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Abstract

There is an increasing interest in adopting high-capacity ma-
chine learning models such as deep neural networks to semi-
automate human decisions. Hence, it is crucial that these
models guarantee similar decisions for similar individuals. To
ensure such a fair decision, it is necessary to construct tools
capable of verifying and enforcing fairness constraints. In this
work, we propose methods to guarantee fairness of a neural
network via verification using mixed-integer programming.
We show, that it is possible to guarantee individual fair pre-
diction without intervening in the model, efficiently and with
little to no loss in accuracy.

Introduction
Deep neural networks are increasingly used to make sensi-
tive decisions, including financial decisions such as whether
to give a loan to an applicant (Hardt, Price, and Sre-
bro 2016), recidivism risk assessments (Julia Angwin and
Kirchner 2016), salary prediction (BBC 2018), etc. In these
settings, for ethical, and legal reasons, it is of utmost im-
portance that decisions made are fair. For example, all else
being equal, one would expect two individuals with differ-
ent gender receive the same hiring decision. However, prior
studies have shown that models trained on data are prone to
bias on the basis of sensitive attributes such as race, gender,
age, etc. (Larson et al. 2016; Buolamwini and Gebru 2018)

It has been shown that even if sensitive features such as
race and gender are withheld from the model, the model
can still be unfair as it is often possible to internally recon-
struct sensitive features that are encoded in data. Guaran-
teeing fairness not only helps organizations to address laws
against discrimination, but also helps users to better trust and
understand the learned model (Bastani, Zhang, and Solar-
Lezama 2019).

Most prominent definitions of fairness in machine learn-
ing can be largely categorized into individual fairness and
group fairness. While group fairness minimizes the impact
that discrimination has on the groups of individuals on av-
erage, individual fairness is based on the intuition that sim-
ilar individuals should be treated similarly. Recently, vari-
ous definitions of group fairness and individual fairness have
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been introduced. Group fairness measures define specific
groups in the population and require that particular statis-
tics, computed based on model decisions, should be equal
for all groups (Hardt, Price, and Srebro 2016; Dwork et al.
2012). The group fairness notions are generally hard to for-
mally guarantee fairness for all input points (Kearns et al.
2018; Ruoss et al. 2020). In contrast, individual notions of
fairness (Galhotra, Brun, and Meliou 2017; Dwork et al.
2012) are easier to specify as logical constraints to guarantee
fairness, as they explicitly require that similar individuals in
the population are treated similarly. Specifically, in this pa-
per, we focus on an individual fairness notion introduced by
(Galhotra, Brun, and Meliou 2017). This notion says that a
model is fair if, the decision of the model is the same for
any two individuals with various combination of sensitive
attributes, when nonsensitive attributes are fixed.

Our proposed approach to guarantee individual fairness
is through formal verification methods. We focus on guar-
anteeing fairness at prediction time via verification of a
trained model. By verification, we mean evaluating whether
a classifier satisfies a specified notion of fairness. Recently
a few works started to research on formal verification of
neural network models (Liu et al. 2019). Often the verifi-
cation problem is formulated as a satisfiability problem in
which given a property to prove, they attempt to discover a
counterexample that would make the property false. Prior
work on individual fairness verification have focused on
identifying the absence of unfair predictions using verifica-
tion (John, Vijaykeerthy, and Saha 2020), or they only guar-
antee fairness for training data points (Ruoss et al. 2020).
If a trained model is not fair, these methods fail to guar-
antee fair predictions for all points in the input domain. In
this work, we propose the first method for addressing this
challenge. At a high level, our approach is based on the ob-
servation that we can guarantee fairness at prediction time
- as a post-processing step, without changing the model- by
counting the number of fairness counterexamples for a given
test point.

Our experimental evaluation on three datasets, i.e., COM-
PAS, German, and Adult, shows that we can guarantee fair-
ness at prediction time with little to no loss in accuracy. Fur-
ther, we show that our approach to guarantee fairness as a
post-processing step, do not affect the prediction time.



Methodology
In this section, we formalize individual fairness verification
and construct definitions for guaranteed fair predictions. We
start with preliminaries on Mixed-Integer Program (MIP)
encoding of neural networks for fairness verification. Then,
we explain how we use verification as a tool to guarantee
fair predictions.

ReLU Neural Networks (NN) generalize well and are
widely used (Glorot, Bordes, and Bengio 2011; Xu, Choy,
and Li 2016; dos Santos et al. 2019), particularly in the con-
text of verification (Katz et al. 2017; Huang et al. 2017) and
robustness. Hence, in this paper we guarantee fair predic-
tions for functions produced by ReLU networks. While the
methods discussed here can be extended to any NN archi-
tecture with piece-wise linear activation functions, we focus
on fully connected ReLU networks for simplicity.

Let X as the input space consisting of d features, and
suppose that it is a compact finite subset X = [L′, U ′]d of
Rd where L,U define the domain of features. Let Y be the
output space. We consider binary classification tasks where
Y ∈ {0, 1}. Our goal will be to guarantee individually fair
predictions from f in some sensitive input features. We re-
fer to the specific notion of individual fairness called Causal
Discrimination that is proposed by Galhotra, Brun, and Me-
liou (2017). Causal Discrimination is defined as:
Definition 1. (Causal Discrimination) Assume a function
f : X → Y , where X ≡ N × S and S denotes pro-
tected or sensitive attributes, and N denotes all additional at-
tributes describing the individual, such that X [1 . . . k] ∈ N
andX [k+1 . . . d] ∈ S. We define f to be individually fair in
sensitive features S iff for any two points x, x′ ∈ X where
x[i] = x′[i], ∀i ∈ {1 . . . k}, we have that f(x) = f(x′).

For example, when two individuals apply for a loan, a
model is fair according to the causal discrimination, if the
decision to give loans to identical individuals of one race
and another race is the same.

Neural Networks Encoding using MIP
The field of neural network verification (Liu et al. 2019),
motivated by adversarial examples, aims at formally verify-
ing properties of trained models. While several approaches
to encode neural networks for verification within problem-
solving frameworks have been studied (Liu et al. 2019;
Bunel et al. 2018); we use the encoding and optimization
approach presented in (Mohammadi et al. 2021) for the con-
text of decision-making scenarios. Their techniques are sig-
nificantly faster than other verification approaches, which
is crucial to our goal of guaranteeing fairness at prediction
time.

Given an n-layer fully-connected ReLU neural network
with a single output where the width of each layer is rep-
resented by ti, the values of neurons before applying ReLU
is represented by vector zi, ∀i ∈ {0 . . . n} (z0 being the
input), and their values after ReLU by ẑi, ∀i ∈ {1 . . . n},
Tjeng and Tedrake (2017) propose the following MIP en-
coding, ∀i ∈ {1 . . . n}:

zi = Wiẑi−1 + bi (1a)

δi ∈ {0, 1}ti , ẑi ⩾ 0, ẑi ⩽ ui · δi,
ẑi ⩾ zi, ẑi ⩽ zi − li · (1− δi)

(1b)

The first part (1a) encodes the linear relationship before
ReLU. The second part (1b) encodes the ReLU activation
function, for ẑ = ReLU(z) = max(0, z). δi is a vector
of binary variables representing the state of each ReLU as
non-active or active. This encoding relies on bounds on the
values of neurons, li,ui. These bounds are computed using
a linear approximation of the network proposed by Ehlers
(2017), given the bounds on input l0 = L′,u0 = U ′. More-
over, in this work, we assume discrete domains over the
input variables, hence the mixed-integer program. This en-
coding of neural networks allow us to add additional con-
straints, and we can verify different properties of a model by
adding property-based constraints to (1) to achieve verifica-
tion through optimization, which we will discuss in the next
section.

Individual Fairness Verification
Formal properties of functions are often characterized in
terms of their counterexamples. Counterexample-guided al-
gorithms are prevalent in the field of formal methods (Clarke
et al. 2000; Solar-Lezama et al. 2006) and neural network
verification (Sivaraman et al. 2020). The techniques pro-
posed in this paper will be centered around using coun-
terexamples to the individual fairness specification defined
in Definition 1.

Definition 2. A pair of inputs x,x′ ∈ X is an individual
fairness counterexample (CE) pair in sensitive features S of
function f : X → Y iff (i) x[i] = x′[i], ∀i ∈ {1 . . . k}, and
(ii) f(x) ̸= f(x′).

Given a binary classifier f implemented via a ReLU NN
and an individual x, we identify fairness counterexamples
to this individual using Definition 2. This process involves
adding the two kinds of constraints defined in Definition 2
to the MIP encoding from Equation 1. The feasible set of
this optimization problem is explored using an optimizer
backend (Gurobi Optimization 2020) and if there exists a
solution satisfying these constraints, we will have a fairness
counterexample. Formally, the following constraints will be
added:

z0,i = x[i], ∀i ∈ {1 . . . k} (2a)

ẑn = 1− f(x) (2b)

where z0,i is the variable associated with the i-th neuron
in layer 0 (input layer). Concretely, this fairness verification
approach searches for a counterexample with the same non-
sensitive features as x and any assignments to sensitive fea-
tures (z0,i where i ∈ {k + 1 . . . d}), constraining the output
of the NN, ẑn, to have the flipped label compared to f(x).

Our approach to fairness verification looks for a coun-
terexample of individual fairness for a given point x, i.e.,
if a counterexample is found, individual fairness is not satis-
fied for this individual w.r.t. Definition 1 and the absence of
such counterexamples verify the fairness only for this partic-
ular individual. To extend verification to individual fairness
in the general case, it is enough to define two MIP encodings



given in Equation (1) for the same neural network where (i) a
set of constraints on their input layer guarantee the variables
corresponding to nonsensitive features to be equal, and (ii)
a constraint on the output of the two NNs guarantees the
prediction to be different. If a solution (x,x′) is found for
this aggregate MIP, then individual fairness is not met, oth-
erwise it holds in the general case. Formally, the following
constraints are added to the aggregate MIP encoding:

z0,i = z′
0,i, ∀i ∈ {1 . . . k} (3a)

ẑn = 1− ẑ′n (3b)

where z denotes pre-activation variables associated with
the first MIP encoding of the network, and z′ for the second
MIP encoding of the same network.

While this setup allows us to verify fairness of a learned
function, it is not clear how to guarantee fairness. In the next
section we show how to use individual fairness verification
to guarantee fair predictions for all individuals.

Guaranteed Fair Predictions
A naive approach to guarantee fair predictions w.r.t. Defini-
tion 1, would be to return the same output for all individu-
als, e.g., the most frequent label in the training set. While
this satisfies individual fairness, it leads to poor model per-
formance (see Table 2 in Section Evaluation). However, this
gives us intuition to a better approach, instead of returning
majority decision for all individuals in the domain, we could
return the majority decision for a group of individuals who
share nonsensitive attributes.

More precisely, we apply function h to the output of f to
obtain individually fair output for a given input x:

h (f(x)) = 1

 ∑
x′∈A(x)

f(x′)− 1(f(x′) = 0)

 ⩾ 0


(4)

where:

A(x) := {X | X[1] = x[1], . . . , X[k] = x[k],

X[k + 1] = ak+1, . . . , X[d] = ad;

∀ak+1, . . . , ad ∈ [L′
k+1,...,d, U

′
k+1,...,d]

d−k}
(5)

Theorem 1. For any function f and for any input x ∈
X with S as sensitive features, h(f(x)) is individu-
ally fair in S.

Proof. The proof is trivial: h outputs the same decision for
all points within the group of all assignments to the sensitive
attributes given fixed nonsensitive attributes of x, thus, no
fairness CE pair exists.

So far we have established a way to guarantee fair pre-
dictions for all input points based on majority decision cap-
tured in function h. To identify the majority decision, we
need a way of counting the frequency of each label within
the given group of assignments specified by fixing the non-
sensitive features in x. We propose two ways to do so.

Counting by Enumeration The first approach to comput-
ing majority decision would be to enumerate all possible as-
signments of sensitive attributes for a fixed set of nonsensi-
tive attributes. Concretely, given a test point x, we use back-
tracking and traverse all possible assignments to the sensi-
tive features, counting the frequency of each label. We stop
when we have found

⌈
|A(x)|

2

⌉
assignments that result in a

specific label, assuring that this is the majority decision.
Computational complexity of this approach grows with

the size of sensitive attributes and the domain size of
each sensitive attribute. Therefore, exhaustively enumerat-
ing even

⌈
|A(x)|

2

⌉
will increase prediction time significantly.

This motivates the next approach.

Counterexample-guided Counting To compute h and
identify majority decision, we leverage our efficient MIP
framework to find counterexamples. The key idea is to count
if there are

⌈
|A(x)|

2

⌉
number of counterexamples for the

MIP encoding of f constrained to x. Concretely, given a
test sample x, we use the pool search mode of Gurobi Opti-
mization (2020) to explore the MIP search tree in pursuit of⌈
|A(x)|

2

⌉
counterexamples where their labels is opposite to

that of f(x). If that many solutions are found, then the ma-
jority decision for the group of assignments specified by x
is opposite to that of f(x), otherwise the prediction remains
unchanged. Note that this choice of the label is empirical,
i.e., we could as well always look for solutions having con-
stant label 1 to figure out the majority label. The general
scheme of this approach is shown in Algorithm 1. The algo-
rithm takes as input the learned weights and biases W ,B
(containing Wi, bi in Equation (1)) of a ReLU NN, as well
as a sample x. The initial label of x is specified by y in
line 3. In line 4, the MIP encoding of the NN is obtained as
per Equation 1 and constraints from Equation 2 specifying a
counterexample for x are obtained in the following line. In
line 6, the MIP search tree is explored to find the specified
number of such counterexamples; if it finds less than that,
the final prediction does not change, otherwise it flips.

Algorithm 1: Counterexample-guided Counting to Guaran-
tee Fair Predictions

1: Input: W , B, x
2: Output: l ∈ {0, 1}
3: y = fW ,B(x)
4: ϕN ← MIPEncoding(W , b) ▷ MIP Encoding in

Equation 1
5: ϕCE ← CounterExampleEncoding(ϕN ,x) ▷ MIP

Constraints in Equation 2
6: S ← findSolutions(ϕN , ϕCE ,

⌈
|A(x)|

2

⌉
)

7: if |S| <
⌈
|A(x)|

2

⌉
then

8: return y
9: else

10: return 1− y



Evaluation
In this section, we evaluate the effectiveness of our methods
on three widely known fairness datasets.

• COMPAS (Larson et al. 2016): This contain 12k samples
with binary labels ”Low“ and ”High“ for the predicted
recidivism risk, as well as 8 features where 3 of them are
sensitive : sex (binary), ethnicity (∈ [0, 8]), and marital
status (∈ [0, 6]).

• German (Bache and Lichman 2013): This consists of
1000 samples with dimensionality 20 and 3 sensitive at-
tributes: sex /marital status (∈ [0, 3]), age (∈ [19, 75]),
and foreign worker (binary). It is used for binary classi-
fication of good or bad credit risks.

• Adult (Adult data 1996): This consists of 30k samples
and 14 features with four sensitive features: marital status
(∈ [0, 6]), race (∈ [0, 4]), sex (binary), and native coun-
try (∈ [0, 40]). The main task is to classify whether an
individual’s income exceeds $50K per year.

All experiments were run on a machine with 8 GiB RAM
and 2.5GHz processor. The implementations are all single-
threaded. We use Gurobi-9.1.21 as our solver. The baseline
model is a constant predictor that returns the most frequent
label in the training set. The architecture used for the ReLU
Neural Network is 2 hidden layers of size 16. It is trained via
a 5-fold cross-validation with grid search over learning rate,
number of epochs, and batch size to find the best model.

We investigate the following research questions:
Q1: To what extent does our initial learned model violate
individual fairness at prediction?

This can be interpreted with two metrics. i) CE rate: for
how many test samples there exists an individual fairness
counterexample, i.e., it is possible to change the outcome
of the model by only changing the sensitive attributes, and
ii) Flip rate: for how many test samples the prediction of
the model should be flipped in order to guarantee individual
fairness, i.e., not only a counterexample exists for them, but
also the label of the counterexample is the majority vote.

Note that to compute CE rate we only need the counterex-
ample finding procedure, while for flip rate we need the CE-
guided counting procedure to find the majority vote. Table
1 shows CE rate and flip rate across different datasets. We
can observe that there exists fairness counterexamples in the
test set of all datasets, so fairness as in Definition 1 does
not hold, thus, there is no need to perform the general fair-
ness verification procedure (Equation 3). Also, to guarantee
fairness, the final prediction flips for a small subset of the
samples for which a counterexample is found.

Data COMPAS German Adult

CE rate 0.25± 0.35 30.15± 7.89 0.43± 0.29

Flip rate 0.03± 0.01 7.83± 2.95 0.09± 0.06

Table 1: CE rate on and Flip rate (%) on the unseen test set

1https://www.gurobi.com

Q2:What is the effect of verification-guided fair predic-
tion on performance?

Our approach only aims to enforce individual fairness as
a post-processing step, and does not take the model accuracy
into account, thus, we could expect a decay in performance.
In Table 2, we report performance of the baseline model (i.e.,
the constant predictor returning the most frequent label), the
best model from grid search (with no fairness criteria), and
fairness-guaranteed prediction model. We observe that in-
dividually fair models of all three datasets perform better
than the baseline models. While there is a small decay in
performance from the best model to the fair model on Ger-
man dataset, no decrease is observed in COMPAS and Adult.
This is expected given the low flip rate as shown in Table 1.

Accuracy (Before) Accuracy (After)
Data Baseline ReLU NN ReLU NN

COMPAS 83.99± 0.42 91.96± 0.94 91.96± 0.92
German 69.94± 1.99 74.87± 2.86 74.67± 2.83
Adult 75.10± 0.49 78.60± 1.75 78.61± 1.75

Table 2: Performance of the models (%)

Q3: How scalable is our verification-guided fair predic-
tion approach?

We compare scalability of the proposed approaches to
guaranteeing fairness for a given input. In table 3 we com-
pare them on a single fold and observe that the CE-guided
counting approach performs two orders of magnitude faster
than enumeration on German dataset. On Adult, where there
are many more test samples, the enumeration approach times
out (> 3 hours), while CE-guided counting takes 10 minutes.

Data # instance Enumeration CE-guided Counting
(s) (s)

COMPAS 2500 6780.6 158.8
German 200 9374.9 21.9
Adult 6000 timed-out 621.3

Table 3: Runtime in seconds

Conclusion
We propose a novel approach to guarantee individual fair-
ness in neural networks at prediction time using verification.
While we show that our approach is capable of efficiently
enforcing fairness, an open path to explore is to study the
scalability of our method for various NN architectures.

The individual fairness definition is limited, for example,
it does not capture the relations among features. An inter-
esting future work would be to extend this with causal fair-
ness measures. Another direction, could be to try binding
the counterexamples to follow the distribution of the data.
Currently, there are no distribution constraints in our MIP
formulation which might produce Out-of-Distribution coun-
terexamples. Finally, our approach to use fairness counterex-
amples could be used to fine-tune an unfair model towards
being fair, which is a promising future work.
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