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Abstract

Sketch design concepts are recurring patterns found in parametric CAD sketches.1

Though rarely explicitly formalized by the CAD designers, these concepts are2

implicitly used in design for modularity and regularity. In this paper, we propose a3

learning based approach that discovers the modular concepts by induction over raw4

sketches. We propose the dual implicit-explicit representation of concept structures5

that allows implicit detection and explicit generation, and the separation of structure6

generation and parameter instantiation for parameterized concept generation, to7

learn modular concepts by end-to-end training. We demonstrate the design concept8

learning on a large scale CAD sketch dataset and show its applications for design9

intent interpretation and auto-completion.10

1 Introduction11

Parametric CAD modeling is a standard paradigm for mechanical CAD design nowadays. In12

parametric modeling, CAD sketches are fundamental 2D shapes used for various 3D construction13

operations. As shown in Fig. 1, a CAD sketch is made of primitive geometric elements (e.g. lines,14

arcs, points) which are constrained by different relationships (e.g. coincident, parallel, tangent); the15

sketch graph of primitive elements and constraints captures design intents, and allows adaptation and16

reuse of designed parts by changing parameters and updating all related elements automatically [1].17

Designers are therefore tasked with the meticulous design of such sketch graphs, so that the inherent18

high-level design intents are easy to interpret and disentangle. To this end, meta-structures (Fig. 1),19

which we call sketch concepts in this paper, capture repetitive design patterns and regulate the design20

process with more efficient intent construction and communication [9, 12]. Concretely, each sketch21

concept is a structure that encapsulates specific primitive elements and their compositional constraints,22

and the interactions of its internal elements with outside only go through the interface of the concept.23

Is it possible to discover these modular concepts automatically from raw sketch graphs? In this paper,24

we cast this task as a program library induction problem by formulating a domain specific language25

(DSL) for sketch generation, where a sketch graph is formalized as a program, and sketch concepts26

are modular functions that abstract primitive elements and compose the program. Discovering sketch27

concepts thus becomes the induction of library functions from sketch programs. While previous28

works address the general library induction problem via expensive combinatorial search [19, 5, 7],29

we present a simple end-to-end deep learning solution for sketch concepts. Specifically, we bridge30

the implicit and explicit representations of sketch concepts, and separate concept structure generation31

from parameter instantiation, so that a powerful deep network can detect and generate sketch concepts,32

by training with the inductive objective of reconstructing sketch with modular concepts.33

We conduct experiments on large-scale sketch datasets [16]. The learned sketch concepts show that34

they provide modular interpretation of design sketches. The network can also be trained on incomplete35

input sketches and learn to auto-complete them. Comparisons with state-of-the-art approaches that36

solve sketch graph generation through autoregressive models show that the modular sketch concepts37

learned by our approach enable more accurate and interpretable completion results.38
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Figure 1: Concept learning from sketch graphs. In black are the raw sketch and its constraint
graph, with nodes showing primitives and edges depicting constraints. Colored are the restructured
sketch and its modular constraint graph, where each module box represents a concept; primitives and
constraint edges are colored according to the modular concepts.

2 Related work39

Concept discovery for CAD sketch It is well acknowledged in the CAD design community that40

design intents are inherent to and implicitly encoded by the combinations of geometric primitives and41

constraints [12, 10]. However, there is generally no easy approach to discover the intents and make42

them explicit, albeit through manual design of meta-templates guided by expert knowledge [9, 10].43

We propose an automatic approach to discover such intents, by formulating the intents as modular44

structures with self-contained references, and learning them through self-supervised inductive training45

with simple objectives on large raw sketch dataset. Therefore, we provide an automatic approach for46

discovering combinatorially complex structures through end-to-end neural network learning.47

Generative models for CAD sketch A series of recent works [6, 23, 13, 17, 24] use autoregressive48

models [21] to generate CAD sketches and constraints modeled through pointer networks [22]. These49

works focus on learning from large datasets [16] to generate plausible layouts of geometric primitives50

and their constraints, which can then be fine-tuned with a constraint solver for more regular sketches.51

Different from these works, our aim is to discover modular structures (i.e. sketch concepts) from the52

concrete sketches. Therefore, our framework provides higher-level interpretation of raw sketches and53

more transparent auto-completion than these works (cf. Sec. 6).54

Program library induction for CAD modeling Program library induction has been studied in55

the shape modeling domain [7]. General program synthesis assisted by deep learning is a research56

topic with increasing popularity [19, 3, 4, 18, 5]. The library induction task specifically involves57

combinatorial search, as has been handled by neural guided search [19, 5] or by pure stochastic58

sampling [7]. We instead present an end-to-end learning algorithm for sketch concept induction.59

In particular, based on key observations about sketch concepts, we present implicit-explicit dual60

representations of concept library functions, and separate the concept structure generation from61

parameter instantiation, to enable self-supervised training with induction objectives.62

3 CAD sketch concept formulation63

To capture the notion of sketch concepts precisely, we formulate a domain specific language (DSL)64

(syntax given in List 1, an exhaustive list of data types given in the supplementary). In the DSL,65

we first define the basic data types, including length, angle, coordinate, and the reference type,66

where a reference binds to another reference or a primitive for modeling the constraint relationships.67

Second, we define the L0 collection of primitive and constraint types as given in raw sketches. In68

particular, we regard the constraints as functions whose arguments are the references to bind with69

primitives, e.g. a coincident constraint c = λ(r1, r2 : Ref).{}, where a function is represented in70

the lambda calculus style. Some constraints have parameters other than mere references, which are71

treated as variables inside, e.g. parallel distance in List 1. Third, we define the sketch concepts72

as L1 types composed of L0 types. To be specific, a composite type T1
i ∈ L1 is a function with73

arguments [αk] and members t0i,j : T
0
j ∈ L0, which are connected through a composition operator74

RT1
i
= {p(q)|p, q ∈ [t0i,j ]∪[αk]} that specifies how each pair of primitive elements binds together.75

For example, a coincident constraint p = λ(r1, r2).{} may take a line primitive q as its first argument76

and bind to an argument αk of the composite type as its second argument, i.e. p(q, αk) ∈ RT1
i
;77
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List 1: A domain-specific language formulating CAD sketch concepts
// Basic data types
Length, Angle, Coord, Ref
// L0 primitive types
Line→ cstart_x, cstart_y, cend_x, cend_y : Coord
Circle→ ccenter_x, ccenter_y : Coord, lradius : Length
· · ·
// L0 constraint types
Coincident→ λ(r1, r2 : Ref).{}
Parallel Distance→ λ(r1, r2 : Ref).{ldist : Length}
· · ·
// L1 composite types
T1
i → λ([αk : Ref]).{t0i,j : T0

j ∈ L0, RT1
i

(
[t0i,j ]∪[αk]

)
}

// Sketch decomposition
S → {t1i : T1

i ∈ L1, RS([t
1
i ])}

on the other hand, an argument αk may bind to a primitive q, which is specified by αk(q) ∈ RT1
i
.78

Finally, an input sketch S is restructured as a collection of composite types t1i : T
1
i ∈ L1, as well as79

their connections specified by a corresponding composition operator RS . RS records how different80

concepts bind through their arguments, which further transfers to L0 typed elements inside the81

concepts and translates into the raw constraint relationships of the sketch graph.82

Given the explicit formulation of CAD sketches through a DSL, the discovery of sketch concepts83

becomes the task of learning program libraries L1 by induction on many sketch samples. Therefore,84

our task resembles shape program synthesis that aims at building modular programs for generating85

shapes [5, 7], and differs from works that use autoregressive language models to generate CAD sketch86

programs one token at a time [6, 13, 17]. In Sec. 6.2, we show that the structured learning of CAD87

sketches enables more robust auto-completion than unstructured language modeling.88

The search of structured concepts is clearly a combinatorial problem with exponential complexity,89

which is intractable unless we can exploit the inherent patterns in large-scale sketch datasets. However,90

to enable deep learning based detection and search of structured concepts, we need to bridge the91

implicit deep representations and the explicit and interpretable structures, which we build through the92

following two key observations:93

• A concept has dual representations: implicit and explicit. The implicit representation as94

embeddings in latent spaces is compatible with deep learning, while the explicit representa-95

tion provides structures on which desired properties (e.g. modularity) can be imposed.96

• A concept is a parameterized structure. A concept is a composite type with fixed modular97

structure for interpretability, but the structure is always instantiated by assigning parameters98

to its component primitives when the concept is found in a sketch.99

3.1 Method overview100

According to the two observations, we design an end-to-end sketch concept learning framework by101

self-supervised induction on sketch graphs. As shown in Fig. 2, the framework has two main steps102

before loss computation: a detection step that generates implicit representations of concepts making103

up the input sketch, and an explicit generation step that expands the implicit concepts into concrete104

structures on which self-supervision targets like reconstruction and modularity are applied.105

Building on a state-of-the-art detection architecture [2], the detection module D takes a sketch S as106

input and detects the modular concepts within it, i.e. {qi} = D(S, {qi}), where the concepts are107

represented implicitly as latent codes {qi}, and {qi} are a learnable set of concept instance queries.108

Notably, we apply vector quantization to the latent codes and obtain {q′i = minp∈L1 ||p− qi||2},109

which ensures that each concept is selected from the common collection of learnable concepts L1110

used for restructuring all sketches.111

The explicit generation module is separated into two sub-steps, structure generation and parameter112

instantiation, which ensures that the modular concept structures are explicit and reused throughout113
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Figure 2: Framework illustration. (a) The detection module is a transformer network that detects
from the sketch sequence [t0i ] implicitly encoded concepts [qi] and their composition qR. (b) Each q
is quantized against the concept library L1 to obtain prototype q′, which is expanded by structure
network into an explicit structure T1 and further instantiated by parameter network into t1. (c) The
collection of [t1i ] are assembled by composition operator RS generated from qR to obtain the final
generated sketch graph, which is compared with the input sketch for loss computation.

different sketch instances. Specifically, the structure network takes each quantized concept code q′i114

and generates its explicit form T1
i in terms of primitives and constraints of L0 types along with the115

composition operator RT1
i
. Subsequently, the parameter network instantiates the concept structure by116

assigning parameter values to each component of T1
i conditioned on qi and input sketch, to obtain t1i .117

The composition operator RS for combining {t1i } is generated from a special latent code qR trans-118

formed by D from a learnable token qR appended to {qi}.119

The entire model is trained end-to-end by reconstruction and modularity objectives. In particular,120

we design loss functions that measure differences between the generated and groundtruth sketch121

graphs, in terms of both per-element attributes and pairwise references. Given our explicit modeling122

of encapsulated structures of the learned concepts, we can further enhance the modularity of the123

generation by introducing a bias loss that encourages in-concept references.124

4 End-to-end sketch concept induction125

4.1 Implicit concept detection126

Sketch encoding A raw sketch S can be serialized into a sequence of L0 primitives and constraints.127

Previous works have adopted slightly different schemes to encode the sequence [6, 13, 17, 23, 24].128

In this paper, we build on the previous works and take a simple strategy akin to [13, 24] for input129

sketch encoding. Specifically, we split each L0 typed instance t0 into several tokens: type, parameter,130

and a list of references. For each of the token category, we use a specific embedding module. For131

example, parameters as scalars are quantized into finite bins before being embedded as vectors (see132

supplementary for the quantization details), and since there are at most five parameters for each133

primitive, we pack all parameter embeddings into a single code. On the other hand, each constraint134

reference as a primitive index is directly embedded as a code. Therefore, each token of a L0 typed135

instance is encoded as136

et0.x = enctype(t0) + encpos(t0.x) +
[
encparam(t0.x)|encref (t0.x)

]
,

where t0.x iterates over the split tokens, the type embedding is shared for all tokens of the instance,137

the position embedding counts the token index in the whole split-tokenized sequence of S, and138

parameter or reference embeddings are applied where applicable.139

Concept detection We build the detection network as an encoder-decoder transformer following140

[2]. The transformer encoder operates on the sketch encoded sequence [et0i∈S ] and produces the141

contextualized sequence [e′
t0i∈S

] through layers of self-attention and feed-forward. The transformer142

decoder takes a learnable set of concept queries [qi] of size kqry plus a special query qR for143

composition generation, and applies interleaved self-attention, cross-attention to [e′
t0i
] and feed-144

forward layers to obtain the implicit concept codes [qi] and qR. The concept codes are further145

quantized into [q′i] by selecting concept prototypes from a library L1 implicitly encoding L1, before146

being expanded into explicit forms.147
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4.2 Explicit concept structure generation148

Concept structure expansion Given a library code q′ ∈ L1 representing a type T1 ∈ L1, through149

an MLP we expand its explicit structure as a collection of codes [t0i ] representing the L0 type instances150

[t0i ] and a matrix representing the composition RT1 of [t0i ] and arguments (cf. List 1).151

concept A concept BRS

primitive constraint
inward arg outward arg

We fix the maximum number of L0 type instances to kL0 (12 by default), and152

split the arguments into two groups, inward arguments and outward arguments,153

each of maximum number karg (2 by default). Each type code t0i is decoded154

into discrete probabilities over L0 with an additional probability for null type155

φ to indicate the emptiness of this element (cf. Sec. 5.1), by dectype(·) as156

the inverse of enctype(·) in Sec. 4.1. An inward argument only points to a157

primitive inside the concept structure and originates from a constraint outside,158

and conversely an outward argument only points to primitives outside and159

originates from a constraint inside the concept (see inset for illustration); the split into two groups160

eases composition computation, as discussed below.161

The composition operatorRT1 is implemented as an assignment matrix RT1 of shape (2kL0+karg)×162

(kL0+karg), where each row corresponds to a constraint reference or inward argument, and each163

column to a primitive or outward argument. The two-fold coefficient of constraint references comes164

from that any constraint we considered in the dataset [16] has at most two arguments. Each row is a165

discrete probability distribution such that
∑
jRT1 [i, j] = 1, with the maximum entry signifying that166

the i-th constraint/outward argument refers to the j-th primitive/inward argument. We compute RT1167

by first mapping the concept code q′ to a matrix of logits in the shape of RT1 , and then applying168

softmax transform for each row. Notably, we avoid the meaningless loops of an element referring169

back to itself, and inward arguments referring to outward arguments, by masking the diagonal blocks170

RT1 [2i:2i+2, i], i∈[kL0 ] and the argument block RT1 [2kL0 :, kL0 :] by setting their logits to −∞.171

Cross-concept composition Aside from references inside a concept, references across concepts are172

generated to complete the whole sketch graph. We achieve cross-concept references by argument173

passing (see inset above for illustration). In particular, we implement the cross-concept composition174

operatorRS as an assignment matrix RS of shape (kqry·karg)×(kqry·karg) directly mapped from qR175

through an MLP. Similar to the in-concept composition matrix, each row of the cross-concept matrix176

is a discrete distribution such that
∑
jRS [i, j] = 1, with the maximum entry signifying that the177

(i mod karg)-th outward argument of the bi/kargc-th concept instance refers to the (j mod karg)-th178

inward argument of the bj/kargc-th concept instance.179

The complete cross-concept reference is therefore the product of three transport matrices:180

Rcref [t
1
i , t

1
j ] = Rt1i

[:2kL0 , kL0 :]×RS [i·karg:(i+1)·karg, j·karg:(j+1)·karg]×Rt1j
[2kL0 :, :kL0 ],

where Rcref [t
1
i , t

1
j ] is a block assignment matrix of shape 2kL0×kL0 . Intuitively, Rcref [t

1
i , t

1
j ]181

specifies how constraints inside t1i refers to primitives of t1j throughout all possible paths crossing the182

arguments of two concepts.183

Collectively, we denote the complete reference matrix for all pairs of generated L0 elements as R of184

shape (2kqry·kL0)× (kqry·kL0), which includes in-concept and cross-concept references.185

4.3 Concept instantiation by parameter generation186

Instantiating a concept structure requires assigning parameters to the components where applicable.187

Therefore, as shown in Fig. 2, the parameter generation network takes a concept structure T1 and188

its implicit instance encoding q as input, and produces the specific parameters for each L0 typed189

instances inside the concept. In addition, as the parameters of generated instances are directly related190

to the input parameters of the raw sketch S, we find it improves convergence and accuracy by allowing191

the parameter network to attend to the input tokens.192

We implement the parameter network as a transformer decoder in a similar way as [2]. The instance193

code q is first expanded to kL0 tokens by a small MLP, which are summed with [t0i ] token-wise to194

obtain the query codes. The parameter network then transforms the query codes through interleaved195

layers of self-attention, cross-attention to the contextualized input sequence [e′t0 ], and feed-forward,196

before finally mapped to explicit parameters in the form of probabilities over quantized bins, through197

a decoding layer decparam(·) that is inverse of encparam(·) in Sec. 4.1.198
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5 Induction objectives199

Without any given labels of concepts, we use the following objectives to supervise the inductive200

network training: sketch reconstruction, concept quantization, and modularity enhancement.201

5.1 Reconstruction loss202

As discussed in Sec. 4, an input sketch is restructured into a set of sketch concepts which are expanded203

into a graph of primitives and constraints; the generated sketch graph S̃ is compared with the input204

sketch S for reconstruction supervision.205

The comparison of generated and target graphs requires a one-to-one correspondence between206

elements of the two graphs, on which the graph differences can be measured. However, it is nontrivial207

to find such a matching, because not only are there variable numbers of elements in the two graphs,208

but also both elements and references between elements must be taken into account for matching. To209

this end, we build a cost matrix that measures the difference for each pair of generated and target210

elements, in terms of their attributes and references, and apply linear assignment matching on the211

cost matrix [11, 8] to establish the optimal correspondence between two graphs.212

Cost matrix construction To compare each pair of generated element and target element, we213

measure their type differences, and further use type casting to interpret the generated element as the214

target type, so that their parameters can be compared. To account for reference differences between215

the two elements, we compare the reference arrows by the differences of their pointed primitives.216

ta
rg

et
s

generations

cost matrix
green: primitives
orange: constraints

p

p.r
q q.r∼R[2q+r, :]

Binary cost between
target constraint p and
generated element q.

Specifically, given the target graph S of ktgt elements and the generated graph217

S̃ of kqry·kL0 elements, we build the cost matrix C of shape ktgt× (kqry·kL0)218

in two steps. First, for a pair of target element p and generated element q, we219

compare their type and parameter differences by cross-entropy. We denote the220

cost matrix in this stage as Cury, as it accounts for the element-wise unary221

distances between two graphs. Second, to measure the binary distances of222

references, for each target constraint element p and its r-th referenced primitive223

p.r, its distance from the generated references of element q is computed as224

(also illustrated by inset figure):225

Cbry[p, q] =
∑

r∈{0,1}

∑
j∈S̃

R[2q + r, j]×Cury[p.r, j], (1)

where R[2q+r, j] is the probability of q taking j as its r-th reference, as predicted by the composition226

operation (Sec. 4.2). Intuitively, the binary cost is a summation of unary costs weighted by predicted227

reference probabilities, where the unary costs measure how different a generated pointed primitive is228

from the target pointed primitive. The complete cost matrix is C = wuryCury + wbryCbry, with229

wury = 50, wbry = 1; we give a larger weight to the unary costs because meaningful binary costs230

depend on reliable unary costs in the first place, as evident in Eq. (1).231

Matching and reconstruction loss Given the cost matrix C, we apply linear assignment to obtain a232

matching σ : S̃ → S∪{φ} between S̃ and S. Note that the number of elements of these two graphs233

can be different, but we have chosen kqry, kL0 such that the generated elements always cover the234

target elements. Therefore, σ(q) = p assigns a matched generation q∈M⊂S̃ to a target p∈S, but235

assigns the rest unmatched generations M ′ = S̃\M to the empty target φ, i.e. σ(M ′) = φ. The236

loss terms for matched generations are simply the corresponding cost terms C[σ(q), q], q ∈M ; for237

unmatched generations, we supervise its type to be the empty type φ and neglect its parameters or238

references. We denote the average loss of all generated terms as Lrecon.239

Besides matching cost, we also use an additional reference loss to encourage the generated references240

to be sharp (i.e., R being closer to binary). This loss complements the binary costs mentioned above241

by making sure that even if the generated primitives are similar, a generated constraint only refers to242

one primitive sharply. We define the sharp reference loss as243

Lsharp = −
1

|Sc|
∑
p∈Sc,r

logR[2σ−1(p) + r, σ−1(p.r)],

where p iterates over the target constraints Sc, σ−1(·) is the inverse mapping from target element to244

generation, and we skip a term if p.r does not exist for constraints with one reference.245
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5.2 Concept quantization loss246

Following [20, 15], we optimize the concept code quantization against library L1 with:247

Lvq =
1

kqry

∑
i∈[kqry]

||sg(qi)− q′i||+ β||qi − sg(q′i)||,

where sg(·) is the stop gradient operation. For training stability, we follow [15] and replace the first248

term with EMA updates of q′ ∈ L1. Furthermore, we improve spare code usage by reviving unused249

code in L1 periodically [15] (please refer to supplementary for details).250

5.3 Modularity enhancement loss251

We look for modular L1 concepts that have rich and meaningful encapsulated structures, rather than252

arbitrary groups of L0 elements that rely on cross-group references to recover the graph structures.253

This modularity can be enhanced by limiting the use of arguments for sketch concepts. Instead254

of allocating very few arguments as a hard constraint, we introduce a soft bias loss to encourage255

the restrictive use of arguments, which may still cover cases when more arguments are needed for256

accurate reconstruction. To be specific, we penalize the accumulated probability of elements pointing257

to outward arguments:258

Lbias =
1

|Sc|
∑
p∈Sc,r

∑
i∈[karg]

RT13σ−1(p)[2σ
−1(p) + r, i+ kL0 ],

where again p iterates over the target constraints Sc, σ−1(·) is the inverse mapping from target259

element to generation, and i+ kL0 slices the reference probabilities to outward arguments.260

5.4 Total loss261

The training objective sums up losses of reconstruction, concept quantization and modularity bias:262

Ltotal = wreconLrecon + wsharpLsharp + wvqLvq + wbiasLbias,

where we empirically use weights wrecon = 1, wsharp = 20, wvq = 1, wbias = 25 throughout all263

experiments unless otherwise specified in the ablation studies.264

6 Results265

Dataset and implementation Following previous works [6, 13, 17], we adopt the SketchGraphs266

dataset [16] which contains millions of real-world CAD sketches for training and evaluation. We267

filter the data by removing trivially simple sketches and duplicates, and limit the sketch complexity268

such that the number of primitives and constraints is within [20, 50]. As a result, we obtain around 1269

million sketches and randomly split them into 950k for training and 50k for testing. We defer network270

details to the supplementary and will open-source code and data to facilitate future research1.271

Evaluation metrics We evaluate the generated sketches in terms of reconstruction accuracy and272

sketch concept modularity, which are the two major objectives of our task. We measure reconstruction273

accuracy by the F-scores of generated primitives and constraints, where F-score is simply the harmonic274

mean of precision and recall. A generated primitive is considered a correct match with ground-truth275

if its type and parameters are correct, where for the scalar parameters we allow a threshold of 10% of276

quantization levels. A constraint is correct if and only if its type, parameter and references match277

ground-truth, i.e., the generated q is correct w.r.t target p iff q has the same type and parameters with278

p and the primitives q.r and p.r are correctly matched. Modularity is measured by the percentage of279

constraints with references entirely within the encapsulating concepts, among all correct constraints.280

1url to code and data will be updated soon.
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Figure 3: Design intent parsing. Left: input raw sketches and sketches restructured with concepts.
Right: raw constraint graphs and modular constraint graphs. Primitives and constraints in the
restructured sketches and graphs are colored according to concepts.
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(a) (b)
Figure 5: Auto completion. Each example shows the input partial sketch (black) and groundtruth
completion (red), result of the autoregressive baseline, and our result (colored by concepts).

283

Autoregressive baseline

Ours
Autoregressive baseline

Ours

(a) primitive (b) constraint
Figure 6: Auto completion comparison. Plotted
are F-scores at different ratios of partial input.

Config Primitive Constraint Modular(%)

−Cbry 0.993 0.290 34.2
−Lsharp 0.983 0.104 100
−Lbias 0.992 0.743 13.3

Ours 0.994 0.766 50.8

Table 1: Loss ablation. F-scores are reported for
primitives and constraints.

284

6.1 Design intent interpretation285

By training our model on the raw sketches with self-supervised induction losses, we obtain a result286

library of sketch concepts and a model for design intent parsing that interprets a given sketch into287

modular concepts and their combination. Indeed, we find the automatically discovered concepts288

capture natural design intents and modular structures. For example, through the restructured sketches289

and constraint graphs in Figs. 1 and 3, we find that our network decomposes sketches into modular290

structures like rectangles, line-arcs and parallel lines that align symmetrically, even though no such291

prior knowledge is applied during training except for concept modularity. Fig. 4 shows that a given292

concept can be used repetitively in different sketches, and structures with subtle differences in293

constraint relations can be detected and distinguished into different concepts of the library. Note that294

these subtle structural differences are subsumed in the input sketch graph, which makes them more295

difficult to detect. We refer to the supplementary for more examples of design intent parsing and296

instantiation of learned concepts, as well as quantitative analysis of the learned library.297
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6.2 Auto completion298

Auto-completion is a critical feature of CAD modeling software for assisting designers. Given a299

partial sketch of primitives and their constraints, auto-completion aims at complementing them with300

the rest primitives and constraints to form regular and well-structured designs. Therefore, our concept301

detection and generation approach would naturally enhance the auto-completion task with better302

regularity. For training and evaluation, following previous work [17], we synthesize the partial input303

by removing a suffix of random length (up to 50%) from the sketch sequence, along with constraints304

that refer to the removed primitives, and make the model learn to generate the full sketches.305

State-of-the-art methods [6, 13, 17, 23] formulate auto-completion through a combination of primitive306

and constraint generation models, both of which operate in an autoregressive fashion, with the307

constraint model conditioned on and referring (by pointers [22]) to the generated primitives. Since308

these works use diverse sketch encodings and have no publicly released code at submission time, for309

fair comparison, we implement the autoregressive baseline with our sketch encoding (Sec. 4.1).310

Fig. 6 compares our method with autoregressive baseline under various primitive mask ratios: our311

method has superior primitive and constraint accuracy than the autoregressive baseline at almost all312

mask ratios. This difference confirms that since our method completes sketches concept-by-concept313

instead of primitive-by-primitive, more meaningful structures are likely to be generated. Our model314

also gains advantage by taking primitives and constraints together as input and generating primitives315

and constraints simultaneously, while in comparison the autoregressive baseline separates generation316

in two steps (primitives followed by constraints). Indeed, in practice CAD designers rarely finish all317

primitives first before supplementing the constraints, but rather apply constraints on partial primitives318

immediately whenever they form a design intent. Fig. 5 shows how our approach interprets the partial319

inputs and completes with modular concepts (see supplementary for more examples); in comparison,320

the autoregressive baseline does not provide such interpretable or regular completions.321

6.3 Ablation study322

To evaluate the impact of different loss terms of the induction objective (Sec. 5), we train several323

models in the absence of these losses respectively on the auto-encoding task. The results are shown324

in Table. 3. We see that removing the binary costs Cbry from reconstruction loss results in significant325

drop of constraint reconstruction, showing its necessity for constraint reference learning. Remov-326

ing sharp reference loss Lsharp similarly fails constraint reference learning, although modularity327

enhancement bias loss makes all constraint references inside concepts. Removing the modularity328

enhancement bias loss Lbias only results in a slight drop in reconstruction quality but a significant329

drop in modularity, since without it cross-concept reference through arguments is more likely and330

therefore modularity suffers. We provide more ablation tests on hyper parameters like the numbers of331

concept queries kqry and arguments karg in the supplementary.332

7 Conclusion333

CAD sketch concepts are meta-structures containing primitives and constraints that define modular334

sub-graphs and capture design intents. By formulating the sketch concepts as program libraries of335

a DSL, we present an end-to-end approach for discovering CAD sketch concepts through library336

induction learning. Key to our approach are the implicit-explicit representation of concepts and the337

separated structure generation and parameter instantiation for concept generation, which together338

enable the end-to-end training under self-supervised induction objectives. By training on large-scale339

sketch dataset, our approach enables the discovery of repetitive and modular concepts from raw340

sketches, and more structured and interpretable auto-completion than baseline autoregressive models.341

Limitations and future work Design intents can be hierarchical [10], meaning that higher order342

meta-structures can be built out of lower order ones. In this sense, our framework only addresses343

the first order library induction, and should be extended for higher order library learning; toward344

this goal, we believe a progressive approach like [5] can be used with our framework as the one-step345

induction. In addition, similar strategies of end-to-end induction learning can be applied to constraint346

graphs involving 3D CAD operations or even more general programs in other domains, as long as347

they have similar declarative and parametric structures as sketch graphs.348
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