oracle queries to bF .273

We note in passing that the running time guarantee of this algorithm is of Las Vegas-type: despite274

its iteration number being surely bounded by
⌃
2⇤0
✏

⌥
= O

�Lku0�u⇤k
✏

�
, the batch sizes (in particular275

S
(k)
2 ) are random, and are not universally bounded.276

We further argue that Algorithm 1 can be extended to constrained settings by defining the operator277

mapping as in [10] and modifying the variance-reduced stochastic estimator accordingly based on278

the projection of eF . We show that the newly defined operator mapping is also cocoercive while the279

variance of the modified estimator is bounded by the variance of eF , so arguments from Theorem 3.1280

and Corollary 3.3 extend to this case. This modified estimator need not be unbiased (as neither is eF );281

however, this is irrelevant to our analysis as it does not require unbiasedness. For completeness, a282

detailed extension to the constrained case is provided in Appendix C.2.283

4 Monotone and Lipschitz Setup284

Throughout this section, we assume that F is monotone and L-Lipschitz. While the previous section285

addresses the cocoercive setup using the classical version of Halpern iteration adapted to cocoercive286

operators, it is unclear how to directly generalize this result to the setting with monotone Lipschitz287

operators. In the deterministic setting, generalization to monotone Lipschitz operators can be achieved288

through the use of a resolvent operator (see [10]). However, such an approach incurs an additional289

log(1/✏) factor in the iteration complexity coming from approximating the resolvent and it is further290

unclear how to generalize it to stochastic settings, as the properties of the stochastic estimate eF of F291

do not readily translate into the same or similar properties for the resolvent of eF . Instead of taking292

the approach based on the resolvent, we consider a recently proposed two-step variant of Halpern293

iteration [48], adapted here to the stochastic setting. The variant uses extrapolation and is defined by294 (
vk := �ku0 + (1� �k)uk � ⌘k

eF (vk�1),

uk+1 := �ku0 + (1� �k)uk � ⌘k
eF (vk),

(4.1)

where �k 2 [0, 1), ⌘k > 0, and eF is defined by (2.1). The resulting algorithm with a complete295

parameter setting is provided in Algorithm 2.296
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Algorithm 2: Extrapolated Stochastic Halpern-Monotone (E-Halpern)
Input: u0 2 Rd

, ku0 � u⇤
k, 0 < ⌘0 

1
3
p
3L

, L, ✏ > 0, �;

Initialize: v�1 = u0, S
(�1)
1 = S

(0)
1 = d

8�2

✏2 e, M = 9L2, ⌘ = ⌘0(1�2M⌘2
0)

1�M⌘2
0

;

Set ⇤0 =
4(L2⌘0⌘+1)ku0�u⇤k2

⌘2 , ⇤1 =
5(1+M⌘⌘0)

M⌘2 , N =
⌃ p

⇤0p
⇤1✏

⌥
;

eF (v�1) =
1

S(�1)
1

PS(�1)
1

i=1
bF (v�1, z

(�1)
i ), where z

(�1)
i

i.i.d.
⇠ Pz;

for k = 1 : N do
vk�1 = 1

k+1u0 +
k

k+1uk�1 � ⌘k�1
eF (vk�2);

pk�1 = min( 2k , 1), S
(k�1)
1 = d

8�2

pk�1✏2
e, S

(k�1)
2 = d

8L2kvk�1�vk�2k2

pk�1
2✏2 e;

Compute eF (vk�1) based on Eq. (2.1);
uk = 1

k+1u0 +
k

k+1uk�1 � ⌘k�1
eF (vk�1);

⌘k =
(1� 1

(k+1)2
�M⌘k�1

2)(k+1)2

(1�M⌘k�1
2)k(k+2) ⌘k�1

Return: uN

To analyze the convergence of the extrapolated Halpern variant from Eq. (4.1), we use the potential297

function Vk = AkkF (uk)k2+Bk hF (uk),uk � u0i+ckL
2
kuk�vk�1k

2, previously used by [48],298

where Ak, Bk and ck are positive parameters to be determined later. Observe that this is essentially299

the same potential function as Ck, corrected by the quadratic term ckL
2
kuk � vk�1k

2 to account300

for error terms appearing in the analysis of the two-step variant from Eq. (4.1). Similarly as in301

the cocoercive setup, the potential function is not monotonically non-increasing, due to the error302

terms that arise due to the stochastic access to F. Bounding these error terms requires a careful303

technical argument, and is the main technical contribution of this section. Due to space constraints,304

the complete technical argument is deferred to Appendix D, while the main results are stated below.305

Theorem 4.1. Given an arbitrary initial point u0 2 Rd and target error ✏ > 0, assume that the306

iterates uk evolve according to Algorithm 2 for k � 1. Then, for all k � 2,307

E
h
kF (uk)k

2 + 2L2
kuk � vk�1k

2
i


⇤0

(k + 1)(k + 2)
+ ⇤1✏

2
, (4.2)

where ⇤0 =
4(L2⌘0⌘+1)ku0�u⇤k2

⌘2 and ⇤1 =
5(1+M⌘⌘0)

M⌘2 . In particular, E
⇥
kF (uN )k2 +308

2L2
kuN � vN�1k

2 ⇤
 2⇤1✏

2 = O(✏2) after at most N =
⌃ p

⇤0p
⇤1✏

⌥
= O

�Lku0�u⇤k
✏

�
iterations.309

The total number of oracle queries to bF is O
��2Lku0�u⇤k+L3ku0�u⇤k3

✏3

�
in expectation.310

5 Faster Convergence Under a Sharpness Condition311

We now show that by restarting Algorithm 2, we can achieve the O
�

1
✏2 log

1
✏

�
oracle complexity under312

a milder than strong monotonicity µ-sharpness condition: for all u 2 U , hF (u)� F (u⇤),u� u⇤
i �313

µ ku� u⇤
k
2. The scheme is summarized in Algorithm 3, and the proof is deferred to Appendix E.314

Theorem 5.1. Given L-Lipschitz and µ-sharp F and the precision parameter ✏, Algorithm 3 outputs315

uN with E[kuN � u⇤
k
2]  ✏

2 as well as E
⇥
kF (uN )k2

⇤
 L

2
✏
2 after N = O

⇣
L
µ log ku0�u⇤k

✏

⌘
316

iterations with at most O
⇣

�2(µ+L) log(ku0�u⇤k/✏)+L3ku0�u⇤k2

µ3✏2

⌘
queries to bF in expectation.317

6 Numerical Experiments and Discussion318

We now illustrate the empirical performance of stochastic Halpern iteration on robust least square319

problems. Specifically, given data matrix A 2 Rn⇥d and noisy observation vector b 2 Rn320

subject to bounded deterministic perturbation � with k�k  ⇢, robust least square (RLS) min-321

imizes the worst-case residue as minx2Rd max�:k�k⇢ kAx� yk22 with y = b + � [14]. We322
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Algorithm 3: Restarted Extrapolated Stochastic Halpern-Sharp (Restarted E-Halpern)
Input: v�1 = u0 2 Rd

, ku0 � u⇤
k, 0 < ⌘0 

1
3
p
3L

, L, µ, ✏ > 0, �;

Initialize: M = 9L2
, ⌘ =

⌘0(1�2M⌘2
0)

1�M⌘2
0

, N =
l
log

⇣p
6ku0�u⇤k

2✏

⌘m
;

for k = 1 : N do
Call Algorithm 2 with initialization v(k)

�1 = u(k)
0 = uk�1, ✏k =

µ✏
p

M⌘2

2
q

5(1+M⌘⌘0)
, and

S
(�1)
1 = S

(0)
1 = d

8�2

✏2k
e, for K =

l
4
p

L2⌘0⌘+1

µ⌘

m
iterations, and return uk;

Return: uN

(a) Comparison on superconductivity dataset. (b) E-Halpern with different stochastic estimators.

Figure 1: Empirical comparison of min-max algorithms on the robust least squares problem.

consider solving MI induced from RLS with Lagrangian relaxation where u = (x,y)T and323

F (u) =
�
rxL�(x,y),�ryL�(x,y)

�T for L�(x,y) = 1
2n kAx� yk22 �

�
2n ky � bk22. We use324

a real-world superconductivity dataset [20] from UCI Machine Learning Repository [13] for our325

experiment, which is of size 21263 ⇥ 81. To ensure the problem is concave in y, we need that326

� > 1; in the experiments, we set � = 1.5. For the experiment, we compare Halpern, E-Halpern,327

and Restarted E-Halpern algorithms with gradient descent-ascent (GDA), extragradient (EG) [25],328

and Popov’s method [39] in stochastic settings. Even though our theoretical results for Restarted329

E-Halpern require scheduled restarts based on known problem parameters, in the implementation,330

to avoid complicated parameter tuning and illustrate empirical performance, we restart E-Halpern331

whenever the norm of stochastic estimator eF used in E-Halpern halves. All Halpern variants are332

implemented with PAGE estimator considered in our paper; all other algorithms are implemented333

using minibatches. Additionally, we compare E-Halpern with the PAGE estimator against E-Halpern334

with single-sample and mini-batch estimators.335

We report and plot the (empirical) operator norm kF (u)k against the number of stochastic operator336

evaluations. Note that evaluations of kF (u)k are only used for plotting but not for running any of337

the algorithms. We use the same random initialization and tune the batch sizes and step sizes (to the338

values achieving fastest convergence under noise) for each method by grid search. We use constant339

batch sizes and constant step sizes for GDA, EG, and Popov. We also choose the batch sizes of PAGE340

estimator to ensure E[kF (uk) � eF (uk)k2]  O( 1k ), which handles error accumulation [26] and341

early stagnation of stochastic Halpern iteration. We implement all the algorithms in Python and run342

each algorithm using one CPU core on a macOS machine with Intel 2.3GHz Dual Core i5 Processor343

and 8GB RAM.344

We observe that (i) in Figure 1(a) both Halpern and E-Halpern exhibit faster convergence to approxi-345

mate stationary points (with much smaller gradient norm after same number of gradient evaluations)346

than other algorithms, and restarting E-Halpern provides additional speedup, validating our theoretical347

insights; (ii) in Figure 1(b), E-Halpern with PAGE estimator displays faster convergence compared to348

other two estimators, in agreement with our theoretical analysis.349
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