
Cooperative Robot Teaching

Anonymous Author(s)
Affiliation
Address
email

Abstract: Knowledge and skills can transfer from human teachers to human stu-1

dents. However, such direct transfer is often not scalable for physical tasks, as they2

require one-to-one interaction and human teachers are not available in sufficient3

numbers. Machine learning enables robots to become experts and play the role4

of teachers to help in this situation. In this work, we formalize cooperative robot5

teaching as a Markov game, consisting of four key elements: the target task, the6

student learning model, the teacher model, and the interactive teaching-learning7

process. Under a moderate assumption, the game reduces to a partially observable8

Markov decision process (POMDP), with an efficient approximate solution. We9

illustrate our approach on two tasks, one in a simulated video game and one with10

a real robot.11

Keywords: Robot Teaching, Human Robot Interaction12

1 Introduction13

Figure 1. The table co-reorientation
task. Blue circle H and green circle
R represent the human and the robot,
respectively. Both agents are working
together to reorientate the table.

Learning complex skills in a multi-player setting is more chal-14

lenging than its counterpart in a single-agent game: the learner15

can no longer learn to cooperate by simply observing the16

demonstrations; it has to act through the motions and practice17

by interacting with a specialized teacher to master the skills.18

Learning collaborative physical skills forms a major part of19

this teaching scenario. Referring to table co-reorientation20

shown in Figure 1 as an example, to cooperatively reorient21

the table with partners of different intentions and adaptive-22

ness, human normally learns through interacting and practic-23

ing the skills with representative teachers, rather than exhaus-24

tively collecting demonstrations to cover all possible behaviors25

of the partners. Due to the reliance on a human teacher, scaling up this teaching process is heavily26

constrained by the limited human teachers [1]. We aim to fundamentally remove this constraint by27

finding an alternative source for teachers. Fortunately, with the recent advancement in the machine28

learning community, robots now can not only master various tasks [2, 3, 4], but are also capable29

of collaborating with humans and adapting to humans’ behaviors efficiently [5, 6, 7]. More impor-30

tantly, robots are innately scalable. To this end, we propose a conceptual robot teaching framework31

that aims to teach humans cooperative skills through human-robot interaction (HRI).32

The challenge of teaching a skill in a cooperative setting lies in three aspects: representing the33

skill, identifying a proper mode of interaction, and generating an efficient curriculum. Previous ef-34

forts [8, 9, 10, 11] represent the skills by demonstrations. They focus on how to select the demonstra-35

tions or training samples optimally. However, given the interactive nature of the task, it is unrealistic36

to cover all possible demonstrations for the student to learn from. Hence, we need a more compact37

representation of the skills. In addition, existing works on human-robot interaction, such as shared38

autonomy [12, 13], are assistive and collaborative in nature, where the robot adapts to humans’39

actions and assists humans. Surprisingly, we find out that this assistive paradigm in human-robot40
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Assistance Collaboration Teaching

Figure 2. Simplified graphical model for Assistance, Collaboration, and Teaching in the table co-reorientation
task. We use ρ to represent human’s latent state, s to represnet the task state, aH and aR to represent human’s
action and robot’s action respectively. While human’s latent state can also be affected by robot action in
collaboration, we use the arrow in teaching to emphasize robot’s intention to teach human.

interaction could be overly protective and thus hinder humans from acquiring new skills. There-41

fore, robot teaching requires a new mode of interaction that can 1) hint the human towards the42

task completion, and 2) motivate the student to acquire new skills. On top of that, customizing the43

curriculum for individuals is also challenging: it usually demands an experienced teacher to infer44

students’ proficiencies and learning behaviors, so it can design a curriculum tailored to individuals.45

Given the aforementioned challenges, we draw insights from student-centered learning [14] and46

human-robot cross-training [15] to tackle the teaching problem. Rather than representing the skill47

by its optimal behaviors across all scenarios, we choose to decompose the skill into a fixed set48

of linear independent sub-skills, whose proficiencies are easy to evaluate. With such a compact49

and decomposable skill representation, we can naturally derive a partially assistive robot teaching50

curriculum, whereas each sub-skill is learned one at a time, with the robot assisting the rest of the51

unlearned sub-skills during the teaching. Moreover, to teach each sub-skill, our teacher induces52

active learning behavior from the learner so it optimizes the sub-skills by itself [16], removing53

the burden to specify the optimal actions for the learner to imitate. Our partial assistive mode of54

interaction no longer suffers from the “lazy student” issue. More importantly, this partially assistive55

teaching paradigm eases both the overall learning and the proficiency evaluation: we decompose the56

learning of any complex skill into a set of independent sub-tasks, so they can be tackled one by one.57

To this end, we conclude the main contribution of this work as presenting a conceptual framework,58

Cooperative Robot Teaching, which offers a formal model to describe and analyze robot teaching in59

a cooperative task. Key elements in the framework are identified, which makes it possible for one60

to simplify and solve the problem by applying existing algorithms or devising new algorithms. In61

this work, as a first attempt, we demonstrate an instantiation of solutions to it. We conducted two62

human-subject experiments to show the effectiveness of Cooperative Robot Teaching.63

2 Related Work64

Assistance in HRI. One major aspect of HRI is how the robot could assist humans with a hid-65

den human objective [12, 13]. As shown in Figure 2, if the human chooses to rotate the table in a66

counter-clockwise way and insists on his preference, the objective of the robot is to infer the hu-67

man’s intention and learns to assist the human. In its simplest form, the action selection and human68

intention inference are separated [17, 18, 19]. A decision-theoretic framework, assistant POMDP, is69

developed to capture the general notion of assistance in HRI [20]. The robot integrates the reward70

learning and control modules to perform sophisticated reasoning over human feedback [21, 22].71

However, both these two approaches neglect human learning/adaptation and may hinder humans72

from improving their skills. On the contrary, our work focuses on how to generate behaviors that73

facilitate human learning during interaction.74

Collaboration in HRI. Another important aspect of HRI is to model interactions as the collaboration75

between the human and the robot [23], for which the human and the robot share the same objective.76

Consider the table-reorientation task shown in Figure 1, both human and robot’s objective is to re-77

orient the table quickly. However, the joint optimal policy, e.g. rotating the table counter-clockwise,78

is unknown to both agents in the first place. Their interaction is mutually adaptative [24, 25, 26].79

Particularly, as pointed out in [7], if one side is only aware of partial information about the task, the80
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optimal policy pair naturally induces the behavior of active teaching, active learning, and efficient81

communication between the robot and human. In this work, we focus on the following setting: given82

that the robot teacher knows the optimal policy, how to design an interactive teaching strategy that83

can induce active learning from the student.84

Teaching Algorithm for Algorithms. Teaching for algorithms aims to facilitate the learning of85

the algorithm by choosing or generating training samples. Various teaching techniques including86

curriculum learning [27] and machine teaching [28, 29, 30, 31, 32] have been effectively applied87

to supervised learning and semi-supervised learning problems. Similar ideas are further extended88

to train reinforcement learning agents to learn complex skills, e.g., generate training environment89

for reinforcement learning [33, 34, 35], choose various demonstrations [36] or learn to decompose90

the skill [37, 38]. Teaching in cooperative multi-agent RL allows agents to simultaneously become91

teachers and students for each other [39, 40, 41]. However, such approaches generally require rel-92

atively more data for training and to some extent the controlled learning behavior of the learner.93

Transfer of these approaches to human learning is promising but difficult.94

Teaching Algorithm for Human. Despite the aforementioned practical challenges, some algo-95

rithms have been successfully deployed for human learning. Attempts on teaching the crowd on96

classification or concepts prove to be successful [11, 42, 43, 44]. While humans can learn concepts97

from visual or verbal examples, complex skills like motor control skills can hardly be mastered98

through these signals. Here, we seek to automate the teaching process for humans to cooperate in a99

physical task, e.g., table co-reorientation.100

3 Cooperative Robot Teaching101

We formalize Cooperative Robot Teaching by identifying four key elements: (1) the target task, (2)102

the student learning model, (3) the teacher model, and (4) the interactive teaching-learning process.103

The target task. In this paper, we focus on teaching in a duo cooperative task and we call it the104

Target Task, which is the original cooperative game both agents aim to solve.105

Definition 1 (The Target Task). The target task is a duo player cooperative Markov game106

between a teacher, T , and a student, S, that can be described by a tuple, M =107

⟨S, {AT , AS}, T (·|·, ·, ·), R(·, ·, ·), γ⟩ with the following definitions:108

S a set of target task states: s ∈ S.109

AT a set of actions for the teacher, T : aT ∈ AT .110

AS a set of actions for the student, S: aS ∈ AS .111

T (·|·, ·, ·) a conditional distribution on the next target task state, given the previous state and112

the actions of both agents: T (s′|s, aT , aS).113

R(·, ·, ·) a target task reward function that maps target task states and players’ actions to real114

numbers. R : S ×AT ×AS → R.115

γ the discount factor in the target task.116

At each step, T and S both observe the current task state st, then select their actions aTt ∼ πT and117

aSt ∼ πS
t respectively, and receive a joint reward rt = R(st, a

T
t , a

S
t ). The next state is updated as118

st+1 ∼ PT (st+1|st, aTt , aSt ). Next, the student updates its policy πS
t+1 by observing the teacher’s119

action aTt and the reward rt, and the process repeats.120

Given the definition of the target task, we first answer how to represent the knowledge/skills. In this121

work, we choose to represent a skill by the optimal policy π∗ to the target task. The optimal policy122

maximizes the expected cumulative reward when the student is cooperating with a given partner with123

policy π, and is defined as π∗ = argmax
πS∈Π

EaT
t ∼π,

aS
t ∼πS

[
∑∞

t=0 γ
tR(st, a

T
t , a

S
t )]. For example, in the table124

co-reorientation task, the student needs to learn to deal with either stubborn or adaptive partners. We125

recognize that there are other ways to represent knowledge/skills, such as a set of demonstrations126

and the ground-truth reward function. However, such representations are indirectly linked with the127

skill’s performance; therefore, evaluating its proficiency is more obscured. We choose the optimal128

policy as the representation since it can be directly optimized over and evaluated.129

The student learning model. The student policy is non-stationary since it will improve along130

with teaching. Therefore, we use a tuple of initial policy and updating strategy (learning strategy),131
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⟨πS
0,U⟩, to represent the student behavior.132

The teacher model. We define the teacher as a knowledgeable agent (expert) who knows the stu-133

dent’s optimal policy π∗ for a target task. The teacher aims to acquire a teaching policy πT that134

can teach π∗ to the student effectively. The teacher, the student, and the target task share the same135

action space. Taking the table co-reorientation task as an example, the teacher may take actions to136

assist the student or intentionally expose the student to unseen scenarios. In short, the teacher can be137

described by a tuple of the student’s optimal policy and the corresponding teaching policy, ⟨π∗, πT ⟩.138

The interactive teaching-learning process. In the target task, T knows the student’s optimal poli-139

cies π∗ while the student does not. The task of T is to act in the most informative way so that S140

learns π∗ fastest. To embed the objective of teaching and distinguish it from the Target Task, we141

define it as the Teaching Task in the following way:142

Definition 2 (The Teaching Task). The teaching task is a POMDP M′ for the teacher given the143

target task M = ⟨S, {AT , AS}, T (·|·, ·, ·), R(·, ·, ·), γ⟩ and the student ⟨πS
0,U⟩. It can be described144

by a tuple M′ = ⟨Ŝ, Â, T̂ ,O, Z, R̂, γ̂⟩ with the following definitions:145

Ŝ a set of teaching task state: for ŝ ∈ Ŝ, ŝ = {s, πS}.146

Â a set of actions: Â = AT .147

T̂ (·|·, ·) a conditional distribution on the next teaching task state: T̂ (ŝ′|ŝ, aT ).148

O a set of observations: for o ∈ O, o = {aS , s, r}.149

Z the observation probability function: Z = {πS , T (·|·, ·, ·), R(·, ·, ·)}.150

R̂(·, ·, ·) the teaching task reward function that measures the effectiveness of teaching. R̂ :151

Ŝ × Â× Ŝ → R.152

γ̂ the discount factor in the teaching task.153

The objective of the Teaching Task is to derive a teaching policy enabling student to learn π∗ for154

the Target Task fastest. More specifically, the teacher can influence the student through interactive155

actions aT and the joint reward r. Given the student initial policy πS
0 and the update function U , the156

goal of the Teaching Task is to find a teaching policy πT that allows πS
0 → π∗ as fast as possible.157

Next, we introduce our choice of the teaching policy πT , the update function U , and the re-158

ward function R̂. To devise a student-aware teaching strategy, apart from the current state st159

and the target policy π∗, our πT also takes the previous student action aSt−1 and reward rt−1160

as input, i.e., aTt ∼ πT (aTt |st, aSt−1, rt−1, π
∗). S updates πS with any arbitrary iterative func-161

tions conditioned on the history of interactive actions and the joint rewards in the following form:162

πS
t+1 = U(πS

t , [(s0, r0, a
T
0 , a

S
0 ), ..., (st, rt, a

T
t , a

S
t )]). Moreover, to incentivize the teacher to speed163

up the teaching process, we introduce a step-wise teaching cost to the teacher ct = C(st, aTt ) to164

penalize unnecessary teaching actions. To this end, we define the reward function as165

R̂(ŝ, aT
t , ŝ

′;D, C, π∗, ω) = D(πS
t , π

∗)−D(πS
t+1, π

∗)−ωC(st, aT
t ), ŝ = {st, πS

t }, ŝ′ = {st+1, π
S
t+1}, (1)

where ω is the weighted factor to trade-off the teaching cost and teaching efficiency, and D(·, ·) can166

be an arbitrary distance measure between two policies, e.g., initial state value in the target task. The167

solution to the POMDP M′ is a teaching policy πT that maximizes the expected sum of rewards168

EaT
t ∼πT [

∑∞
t=0 γ̂

tR̂(ŝ, aTt , ŝ
′)].169

4 Our method170

Our solution to the teaching task can be summarized into 3 steps: (1) representing the teacher’s171

actions by decomposition into sub-skills, (2) representing hidden states, transition, and reward with172

Item Response Theory (IRT) [45] and Knowledge Tracing (KT) [46], and (3) learning the model173

through interactions and generating training sequences. Our solution is summarized in Algorithm 1.174

4.1 Representing Actions by Decomposition into Sub-skills175

Sub-skills decomposition is well-studied for single-agent tasks [47, 48, 49]. However, extending the176

same idea to a multi-agent setting is still challenging since task completion relies on the interaction177

among multiple parties. We observe that in a multi-agent game, the task naturally comprises several178

roles, of which each agent takes a subset. The well-established leader-follower model is a particular179

choice of role-based skill decomposition [50, 51, 52, 53]. Therefore in our work, we propose to180
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decompose skills based on role allocation. We divide the skill into K locally-independent teachable181

sub-skills according to the student’s potential roles in the task. In the table co-reorientation example,182

the role of the student can be the proactive agent who leads the rotation or the passive agent who183

always follows. The teacher’s action space Â = {k : k ∈ Z, 0 ≤ k < K} consists of teaching each184

sub-skill. Such a decomposition of skills naturally leads to a partially assistive mode of interaction.185

4.2 Representing Hidden States186

Algorithm 1 Approximated Solution to the Teaching Task

Require: Maximum Interactions L, Predefined Interactions
N

1: for k ∈ Â do:
2: Randomly initialize λk and αk

t , βk, and Ck = {}
3: for i = 1, 2, ..., N do:
4: Ck.add(fi(k))
5: end for
6: end for
7: for i = 1, 2, ..., L do:
8: for k ∈ Â do:
9: Learn λk and αk

t , βk from Ck

10: end for
11: k ← Action selection from λk and αk

t , βk

12: fi(k)← Performance measure from interactions
13: Ck.add(fi(k))
14: end for

Item Response Theory (IRT) models the187

student responses to a certain item [45].188

Given the limited interactions, we adopted189

the simplest form, the one-parameter model190

(1RL), to model human skills. In the 1RL191

model, each sub-skill k ∈ Â is assigned192

a parameter βk representing the difficulty,193

and a parameter αk called the proficiency194

representing a student’s skill state. The195

probability that a student has mastered sub-196

skill k is given by f(k) := σ(αk − βk),197

where σ is the sigmoid function. Hence,198

instead of representing the state with stu-199

dent’s policy πS , we use (αk, βk)K to rep-200

resent the hidden state. That is, for ŝ ∈201

Ŝ, ŝ = {s, (αk, βk)K}. In this work, we assume a bounded positive reward function. The ratio202

between the target task rewards achieved by the student’s current and optimal policies when the203

teacher teaches sub-skill k is used to infer f(k):204

f(k) :=
1

1 + e(βk−αk)
=

R(s, aT = k, aS)

R(s, aT = k, a∗)
, (2)

where a∗ refers to the action generated by the optimal policy that the teacher aims to teach. For each205

student and each k ∈ Â, we assume that αk changes over time while βk is a constant.206

4.3 Representing the Transition207

Knowledge Tracing (KT) is a technique used to model a learner’s acquisition of certain knowl-208

edge [46]. Following the previous work on online estimation of student proficiency [54, 55], we209

model the student’s proficiencies over time on the sub-skill k as a Wiener process210

P (αk
t+∆t|αk

t ) = exp

(
−
(αk

t+∆t − αk
t )

2

2λk∆t

)
, k ∈ Â, (3)

where ∆t refers to the step interval and λk is a parameter controlling the “smoothness” with which211

student’s proficiency varies over time. For each student and for each k ∈ Â, we assume λk to be a212

constant.213

4.4 Representing the Reward214

The distance between the student’s policy and the optimal policies can be represented by f(k).215

We represent the distance as the average of one minus master probabilities of each sub-skills216

D(πS , π∗) =
∑K

k=0 1−f(k)

K . There are other ways to specify the goal according to the decompo-217

sition of the skill, e.g. weakest or multiply [56]. We choose the sum due to our local-independence218

assumption on sub-skills. In this work, we assume the cost is uniform, thus, given a finite219

horizon of interactions, maximizing the reward function defined in Equation (1) is equivalent to220

R̂(ŝ, aTt , ŝ
′) =

∑K
k=0 ft+1(k)−ft(k)

K .221

4.5 Model Learning and Decision Making222

We use the student’s performance during the interactions to estimate both λk and αk
t , β

k. Let223

f1:t(k) denote sequences of student’s performance measure against the expert. We have the224
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posterior P (λk, αk
t , β

k|f1:t(k)) ∝ P (f1:t(k)|λk, αk
t , β

k)P (λk, αk
t , β

k). The conditional prob-225

ability of the observation and current proficiency can be obtained by integrating out all the226

previous proficiencies. The likelihood can be approximated through P (f1:t(k)|λk, αk
t , β

k) ≈227 ∏t
t′=1

∫
P (ft′(k)| λk, αk

t′ , β
k)P (αk

t′ |αk
t )dα

k
t′ . An approximation of the log posterior over the stu-228

dent’s current proficiency given previous responses can be derived to learn the parameters λk and229

αk
t , βk. In this work, we employ maximum a posteriori estimation (MAP) to learn these parameters.230

Given the estimation of current state using the past history, we use one-step look-ahead to reduce231

the impact of the inaccuracy in the transition function. At timestep t, the teacher’s action is given232

as aTt+1 = argmaxk∈Â

∫
P (αk

t+1|αk
t )ft+1(k) dα

k
t+1 − ft(k). In practice, the student is asked to233

perform on each sub-skill for N interactions to initialize the parameters.234

4.6 Training on Sub-skills235

Our overall strategy for training students on each sub-skill is to diversify scenarios the student would236

encounter during training. Training students on sub-skills naturally leads to a partially assistive237

partner on unlearned sub-skills, which allows the student to explore the sub-skill freely. We adopt238

an intuitive assumption: an agent learns cooperation better with a diverse group of partners. Such a239

teaching strategy is effective when dealing with synthetic students [57, 58]. The student could learn240

from a diverse set of partially assistive partners or learn to cope with them by acquiring new skills.241

5 Experiments242

(a) (b)
Figure 3. Experiment setups. (a) Overcooked-AI lay-
out: human participants control the “chef” and the
robot controls the “robot”. (b) The real robot setup of
Duo Maze Ball game.

We carried out two human-subject experiments243

to demonstrate how Cooperative Robot Teaching244

works, one in simulation (Overcooked-AI [59])245

and the other with a real robot (Duo Ball Maze).246

Experiment setups are shown in Figure 3. We247

investigated the teaching performances of three248

types of teachers: the fully-assistive teacher who249

performs optimally concerning the student’s ini-250

tial capability, the student-aware teacher who251

behaves according to our teaching strategy, and252

the random teacher who chooses the sub-skill (in Duo Ball Maze) or executes task actions ran-253

domly (in Overcooked-AI).254

5.1 Setups255

Overcooked-AI. Overcooked-AI is a benchmark environment for fully cooperative human-AI task256

performance and has become a well-established domain for studying coordination [60, 61, 62, 63].257

The goal of the game is to cook and deliver as much soup as possible in a limited time. We decom-258

pose the policy into two sub-skills: putting ingredients in the pot and delivering the soup. To put259

ingredients in the pot, there exists one efficient strategy to pass the ingredient through the middle260

table. We recruited N=20 (8 females and 12 males) participants and randomly assigned them into261

groups of three, each with a different teaching strategy. Each participant was trained for 5 games262

and then evaluated for 1 game.263

Duo Ball Maze. The Duo Ball Maze game requires coordination from both the robot and the hu-264

man. Each party will hold one side of the maze board and tilt it to move the ball out from one of265

the two exits. We define two sub-skills leading the rotation and following the rotation. We recruited266

N=19 (6 females and 13 males) participants to carry out human-subject experiments. Data from267

one male participant was discarded due to a hardware issue during the experiment. The participants268

were first evaluated in the two sub-skills, then trained for 20 interactions, and finally evaluated in269

the two sub-skills again. Details can be found in the supplementary materials.270

5.2 Results271

A fully-assistive teacher impedes human’s acquisition of skills. In the Overcooked-AI experiment272

shown in Figure 4(a), we observe that the students trained with a fully-assistive teacher perform273

worse than the students with a random teacher: it seems that a student becomes “lazy” and free rides274
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Figure 4. Results of the Overcooked-AI experiment. (a) Rewards achieved together by the human-robot pairs
during training and evaluation. The error bars correspond to the 95% confidence intervals (95%CI). (b) Per-
centage of students who found the efficient strategy. None of the students are aware of this strategy at the
beginning of the training. (c) Percentage of reward achieved by the human participants during training.
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Figure 5. Results of the Duo Ball Maze experiment. (a) Evaluation performances of the two sub-skills of
all participants. The marker styles correspond to the sub-skill preferences of the participants. (b) Evaluation
performances. The error bars correspond to the 95%CIs. (c) Performances with respect to training progress.
The shaded areas correspond to the 95%CIs. “E” in the horizontal axis means evaluation round.

the teacher when the teacher unilaterally adapts to the student and performs optimally. We further in-275

vestigate the learning pattern of the “lazy student” problem and find out that this “laziness” does not276

lie in the student’s reluctance to take actions, but rather in the lack of motivation to explore and im-277

prove. In Figure 4(c), we show the percentage of reward achieved by the student in Overcooked-AI278

during training. Compared with the student-aware counterpart, the percentage of reward achieved by279

humans is similar. However, only 17% of the participants of the group find out the efficient strategy280

(Figure 4(b)), which is crucial to achieve high scores when cooperating with sub-optimal partners.281

We observe a similar trend in the Duo Ball Maze game shown in Figure 5(c). The performance of282

students in the fully-assistive group shows marginal improvement with low fluctuations.283

Humans may not learn effectively from a random teacher. A random teacher is incapable of teaching284

a truly cooperative task. Our Overcooked-AI and Duo Ball Maze differ in their requirements for the285

degree of cooperation: Overcooked-AI can be done by a single agent (one agent can perform both286

sub-skills to finish the task, at the expense of yielding a lower score), while the Duo Ball Maze need287

both agents to perform consistent actions. As a result, we observe that while the student can still288

learn from a random teacher in Overcooked-AI (see Figure 4(a)-(b)), there is no signal of learning289

in Duo Ball Maze (see Figure 5(b)-(c)). This suggests that a more dedicated teacher is required to290

teach a truly cooperative task effectively.291

Partially assistive or random partner motivates students to explore new strategies. By leaving292

some/all work to the student, partially assistive and random teachers both motivate the student to293

acquire new skills. This is shown in Figure 4(b) that most of the students under these two teachers294

can find out the efficient strategy in Overcooked-AI. However, their performance and the robustness295

of the learned strategies differ significantly. Though multiple explanations could account for it, we296

hypothesize the student under the random teacher learns a single fixed strategy to finish the task297

alone (Figure 4(c)). Such a strategy that completes the task alone cannot utilize the possibly helpful298

inputs from the partner, therefore resulting in a poorer performance score. On the other hand, the299

student-aware teacher exposes the student to various scenarios by generating diverse actions on each300

sub-skill. For example, if the teacher acts as the leader, the student learns to follow; if the teacher301

does not take the initiative to act, the student explores the leading role, which is directly reflected in302

the performance improvements shown in Figure 5(c). In addition, students are granted more oppor-303

tunities to practice and learn a sub-skill dedicatedly. In summary, the role-based partially assistive304

teacher enjoys the best of both random and fully-assistive teachers. As shown in Figure 4(a), the305
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student-aware teacher outperformed the fully-assistive and the random teachers in the Overcooked-306

AI experiment in terms of the evaluation reward (with p-values 0.002 and 0.06). In the Duo Ball307

Maze game shown in Figure 5(b), the student-aware teacher also outperformed both fully-assistive308

and random teachers (with p-values 0.133 and 0.017).309

An individualized curriculum should be designed for the student. The preferences and biases310

of each student can differ significantly and they may play a vital role in the teaching task.311

In the post-experiment survey of Duo Ball Maze, we asked the participants “which mode of312

the robot is easier to cooperate with?”. Out of the 18 participants, 4 participants preferred313

to follow the robot and 14 participants preferred to lead the robot. Moreover, as we evalu-314

ated the student performance with partners of different sub-skills, we found that the student per-315

formances were consistent with their declared preferences (Figure 5(a)). That is to say, the316

student may have a bias over which strategy to acquire, and tailoring the teaching curricu-317

lum to focus on that specific strategy is efficient and more intuitive to the student. Indeed,318

our teaching curriculum first infers the preferred strategy of the student from their proficiency319

level, then we allocate more training effort to the sub-skills they show strong improvement on.320
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(a) (b)
Figure 6. Sub-skill performances with re-
spect to training progress of two exam-
ple participants trained by the student-aware
teacher. The top and bottom figures corre-
spond to leading and following sub-skills re-
spectively. (a) Participant 4. The student
improved more when trained in the leading
sub-skill. (b) Participant 6. The student im-
proved more when trained in the following
sub-skill.

For example, as demonstrated in Figure 6(a), after the first321

6 trials that estimated the student’s proficiency for each322

sub-skill, the teacher found out this student improved323

more as the leader, therefore, the teacher allocated 12324

trials to perfect the leading sub-skills and only 2 trials325

for following. Moreover, one participant in the random326

teacher group responded “the robot leading mode is too327

difficult and I gave up”. This demonstrates the impor-328

tance of an individualized curriculum: though there are329

multiple equally optimal strategies, the individual may330

have strong preferences, and teaching a non-preferable331

strategy will discourage the student from learning any-332

thing at all. We view this as a strong call for an individ-333

ualized curriculum for cooperative robot teaching given334

human’s variance in physical skills. We refer the readers335

to the Appendix for the complete data of all participants.336

6 Limitation337

Decomposition into sub-skills. For many tasks, it is not easy to identify distinct roles to fulfill the338

local-independence criteria of sub-skills. We manually decompose the skill into a few sub-skills339

according to the role of the student. Often, such a decomposition may not be possible or requires340

careful design. Curriculum design. In this work, we only design the curriculum over different341

sub-skills. However, during our experiment, we observe that humans show various responses to342

the same sub-skill of different difficulties. As a result, a finer-grained curriculum on the sub-skill343

training shall be found to further facilitate human learning. Robot teaching in other tasks. We344

restrict the teaching to a cooperative task only in this work. Our formulation and approach cannot345

be applied to the single-agent game or competitive game directly.346

7 Conclusion347

In this work, we propose a conceptual framework, Cooperative Robot Teaching, that enables robots348

to teach humans in cooperative tasks. We show that, by abstracting a teaching task over the original349

duo cooperative task, the robot can learn to act as a specialized teacher to humans. To be more350

specific, we model the teaching task as a POMDP with hidden student policy and propose a partially351

assistive teaching curriculum to support human learning. We believe that robot teaching fills in the352

gap of the bilateral knowledge transfer in HRI: unlike other HRI tasks where the humans instruct353

the robots how to behave, now the role is reversed and robots try to instill the knowledge back354

into humans. Despite the great challenges that lie ahead, we believe that robot teaching has great355

potential and is a necessary step forward to bring robots closer to our daily life.356
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[37] B. P. Gerkey and M. J. Matarić. A formal analysis and taxonomy of task allocation in multi-458

robot systems. The International Journal of Robotics Research, 23(9):939–954, 2004.459
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