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Abstract

Transformer architecture has become the fundamental ingredient of the widespread1

natural language processing (NLP) models. With the trends of large NLP models,2

the increasing memory and computation costs hinder their efficient deployment3

on resource-limited devices. Therefore, transformer quantization attracts wide4

research interest. Recent works recognize that the outliers in some special tokens5

are the critical bottleneck for the quantization accuracy. However, their solution6

does not tackle it from the origin but walks around it with an increased computation7

cost. To fundamentally address this problem, this paper delves into the inherent8

inducement and importance of the outliers and discovers that γ in LayerNorm9

(LN) acts as a sinful amplifier for the outliers, and some outliers from a few tokens10

can be sharply clipped without negative impacts. Motivated by these findings, we11

propose an outlier suppression framework to overcome the quantization bottleneck12

of Transformer language models, including Gamma Migration and then Token-13

Wise Clipping. Gamma Migration utilizes migration equivalence to move the14

outlier amplifier to subsequent branches without any extra computation cost, avoid-15

ing the amplification of outliers and contributing to a more quantization-friendly16

distribution. Token-Wise Clipping takes the large variance of token range into17

consideration and clips the unimportant values with high efficiency in a token-wise18

coarse-to-fine pipeline. This framework effectively suppresses the outliers and can19

be used in a plug-and-play mode. Extensive experiments prove that our outlier20

suppression methods surpass the existing works and, for the first time, push the21

6-bit post-training BERT quantization to the full-precision (FP) level.22

1 Introduction23

Transformer [1] has been one of the most common architectures in natural language processing along24

with lots of popular self-supervised models, such as BERT [2], RoBERTa [3], XLNet [4] and BART25

[5]. While these pre-trained models have demonstrated a significant superiority in performance,26

the memory and computation overheads have been a well-known concern, peculiarly in the real27

development. Therefore, model compression has attracted much attention from both academia and28

industry. Among them, quantization, working in the low-precision arithmetic fashion, is one of the29

key approaches for compressing large models and fitting them into the lightweight devices.30

These days, more interest has been attracted to quantization of Transformer-based models. [6]31

proposes an 8-bit quantization scheme for BERT-like models. [7] advises a group-wise quantization32

technique and analyzes the limit of mixed-precision using second-order Hessian information. [8, 9]33

combine distillation [10] with quantization. [11] explores the availability of integer-only quantization34

with the approximation of nonlinear operations. And [12] utilizes randomness and noise to reduce the35
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induced bias of Straight Through Estimation during quantization training. Nonetheless, few studies36

investigate the inherent bottleneck of quantizing Transformer-based models.37

Recently, some papers [13, 14] indicate that there exist significantly larger outliers in NLP models38

than in the computer vision ones. And these extreme outliers (some close to 100) behave in structured39

patterns, bringing devastating damage to the quantization accuracy (e.g., a 12% drop even for the40

8-bit). For this critical outlier problem, existing method [13] chooses bypassing solutions such as41

a finer quantization granularity. However, this scheme causes an increased computation cost and42

unavoidably hinders the acceleration effect.43

In this paper, to suppress the outliers rather than walk around them, we make an in-depth analysis to44

investigate the inducement of the outliers and the impact of clipping the outliers. Specifically, we first45

exploit the inducement and find that the scaling parameter γ in the LayerNorm structure works as an46

outlier amplifier and strengthens the outliers in the output. By extracting it, the activation is more47

robust to quantization. Then we further study the impact of outlier clipping and discover that different48

outliers may have different impacts on the full-precision performance when they are clipped. More49

interestingly, the more aggressive outliers provided by a few tokens, such as the separator token, can50

be cut sharply and safely without much accuracy degradation.51

Motivated by these findings, we propose an outlier suppression framework to push the limit of low-bit52

Transformer language models, which suppresses the outliers by equivalently migrating the outlier53

amplifier and efficiently detecting an appropriate clipping range. Such framework contains two key54

components: Gamma Migration and Token-Wise Clipping, corresponding to these two findings.55

Gamma Migration extracts the scaling parameter γ in LayerNorm and transfers it in subsequent56

modules with an equivalent transformation, significantly alleviating the outliers. Thus we can quantize57

on a more robust activation with no extra computation overhead. Then, Token-Wise Clipping further58

suppresses the outliers from the aspect of clipping impact. As the unimportant but more aggressive59

outliers might even present in a long tail form, existing ways devoted to finding a superior clipping60

range either fail to consider the outlier importance or suffer from large time cost on the long tail.61

We leverage the fact that those less important values only belong to a few tokens and propose to62

preliminarily detect the clipping range from a token perspective and then optimize it in a fine-grained63

way. Thus those signals can be skipped over quickly and spare more attention on the important64

parts. Our proposed framework can be combined with existing methods, and the thought of outlier65

suppression shall shed new light on the study of NLP quantization.66

To summarize, our contributions are as follows:67

1. We delve into the inducement and clipping impact of outliers in the NLP models and draw two68

critical findings that are helpful for handling the bottleneck of Transformer Quantization.69

2. Based on the findings, an outlier suppression framework containing Gamma Migration and Token-70

Wise Clipping is proposed. This framework is efficient, easy to implement and plug-and-play.71

3. Gamma Migration suppresses the outliers from the inducement aspect. It transfers the outlier72

amplifier in LayerNorm to the subsequent modules utilizing an equivalence transformation,73

contributing to a quantization-friendly distribution without any extra inference time.74

4. Token-Wise Clipping scheme suppresses the outliers from the importance aspect. It skips over75

those unimportant outliers quickly from the token perspective and focuses on the influential area76

with fine-grained learning.77

5. Extensive experiments on various NLP models (BERT, RoBERTa, BART) and tasks (text classifi-78

cation, question answering and summarization) prove that our outlier suppression framework sets79

up a new state of the art for transformer quantization, and for the first time, pushes the 6-bit PTQ80

and 4-bit QAT accuracy of BERT to the full-precision level.81

2 Preliminaries82

Basic Notations. We mark matrices as X , and vectors as x. Operator · denotes the scalar multiplica-83

tion, and ⊙ is adopted for element-wise multiplication on matrices or vectors. Also, we use Wx as84

matrix-vector multiplication. Specifically, in NLP tasks refer to tokens, Xt,j stands for the element85

at token t and embedding j, and xt represents the embedding of token t.86

Quantizer. Quantization usually includes two operations.87

x̄ = clip(⌊x
s
⌉+ z, 0, 2b − 1), x̂ = (x̄− z) · s (1)

2



(a) X̃

    γ

   

(b) γ (c) X ′

Figure 1: Presentation of outliers over X̃ , γ and X ′ of Attn-LN on BERT-SST-2. For example, at dimension
308, γ and X̃ both bear sharper values. By exluding γ, it can be seen that X ′ holds milder distribution than X̃ .
More evidence is put in Sec. D.1.

where s (step size), z (zero point) are quantization parameters, b is the bit setting. The first operation88

called "Quant" maps continuous numbers (x) to discrete points (x̄) for integer-arithmetric-only matrix89

computation. The second operation called "DeQuant" recovers it to x̂ after multiplication.90

3 Outlier analysis91

For Transformer-based models, standard 6/8-bit post-training quantization or low-bit (4-bit)92

quantization-aware training would cause severe accuracy degradation based on the knowledge in93

previous work [13] and our experiments. By studying the accuracy degradation and quantization94

error induced by each quantizer, we recognize that the output of LayerNorm structures and GELU95

functions are the most problematic tensors. Here, the LayerNorm function after Multi-Head Attention96

is marked as Attn-LN, the LayerNorm after FFN module as FFN-LN. Similar to [13], we notice97

that these three activations hold many sharp outliers, which should be responsible for the large98

quantization error. Evidence and experimental results in Sec. B.2.99

Based on these, a comprehensive investigation of outliers is conducted from the underlying induce-100

ment and clipping impact perspectives, inspiring us to suppress the harmful outliers for quantization.101

3.1 Inducement of outliers102

During the exploration of the inherent reasons (details in Sec. C.2), we find that the outliers in103

LayerNorm output correlate with its scaling parameter, which is also observed by [14] on a variety of104

models. But we further realize the outlier amplification effect of the scaling parameter and notice a105

more robust distribution for quantization by extracting the parameter.106

Since quantizing Attn-LN and FFN-LN are both challenging, natural action is to dive into Layer-107

Norm’s internal structure. Considering the transformation on token t at jth embedding dimension,108

it first normalizes the input using mean (ut) and variance (σ2
t ) of token t each forward pass, then109

scales and shifts the value with parameter γj and βj .110

LayerNorm : X̃t,j =
Xt,j − ut√

σ2
t + ϵ

· γj + βj (2)

Thus, we observe the parameter distribution of LayerNorm and surprisingly find that at the same111

outlier dimensions with the output, multiplier γj bears sharper values than others (Fig. 2b). Besides,112

the range of the adder βj is much smaller (e.g., (0, 3)) than its left part (e.g., (-25, 0)), so we ignore it113

for determining the key point. That is to say, γ might be a core ingredient for the situation Fig. 2a,114

especially can contribute to outliers across tokens as a shared parameter.115

This phenomenon enlightens us to remove the influence of γ by extracting it from Eq. (2) and see the116

distribution of tensor X ′.117

Non - scaling LayerNorm : X ′
t,j =

Xt,j − ut√
σ2
t + ϵ

+
βj

γj
(3)

Comparing Fig. 2a and Fig. 2c, it is obviously that X ′ denotes milder distribution with weaker118

outliers and reveals that parameter γ does strengthen the outliers, aggressively.119
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To quantitatively illustrate that tensor X ′ behaves more robust than X̃ in quantization, we adopt the120

cosine similarity metric to evaluate the information loss. From Table 1, the second row with higher121

similarity and thus less quantization error encourages us that the quantization performance can be122

improved by extracting the γ multiplication and using Non-scaling LayerNorm.123

Tensor 0 1 2 3 4 5 6 7 8 9 10 11

X̃ 97.16 97.03 97.61 94.37 93.41 93.53 93.31 93.61 94.56 95.62 96.13 98.57

X ′ 99.23 99.22 99.11 99.02 98.99 99.00 98.99 98.83 98.70 99.05 99.44 99.07

Table 1: Cosine similarity (%) of the quantized value (6-bit) and the real signal for tensor X̃ and X ′ across 12
Attn-LN layers on BERT-SST2. Higher is better. More evidence in Sec. D.1.

3.2 Impact of outlier clipping124

Plenty of papers [15, 16] point out that the quantization clipping range works as a trade-off between125

clipping error and rounding error. Considering this, we target the impact of cutting the outliers. Our126

conclusion is that the more aggressive outliers can be clipped without affecting the performance on127

FP models, and these little impact outliers correspond to only several tokens.128

Accuracy impact of outlier clipping. We take the outliers after GELU as an example here, while a129

similar phenomenon can also be found in LayerNorm’s output (Sec. D.2). Fig. 3 show that the more130

striking outliers with signal even at 100 can be clipped sharply even to 10, with accuracy still staying131

at 91.02 in the FP model, while accuracy drops rapidly to 85.93 with too many outliers cut.132

Token impact of outlier clipping. Motivated by [13], they refer that the separator token [SEP]133

attends to larger values. We are also aware of the different ranges provided by diverse tokens. By134

drawing the red points in Fig. 3, which calculates the proportion of clipped tokens, it can be clearly135

seen that the more aggressive area covers a lot from 10 to 100 but only matches with only 3% tokens.136

Destroying those sharper outliers belonging to several tokens will not affect the performance.137

Since the outliers in the NLP model show markedly different importance and the large variance138

of token ranges causes severely long tail distribution, the methods ignoring importance [17] and139

requiring hyper-parameter tuning [18] fail to find a suitable clipping range.140

Fortunately, combined with the observation that the long tail part is only filled with several tokens,141

we introduce a method in Sec. 4.2 to leverage the token’s indication to quickly skip over those142

unimportant areas and reach a favourable quantization clipping value.143

4 Method144

In this section, we introduce our proposed techniques based on the above analysis to break the145

outlier bottleneck. We first suggest extracting the outlier amplifier (scaling parameter) in LayerNorm146

structures and absorbing it in subsequent modules. To further suppress the outliers, a favourable147

clipping range detection method is advised to quickly attend to the influential area.148

accuracy
85.93

90.63
90.12

91.02
91.02

91.02
91.02

2.86

92.9

3.14

2.94 2.93 2.55 1.68

Clip Value

91.02

0

No Clip

The ratio of 
cut tokens 

to all tokens

Figure 3: To detect the impact of clipping the outliers, we first draw the distribution using (mean + 3 * std) as its
left border, then enumerate the value to cut the tensor. Red points reflect the proportion of cut tokens.
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4.1 Gamma Migration149

As pointed out in Sec. 3.1, activation without going through the scaling parameter produces less150

quantization error. In this way, we split the LayerNorm function, migrate γ into follow-up structures151

and quantize the output of the Non-scaling LayerNorm with transformation equivalence on the FP152

model and more robust activation on the low-bit one. The overall flow is illustrated in Fig. 4.153

Migration equivalence on FP model. Naturally, as refered in Eq. (3), we extract the parameter γ154

and transform the LayerNorm into Non-scaling one, thus seperate X ′
t,j from X̃t,j155

X̃t,j = X ′
t,j · γj (4)

Since the residual connection is frequently adopted after LayerNorm over a great number of models156

([19, 20, 21]), it is necessary to consider moving the parameter γ into the two branches. To put it in157

practical terms, such as Attn-LN (Fig. 4), we cancel out the parameter in LayerNorm, and establish γ158

on the shortcut branch and inject the value into the weight of Intermediate Layer.159

Next, we show how the weight absorbs γ. For linear layers, we have the following equation:160

W (x⊙

γ1

γ2

...
γn

) = (W ⊙

γ1 γ2 ... γn

γ1 γ2 ... γn

...
γ1 γ2 ... γn

)x, (5)

where x serves as a column vector and γ ∈ Rn. The proof is available in Appendix A. This equation161

holds for each token’s embedding. So as a shared parameter, γ can be transferred into the next layer’s162

weight. This migration can also be applied to FFN-LN and encoder-decoder architecture (Fig. 8,163

Fig. 7).164

Non-scaling 
LN Quant

DeQuant

*γ

* γ

Linear

Linear

G
ELU

X X ′ X 
Layer 
Norm Quant FFN

DeQuant

X ̃

Figure 4: Comparison of the quantization flow before (left) and after (right) Gamma Migration. The original
LayerNorm = the Non-scaling LayerNorm * γ. The migrated γ can be fused into the subsequent DeQuant and
Linear layers without any extra computation cost.

Quantization after migration. With the equivalent transformation, we clarify the quantization165

fashion of the Non-scaling LayerNorm. As shown in Fig. 4, the "Quant" process is employed at X ′,166

then the output in one branch enjoys the matrix multiplication with the quantized altered weight, in167

another branch multiplies parameter γ and experiences the "DeQuant" process. In fact, this means168

delaying the γ calculation. Hence, this new design will not increase the computation overhead.169

Effect of migration. We then analyze the effect of γ migration brought to weight and activation to170

illustrate that the activation quantization burden has been greatly alleviated with relatively a slight171

influence on weight. As presented in Fig. 1, outliers emerge at the same embeddings on γ, activation172

before (X ′) and after (X) scaling function. In the original structure, the absolute max range of173

output can be actually rewrite as |max(X ′)| ∗ |max(γ)|. However, the weight matrix does not174

have the same embedding outlier phenomenon as the activation. Thus, in our method, the newly175

quantized activation range becomes |max(X)′| and weight range will not be amplified |max(γ)|176

times. Experimentally, Table 1 in Sec. 3.1 has validated the favor on activation. We also calculate the177

cosine similarity for the changed weight and observe that γ has little impact on weight (Table 2). By178

the way, quantization-aware training is also able to enjoy the benefit of Gamma Migration (Fig. 6).179

4.2 Token-Wise Clipping180

As illustrated empirically in the motivation, the more serious outliers characterized by several tokens181

can be clipped safely while others can not. In this section, we propose a Token-Wise Clipping method182

to show how to utilize the token’s information to jump over the relatively unimportant outliers and183

target the key ones.184
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Tensor 0 1 2 3 4 5 6 7 8 9 10 11

original weight 99.95 99.95 99.95 99.95 99.95 99.95 99.95 99.95 99.95 99.95 99.95 99.95

changed weight 99.95 99.95 99.95 99.90 99.90 99.92 99.94 99.95 99.95 99.95 99.91 99.94

Table 2: Cosine similarity (%) between the quantized value (6-bit) and the real signal for original weight and the
changed weight across 12 Intermediate layers on BERT-SST2. It can be seen that there is little disparity between
the two rows, especially compared with Table 1.

During the investigation of the clipping impact of outliers, one understanding is to take the final loss185

into consideration. Thus, we first give the quantization loss definition below and minimize it using a186

coarse-to-fine paradigm.187

L(s) = ∥f̂(s)− f∥2F , (6)
where s is the step size parameter in the quantized model, and the loss represents the distance between188

the final quantized output f̂(s) and the real one f .189

Coarse-grained Stage. At this stage, our aim is to quickly skip over the area with little impact190

after clipping and access to the critical area. Sec. 3.2 explains that the long tail only matches with191

a few tokens. Therefore, we suggest using the max value of the embedding at token t to be its192

representatives (min value as representatives for negative outliers). A new tensor with T elements193

can be constructed by taking out the maximum signal for each token:194

ou = {max(x1), max(x2), ... , max(xT )}, (7)

where ou is marked as the collection of upper bounds, ol as collection of lower bounds. Then we195

consider the clipping ratio α on ou, and calculate the corresponding clipping value:196

cu = quantile(ou, α). (8)

The quantile function computes the α-th quantiles of the sorted ou, and cu is used to cut the whole197

tensor.198

Through grid search of token-wise clipping ratio, we get step size s = cu−cl

2b−1
(b is the bit-width), and199

take the one with minimal quantization loss Eq. (6). The initialized step size is marked as s0 for the200

fine-grained stage.201

Fine-grained Stage. With s0 in the coarse phase, the learning procedure is equipped to make some202

fine-grained adjustments. In detail, we optimize parameter s towards Eq. (6) using gradient descent203

with initialization s0 and small learning rate η.204

s = s− η
∂L(s)

∂s
(9)

Benifits. Along with travelling over the representative of tokens in the first step, the long tail can205

be passed quickly Fig. 5. In the second step, at a good initialization point of loss surface, learning206

adjustments further provide a guarantee for the final effect. Moreover, by virtue of the reduced tensor207

(ou distilled from X), it runs very fast with each iteration. And the whole grid search is more efficient208

than OMSE here. Ablation study in Sec. 5.2 demonstrates the enjoyable performance at the first step,209

and Sec. D.3 gives comparisons among our scheme and other existing approaches.210

Clip Value

max(x2)

Coarse-grained  Stage

Fine-grained Stage

max(x1)

max(x3) max(x0)

s0

sbest

Fine Adjustment

Fast Convergence

Figure 5: Flow diagram of the proposed Token-Wise Clipping
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5 Experiments211

In this section, we evaluate our proposed framework from two aspects. Sec. 5.2 shows the effect212

of Gamma Migration and Token-Wise Clipping, respectively. In Sec. 5.3, we evaluate the overall213

method across classification, question answering, and summarization tasks on BERT, RoBERTa and214

BART models. Here, 4-4-4 presents 4-bit weights, embeddings and activations.215

5.1 Setup216

Datasets. We conduct experiments on GLUE [22] tasks on both PTQ and QAT settings. Besides,217

more study is done on SQuAD [23, 24], XSum [25] and CNN/DailyMail [26] to further validate218

the robustness of our approach.219

Baseline. For PTQ algorithm, we implement the prevalent techniques including MinMax [27], OMSE220

[17], Percentile [28], EasyQuant [29] and PEG [13]. For QAT algorithm, we compare our methods221

with Q-BERT [7], Q8BERT [6] and PEG [13] on setting 4-4-8. To better explore the effect of our222

outlier suppression framework, we select the canonical quantization approaches PACT [30] and LSQ+223

[31], and compare with them on both 8-bit and 4-bit activations. Moreover, we also evaluate how our224

method performs combined with the knowledge distillation (KD) in TernaryBERT [8].225

Implementation details. We adopt a quantization scheme which is more friendly to hardware than226

some existing papers ([9, 8]) adopt. Details can be found in Sec. B.1. For PTQ experiments, we227

sample 256 examples as the calibration dataset and set batch size as 32. For QAT experiments on228

GLUE benchmark, we equip our method with LSQ+ [31]. About hyper-parameters, learning rates229

are searched for both the baseline mechanisms and our methods. Details in Appendix F.230

5.2 Ablation Study231

Figure 6: QAT fine-tuning pro-
cess on BERT-SST-2.

In this subsection, we perform ablation study on our proposed Gamma232

Migration and Token-Wise Clipping. Results are reported in Table 3.233

It can be seen that both Gamma Migration and Token-Wise Clipping234

surpass the baseline by a large margin: 16.43% and 17.53% increment235

on QNLI, 15.44% and 12.5% enhancement on MRPC. We also notice236

that based on the coarse-grained stage, the performance of the fine-237

grained stage sometime doesn’t provide a better result, and we think238

it’s because the coarse step already produces a good enough outcome.239

Besides PTQ, Fig. 6 shows that with our method, the training of QAT240

becomes faster and easier.241

Method CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B
(Matt.) (acc m/mm) (f1/acc) (acc) (f1/acc) (acc) (acc) (Pear./Spear.)

FP32 62.50 87.75/87.23 93.1/90.44 92.68 88.78/91.6 80.51 95.18 91.04/90.72
Baseline (MinMax) 0.0 34.9/35.0 71.64/67.4 62.13 51.88/74.37 49.82 77.87 44.11/46.74
Gamma Migration 0.0 53.53/54.64 87.97/82.84 78.56 78.04/85.3 55.6 85.67 61.03/63.22
Token-Wise Clipping (Coarse) 34.95 80.56/80.84 85.05/79.41 79.46 85.96/89.31 66.43 91.63 82.03/82.45
Token-Wise Clipping 37.64 81.13/81.26 85.59/79.9 79.66 85.83/89.26 64.62 91.63 83.10/83.51
Gamma Migration + Token-Wise Clipping 46.35 83.38/83.32 87.50/83.33 86.82 86.82/90.01 67.51 92.2 86.83/86.93

Table 3: Results of our proposed Gamma Migration and Token-Wise Clipping for RoBERTa with 6-bit PTQ.

5.3 Main Results242

5.3.1 Results on GLUE Benchmark243

PTQ. Table 4 shows the results of PTQ on GLUE tasks. For 8-bit BERT models, although previous244

methods already behave well, our methods can still achieve satisfying outcomes even on small245

datasets such as CoLA (4.49% upswings) and STS-B (1.33%). To fully exploit the limit, we try more246

challenging settings with 6-bit weight and activation. It can be seen that ours is indeed close to FP247

value within 5.2% overall. Meanwhile, as PEG [13] additionally quantizes the "Add" operator and248

uses per-layer weight quantization. For a fair comparison, we apply our mechanism to their setting.249
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Method Bits CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B
(W-E-A) (Matt.) (acc m/mm) (f1/acc) (acc) (f1/acc) (acc) (acc) (Pear./Spear.)

BERT 32-32-32 59.60 84.94/84.76 91.35/87.75 91.84 87.82/90.91 72.56 93.35 89.70/89.28
MinMax 8-8-8 57.08 82.77/83.47 89.90/85.78 90.76 87.84/90.74 69.68 92.78 86.83/88.56
OMSE [17] 8-8-8 57.15 84.04/84.29 90.10/85.78 91.12 87.64/90.54 72.20 93.23 87.90/88.65
Ours 8-8-8 61.64 84.38/84.53 91.44/87.75 91.49 87.92/90.77 72.20 93.81 89.23/89.01
OMSE 6-6-6 35.44 74.00/73.30 81.54/76.47 84.66 76.07/82.12 64.26 86.27 85.57/86.05
Percentile [28] 6-6-6 37.32 72.40/71.69 85.09/79.90 79.37 72.58/80.19 61.73 87.27 86.38/87.29
EasyQuant [29] 6-6-6 44.18 78.27/79.24 85.12/77.21 81.97 72.15/79.71 62.45 85.44 82.19/82.03
Ours 6-6-6 54.40 82.02/81.69 87.45/83.33 89.82 84.69/88.94 70.76 91.86 88.65/88.55

PEG [13] ♣ 8-8-8 59.43 81.25 88.53 91.07 89.42 69.31 92.66 87.92
Ours ♣ 8-8-8 59.83 82.93/82.59 91.33/87.99 90.02 87.45/90.34 70.04 92.66 88.42/88.81
PEG ♣ 6-6-6 9.46 32.44/32.77 83.64/78.43 49.46 29.93/62.97 70.76 90.14 52.79/53.22
Ours ♣ 6-6-6 42.27 78.54/78.32 85.33/81.13 85.36 78.47/84.66 68.59 91.74 87.33/87.19

RoBERTa 32-32-32 62.50 87.75/87.23 93.1/90.44 92.68 88.78/91.6 80.51 95.18 91.04/90.72
MinMax 8-8-8 41.62 87.52/86.88 91.56/88.48 92.11 88.60/91.44 76.90 94.82 91.00/90.66
OMSE 8-8-8 38.59 87.32/87.14 92.39/89.46 92.51 87.95/90.95 76.53 94.61 90.95/90.65
Ours 8-8-8 62.50 87.61/87.31 92.39/89.46 92.53 88.64/91.49 78.34 94.95 91.08/90.73
OMSE 6-6-6 1.81 72.89/72.65 85.38/78.68 76.53 85.24/88.94 64.26 91.17 80.81/81.99
Percentile 6-6-6 20.73 72.23/73.68 84.83/78.43 77.16 82.21/87.44 62.82 88.19 79.41/79.64
EasyQuant 6-6-6 17.65 74.54/74.76 82.96/74.02 81.97 78.56/82.99 61.73 86.24 81.05/81.06
Ours 6-6-6 46.35 83.38/83.32 87.50/83.33 86.82 86.82/90.01 67.51 92.2 86.83/86.93

BART 32-32-32 56.32 86.45/86.55 91.37/87.50 92.31 88.34/91.39 79.06 93.35 90.11/89.94
MinMax 8-8-8 55.38 85.87/86.14 89.44/85.29 91.20 88.07/91.24 77.98 93.69 89.90/89.73
OMSE 8-8-8 54.56 85.6/86.25 90.31/86.27 90.74 88.21/91.3 78.7 93.58 90.07/89.88
Ours 8-8-8 55.53 86.28/86.17 90.40/86.52 91.47 88.25/91.35 80.51 93.92 90.20/89.95
OMSE 6-6-6 31.06 41.92/42.08 56.37/54.36 52.72 78.96/86.02 51.99 87.39 84.38/85.69
Percentile 6-6-6 26.21 74.72/75.29 83.52/74.26 53.71 82.64/87.48 67.15 87.96 63.99/65.01
EasyQuant 6-6-6 23.64 64.57/66.03 83.52/74.26 55.61 72.15/79.71 59.57 88.99 76.69/77.05
Ours 6-6-6 44.51 82.46/82.98 86.41/80.88 86.34 83.60/88.45 71.12 90.94 87.56/87.38

Table 4: PTQ performance on GLUE benchmark. ♣ indicates using quantization nodes of PEG [13] for thorough
comparison. For the percentile , we search it in [0.999, 0.9999, 0.99999] and report the best on dev set.

Favourable results on both 6-bit and 8-bit reveal the flexibility and the generality of our Gamma250

Migration and Token-Wise Clipping. To be noted, their per-embedding-group (PEG) quantization251

certainly brings extra computation and might not be available on real deployment.252

Besides, the experimental results on RoBERTa and BART show that with 6-bit activation, the existing253

methods suffer from non-negligible accuracy drops, while ours consistently achieves satisfying results.254

To conclude, our proposed methods push the limit of 6-bit quantization to a new state of the art.255

QAT. In particular, we measure the effectiveness of our methods on QAT with BERT model. Other256

models see Sec. D.4. In a much harder setting (4-4-4 bit quantization), our methods enable a good257

initialization to attain an acceptable accuracy drop (0.58% on QQP, 1.89% on MNLI) without any258

distillation and data argumentation trick, versus 3.67% and 3.51% on LSQ+. Furthermore, ours259

delivers improvements even when coupled with knowledge distillation, especially at 2-bit weight260

and embedding. To summarize, our outlier suppression framework achieves near-floating point261

performance with a reduction 2.40% on average on 4-bit quantization.262

5.3.2 Results on SQuAD263

To demonstrate the wider applicability of our methods, we evaluate them on question answering264

datasets. Most of the techniques work well for 8-bit. However, the performance drastically drops265

when going down to 6-bit quantization. Ours still outperforms others by a large margin. For example,266

our method improves 3.79% on BERT and 8.69% on RoBERTa.267

5.3.3 Results on Summarization Tasks268

Summarization tasks aim at generating a brief that contains the substance of the article. We report the269

ROUGE 1/2/L results of BART on CNN DailyMail and XSum. Table 7 shows the effectiveness of270

our approaches in Seq2Seq models with about 4% increment.271
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Method Bits BERT RoBERTa BART

(W-E-A) SQuAD v1.1 SQuAD v2.0 SQuAD v1.1 SQuAD v2.0 SQuAD v1.1 SQuAD v2.0

Full Prec. 32-32-32 88.28/80.82 77.34/73.60 92.25/85.83 83.30/80.26 91.63/84.79 80.82/77.41

OMSE [17] 8-8-8 87.55/79.80 77.00/73.23 91.48/84.52 82.79/79.65 90.35/83.04 80.00/76.37
Ours 8-8-8 87.96/80.32 77.30/73.57 91.60/84.95 82.92/79.80 90.47/82.95 80.45/76.91

OMSE 6-6-6 80.33/69.43 68.77/64.07 70.70/59.09 45.52/39.69 81.30/70.69 67.92/63.18
Percentile [28] 6-6-6 78.73/67.58 68.60/64.62 67.85/55.07 56.13/51.18 80.70/70.80 72.70/67.81
EasyQuant [29] 6-6-6 80.92/70.87 69.77/65.11 65.38/51.18 44.04/37.32 78.53/67.24 61.37/56.42
Ours 6-6-6 84.71/75.55 72.95/68.75 79.39/69.35 64.39/59.57 82.75/73.37 75.60/72.10

Table 5: Comparison among typical PTQ approaches in terms of f1/em on SQuAD.

Method Bits CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B
(W-E-A) (Matt.) (acc m/mm) (f1/acc) (acc) (f1/acc) (acc) (acc) (Pear./Spear.)

Full prec. 32-32-32 59.60 84.94/84.76 91.35/87.75 91.84 87.82/90.91 72.56 93.35 89.70/89.28

Q8BERT [6] 8-8-8 58.48 - 89.56/- 90.62 87.96/- 68.78 92.24 89.04/-
Q-bert [7] 8-4-8 - 78.08/78.96 - 85.55 - - - -
PACT [30] 4-4-8 55.23 83.98/83.9 91.58/88.24 91.12 88.19/91.2 71.84 91.86 89.73/89.27
LSQ+ [31] 4-4-8 57.7 84.17/84.02 89.75/85.78 91.27 88.18/91.16 70.76 91.97 89.74/89.3
PEG [13] 4-4-8 57.42 84.22/84.52 89.90/85.78 90.46 88.15/91.25 67.87 92.78 89.36/88.95
Ours 4-4-8 61.06 84.82/84.89 91.26/87.75 91.41 88.45/91.4 73.65 92.55 89.71/89.24
PEG 4-4-4 0.0 35.45/35.22 81.22/68.38 49.46 0.0/63.18 52.71 76.26 nan/nan
PACT 4-4-4 0.0 74.17/74.85 84.97/80.15 87.31 81.68/86.14 62.09 83.03 81.64/81.43
LSQ+ 4-4-4 0.0 81.4/81.97 88.34/83.82 88.1 83.11/87.24 64.62 82.34 84.16/83.75
Ours 4-4-4 50.56 83.05/83.24 89.08/84.31 89.88 87.00/90.33 70.76 91.86 87.64/87.36

PEG ♣ ∗ 4-4-8 57.22 83.69 87.77 91.29 89.64 70.04 92.32 89.13
Ours ♣ 4-4-8 59.57 85/84.31 91.07/87.75 91.31 88.35/91.32 72.2 92.43 89.57/89.2
PEG ♣ 4-4-4 0.0 35.45/35.22 31.62/0.0 49.46 0.0/63.18 52.71 49.08 -0.0219/-0.0199
Ours ♣ 4-4-4 51.93 83.03/83.24 89.39/85.05 90.33 87.38/90.62 72.56 91.74 88.36/87.91

LSQ+(+KD) 4-4-4 12.72 83.73/83.82 90.4/86.52 90.61 87.17/90.47 66.06 84.4 84.23/84.01
Ours(+KD) 4-4-4 56.1 84.67/85.06 91.26/87.75 91.45 88.69/91.56 72.2 92.89 88.49/88.14
LSQ+(+KD) 2-2-4 0.3 82.18/82.74 89.23/84.56 89.97 86.33/89.33 56.68 84.63 38.81/38.92
Ours(+KD) 2-2-4 44.18 83.84/83.95 89.42/84.8 90.55 88.21/91.17 63.18 91.97 83.01/82.95

Table 6: Comparison among different QAT strategies with low-bit activation on GLUE benchmark for BERT.
♣Uses the same quantization nodes as PEG [13] for thorough comparison. ∗Reports the combined score for
MNLI, MRPC, QQP and STS-B, which is the average of the metrics.

Method Bits(W-E-A) CNN DailyMail XSum Bits(W-E-A) CNN DailyMail XSum

Full prec. 32-32-32 45.62/22.85/42.88 42.82/20.11/34.99 32-32-32 45.62/22.85/42.88 42.82/20.11/34.99

OMSE [17] 8-8-8 44.89/22.03/42.18 41.58/18.77/33.73 6-6-6 37.56/15.46/34.92 16.11/2.13/12.22
Percentile [28] 8-8-8 44.67/21.74/41.81 41.47/18.67/33.61 6-6-6 37.02/15.31/34.45 30.10/9.43/22.70
EasyQuant [29] 8-8-8 44.32/21.37/41.53 41.40/18.74/33.53 6-6-6 36.71/14.99/34.49 21.72/6.28/16.87
Ours 8-8-8 45.70/22.89/43.15 42.32/19.74/34.59 6-6-6 40.12/17.62/37.24 34.50/12.69/26.10

Table 7: PTQ results of BART model on summarization tasks.

6 Conclusions272

This paper analyzes the outlier phenomenon from the inducement and clipping impact on Transformer-273

based models and establishes an outlier suppression framework to combat the quantization challenges.274

This is done to reduce the outlier amplification effect and detect a good clipping range. We compre-275

hensively verify the effectiveness on a large variety of tasks. It can achieve a nearly lossless 8-bit276

quantized network and can significantly improve the 6-bit quantization results in PTQ. For QAT, our277

methods enable an enjoyable initialization to push the limit of 4-bit quantization without distillation278

and data augmentation tricks.279
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