Under review as a conference paper at ICLR 2021

HETEROFL: COMPUTATION AND COMMUNICATION
EFFICIENT FEDERATED LEARNING FOR HETEROGE-
NEOUS CLIENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated Learning (FL) is a method of training machine learning models on pri-
vate data distributed over a large number of possibly heterogeneous clients such
as mobile phones and IoT devices. In this work, we propose a new federated
learning framework named HeteroFL to address heterogeneous clients equipped
with very different computation and communication capabilities. Our solution can
enable the training of heterogeneous local models with varying computation com-
plexities and still produce a single global inference model. For the first time, our
method challenges the underlying assumption of existing work that local models
have to share the same architecture as the global model. We demonstrate several
strategies to enhance FL training and conduct extensive empirical evaluations, in-
cluding five computation complexity levels of three model architecture on three
datasets. We show that adaptively distributing subnetworks according to clients’
capabilities is both computation and communication efficient.

1 INTRODUCTION

Mobile devices and the Internet of Things (IoT) devices are becoming the primary computing re-
source for billions of users worldwide (Lim et all [2020). These devices generate a significant
amount of data that can be used to improve numerous existing applications (Hard et al., [2018).
From the privacy and economic point of view, due to these devices’ growing computational capa-
bilities, it becomes increasingly attractive to store data and train models locally. Federated learning
(FL) (Konecny et al.,|[2016; [McMahan et al.,2017) is a distributed machine learning framework that
enables a number of clients to produce a global inference model without sharing local data by aggre-
gating locally trained model parameters. A widely accepted assumption is that local models have to
share the same architecture as the global model (Li et al.,|2020b) to produce a single global inference
model. With this underlying assumption, we have to limit the global model complexity for the most
indigent client to train its data. In practice, the computation and communication capabilities of each
client may vary significantly and even dynamically. It is crucial to address heterogeneous clients
equipped with very different computation and communication capabilities.

In this work, we propose a new federated learning framework called HeferoFL to train heteroge-
neous local models with varying computation complexities and still produce a single global infer-
ence model. This model heterogeneity differs significantly from the classical distributed machine
learning framework where local data are trained with the same model architecture (Li et al.,[2020bj
Ben-Nun & Hoefler, [2019). It is natural to adaptively distribute subnetworks according to clients’
capabilities. However, to stably aggregate heterogeneous local models to a single global model un-
der various heterogeneous settings is not apparent. Addressing these issues is thus a key component
of our work. Our main contributions of this work are three-fold.

e We identify the possibility of model heterogeneity and propose an easy-to-implement
framework HeteroFL that can train heterogeneous local models and aggregate them stably
and effectively into a single global inference model. Our approach outperforms state-of-
the-art results without introducing additional computation overhead.

e Our proposed solution addresses various heterogeneous settings where different propor-
tions of clients have distinct capabilities. Our results demonstrate that even when the model
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heterogeneity changes dynamically, the learning result from our framework is still stable
and effective.

e We introduce several strategies for improving FL training and demonstrate that our method
is robust against the non-IID statistical heterogeneity. Also, the proposed method can re-
duce the number of communication rounds needed to obtain state-of-the-art results. Exper-
imental studies have been performed to evaluate the proposed approach.

2 RELATED WORK

Federated Learning aims to train massively distributed models at a large scale (Bonawitz et al.,
2019). FedAvg proposed by McMahan et al.| (2017) is currently the most widely adopted FL base-
line, which reduces communication cost by allowing clients to train multiple iterations locally. Ma-
jor challenges involved in FL include communication efficiency, system heterogeneity, statistical
heterogeneity, and privacy (Li et al., 2020b). To reduce communication costs in FL, some studies
propose to use data compression techniques such as quantization and sketching (Konecny et al.,
2016; Alistarh et al., | 2017; Ivkin et al.l 2019), and some propose to adopt split learning (Thapa
et al.;[2020). To tackle system heterogeneity, techniques of asynchronous communication and active
sampling of clients have been developed (Bonawitz et al.,|2019; Nishio & Yonetani, [2019). Statis-
tical heterogeneity is the major battleground for current FL research. A research trend is to adapt
the global model to accommodate personalized local models for non-IID data (Liang et al., |2020),
e.g., by integrating FL. with other frameworks such as assisted learning (Xian et al., 2020), meta-
learning (Jiang et al.| |2019; [Khodak et al., |2019), multi-task learning (Smith et al., |2017), transfer
learning (Wang et al} [2019; [Mansour et al., 2020), knowledge distillation (Li & Wang} [2019) and
lottery ticket hypothesis (Li et al., 2020a). Nevertheless, these personalization methods often in-
troduce additional computation and communication overhead that may not be necessary. Another
major concern of FL is data privacy (Lyu et al.,2020), as model gradient updates can reveal sensitive
information (Melis et al.l|2019) and even local training data (Zhu et al.,|2019; |Zhao et al., [2020).

To our best knowledge, what we present is the first work that allows local models to have different ar-
chitectures from the global model. Heterogeneous local models can allow local clients to adaptively
contribute to the training of global models. System heterogeneity and communication efficiency
can be well addressed by our approach, where local clients can optimize low computation complex-
ity models and therefore communicate a small number of model parameters. To address statistical
heterogeneity, we propose a “Masking Trick” and demonstrate that personalization is unnecessary
for non-IID data in classification problems. We also propose a modification of Batch Normalization
(BN) (Ioffe & Szegedyl 2015)) as privacy concern of running estimates hinders the usage of advanced
deep learning models.

3 HETEROGENEOUS FEDERATED LEARNING

3.1 HETEROGENEOUS MODELS

Federated Learning aims to train a global inference model from locally distributed data
{X1,..., X} across m clients. The local models are parameterized by model parameters
{W1,...,Wpn,}. The server will receive local model parameters and aggregate them into a global
model W, through model averaging. This process iterates multiple communication rounds and can
be formulated as W; = % St W at iteration ¢. At the next iteration, Wgt is transmitted to a

subset of local clients and update their local models as W} = We.

In this work, we focus on the relaxation of the assumption that local models need to share the same
architecture as the global model. Since our primary motivation is to reduce the computation and
communication complexity of local clients, we consider local models to have similar architecture
but can shrink their complexity within the same model class. To simplify global aggregation and
local update, it is tempting to propose local model parameters to be a subset of global model pa-
rameters Wf“ - Wgt However, this raises several new challenges like the optimal way to select
subsets of global model parameters, compatibility of the-state-of-art model architecture, and mini-
mum modification from the existing FL framework. We develop Heterogeneous Federated Learning
(HeteroFL) to address these issues in the context of deep learning models.
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Figure 1: Global model parameters W, are distributed to m = 6 local clients with p = 3 computa-
tion complexity levels.

A variety of works show that we can modulate the size of deep neural networks by varying the width
and depth of networks (Zagoruyko & Komodakis| 2016} [Tan & Lel,[2019). Because we aim to reduce
the computation complexity of local models, we choose to vary the width of hidden channels. In this
way, we can significantly reduce the number of local model parameters, while the local and global
model architectures are also within the same model class, which stabilizes global model aggregation.

We demonstrate our method of selecting subsets of global model parameters W; for a single hidden
layer parameterized by W, € R4 *%s in Fig. |1l where dg and k, are the output and input channel
size of this layer. It is possible to have multiple computation complexity levels W/ C W}/ . c
W} as illustrated in Fig. |1} Let r be the hidden channel shrinkage ratio such that &' = r?~'d, and
Kk} = rP~1k,. It follows that the size of local model parameters |[W7| = r2(P=1) |1/, | and the model

P
shrinkage ratio R = % = r2(P=1)  With this construction, we can adaptively allocate subsets of
g

global model parameters according to the corresponding capabilities of local clients. Suppose that
number of clients in each computation complexity level is {m, ..., m,}. Specifically, we perform
global aggregation in the following way.

m—mp

WP, WP\ WP = _— WP\ WP, ... 1
; 1 l \ l m_mp ; 7 \ 70 ()

wp=—

m
1 m—ma:p
WIAW? = ——— Y W\W; ©)

m —ma:p =1
Wy =W!'=W/ U WP \WP)u---u W\ W?) 3

For notational convenience, we have dropped the iteration index ¢.

We exemplify the above equations using Fig.[I] The first part of Equation (T)) shows that the smallest
part of model parameters (blue, p = 3) is aggregated from all the local clients that contain it. In the
second part of Equation (T)), the set difference between part p — 1 (orange) and p (blue) of model
parameters is aggregated from local clients with computation complexity level smaller than p — 1.
In Equation (]Z[) the red part of model parameters can be similarly aggregated from m — mg., = my
clients. In Equation ll the global model parameters W; is constructed from the union of all disjoint

sets of the partition.

w |
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Several works show that wide neural networks can drop a tremendous number of parameters per
layer and still produce acceptable results (Han et al., 2015}, [Frankle & Carbin}, [2018)). The intuition is
thus to perform global aggregation across all local models, at least on one subnetwork. To stabilize
global model aggregation, we also allocate a fixed subnetwork for every computation complexity
level. Our proposed inclusive subsets of global model parameters also guarantee that smaller local
models will aggregate with more local models.

Thus, small local models can benefit more from global aggregation by performing less global aggre-
gation for part of larger local model parameters. We empirically found that this approach produces
better results than uniformly sampled subnetworks for each client or computation complexity level.

3.2 STATIC BATCH NORMALIZATION

After global model parameters are distributed to active local clients, we can optimize local model pa-
rameters with private data. It is well-known that the latest deep learning models usually adopt Batch
Normalization (BN) to facilitate and stabilize optimization. However, classical FedAvg and most
recent works avoid BN. A major concern of BN is that it requires running estimates of representa-
tions at every hidden layer. Uploading these statistics to the server

[Andreux et al] (2020) ROPOSESTONFICKIANMAESAUSES OGNy,

W bl an adaptation of BN named a static Bateh Normalizton (5BN) for opimizing privacy
Eonstrainedheterogeneousimodels] During the training phase, sSBN does not track running estimates

and simply normalize batch data.

(Ulyanov et al} 2016) SGTOUNON® (Wu & He, 2015) [aaEayeNGH
(Ba ct al| 2016) S SHOWRITABIE

3.3 SCALER

There still exists another cornerstone of our HeteroFL framework. Because we need to optimize
local models for multiple epochs, local model parameters at different computation complexity lev-
els will digress to various scales. This known phenomenon was initially discussed by the dropout
(Srivastava et al., 2014). To directly use the full model during the inference phase, inverted dropout
with dropout rate g scales representations with l—iq during the training phase. In practice, dropout is
usually attached after the activation layer as the selection of subnetworks is performed with masking.
Our method directly selects subnetworks from the subsets of global model parameters. Therefore,
we append a Scaler module right after the parametric layer and before the sBN and activation layers.
The Scaler module scales representations by T,,L_l during the training phase. After the global aggre-
gation, the global model can be directly used for inference without scaling.

4 A typical linear hidden layer

used in our HeteroFL framework can be formulated as

y = ¢(sBN(Scaler(X,, WP +bP))) 4)

where y is the output, ¢(-) denotes a , and WP bP are the
weight and bias for local model m at computation complexity level p. With all the practical meth-

ods mentioned above, we propose the complete pseudo-code for our HeteroFL framework in Algo-

i T O e S

We can also optionally update
learning rates to facilitate optimization and local capabilities information if changing dynamically.
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Algorithm 1: HeteroFL: Heterogeneous Federated Learning

Input: Data X; distributed on M local clients, the fraction C' of active clients per
communication round, the number of local epochs F, the local minibatch size B, the
learning rate 1), the global model parameterized by W, the channel shrinkage ratio ,
and the number of computation complexity levels P.

System executes:

Initialize Wg0 and local capabilities information Lq.x

for each communication round t = 0,1,2,... do

M, < max(C - M, 1)

S; < random set of M, clients

for each client m € S; in parallel do

Determine computation complexity level p based on L,,
T = P d, Tmdg, km < rmky
W = Wi dm, : k]
Wkl < ClientUpdate(m, r,,, W)
end

for each computation complexity level p do
p—1,t+1 p,t4+1 1 Mi—Myp.pt rr-p—1,t+1 pt+1
‘ w3 \ W3 < M =My Dim1 Wi \ Wi
end

W;""l - UP ) W;)—l,t+1 \ W;,H—l
p:
Update L1.x,n (Optional)

end
Query representation statistics from local clients (Optional)
ClientUpdate (m, r,,, W,,):
B, < split local data X,,, into batches of size B
for each local epoch e from 1 to E do

for batch b,,, € B,, do

\ Wi  Woo = nVEU(W o, T b))

end
end
Return W, to server

4 EXPERIMENTAL RESULTS

We trained over 600 individual models for exploring and demonstrating the effectiveness of our
method. We experimented with MNIST and CIFAR10 image classification tasks and the WikiText2
language modeling task (LeCun et all, [1998; [Krizhevsky et all, [2009; [Merity et al.| 2016} [Devlin|
2018).

Our experiments are performed with three different models including a CNN for MNIST, a preacti-
vated ResNet (PreResNet18) [2016) for CIFAR10 and a Transformer (Vaswani et al.| 2017)
for WikiText2. We replace BN in CNN and PreResNet18 with our proposed sBN, and attach the
Scaler module after each convolution layer. To study federated optimization, we adopt data partition
the same as in (McMahan et al.| [2017; [Ciang et al.| [2020). We have 100 clients, and the fraction C'

of active clients per communication round is 0.1 throughout our experiments. For IID data partition,
we uniformly assign the same number of data examples for each client. For Bal@iiééd non-IID data
partition,

feafes. We conduct a masked language modeling task with a 15% masking rate and uniformly
assign balanced data examples for each client. It needs to point out that each client will roughly
have 3000 different words in their local dataset, while the total vocabulary size is 33278. The details
regarding hyperparameters and model architecture can be found in Table [f]of the Appendix.
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To study the effectiveness of our proposed HeteroFL framework, we construct five different com-
putation complexity levels {a, b, ¢, d, e} with the hidden channel shrinkage ratio » = 0.5. JNEIiave
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To demonstrate the effect of dynamically varying computation and communication capabilities, we
uniformly sample from various combinations of computation complexity levels. For example, model
’a-b-c-d-e’ means that we uniformly sample from all possible available levels for every active client
at each communication round. We show the number of model parameters, FLOPs, and Space (MB)
to indicate the computation and communication requirements of our methods. For example, since
we uniformly sample levels, model a — e calculates computational metrics by averaging those of
model a and e. The ratio is calculated between the number of parameters of a given model with
respect to its 100% global model.
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iang et al.| [2020).

Full results including other possible combinations can be found in appendix in Table[7}{9] Finally, our
method is robust to dynamically varying model complexities. It is worth noting that our method does
not incur any additional computation overhead and can be readily adapted to existing applications.

We also perform experiments for
As mentioned earlier, most state-of-the-art results of non-I1ID
datasets suggest the personalization of local models to achieve better local results (Smith et al., 2017

Liang et al. 2020|; Li et al.,|2020a)).

[
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Figure 2: Interpolation experimental results for CIFAR10 (IID) dataset between global model com-
plexity ((a) a, (b) b, (c) ¢, (d) d) and various smaller model complexities.

(2018) showed that the failure

of non-IID FL is related to the weight divergence among local model parameters trained locally for
many iterations. The weight divergence mostly occurs in the last classification layer of networks.

Thus, instead of a full Cross-Entropy Loss for all classes, we are motivated to train each local model
only with their corresponding classes. In this way, each local model will train a sub-task given lo-
cally available label information. Specifically, we mask out the output of the model before passing
it Cross-Entropy Loss, which we named as Masked Cross-Entropy Loss. We experimented with
several different ways of masking, we find replacing the last layer outputs that are not associated
with local labels with zero achieves both stable and comparable local and global results. When
aggregating local model parameters, we do not aggregate the untrained parameters in the last classi-
fication layers. Either the server can infer this information implicitly, or the local clients can report
which classes they have to the server explicitly.

Since our primary focus
is to address model heterogeneity, we leave the analysis of this trick to future work. We show the
results of Fix experiments in appendix in Fig. B8] Dynamic non-IID results are also included in
Table [T}j3] The results show that our method performs comparably to those with personalized local
models. Our method is readily adaptable, free of computation overhead, and only rely on the single
global model for testing local and global results. It allows local clients to switch to another subtask
simply by changing its mask without querying the server for others’ personalized models.

We show the learning curves of 50% Fix and Dynamic assignments in appendix in Fig. The
learning curves show that the optimization of HeteroFL for the IID dataset is stable and efficient.

(Liang et al.l, 2020). We empirically discover gradient clipping
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Accuracy
Model Ratio Parameters FLOPs Space (MB)
D Non-1ID

Local Global

a 1.00 1.6 M 80.5M 5.94 99.53 99.85 98.92

a-e 0.50 782 K 40.5M 2.98 99.46 99.89  98.96

a-b-c-d-e 0.27 416 K 21.6 M 1.59 99.46 99.85 98.29

b 1.00 391 K 205 M 1.49 99.53 99.87 99.10

b-e 0.51 19 K 104 M 0.76 99.51 99.67 98.51

b-c-d-e 0.33 131K 6.9M 0.50 99.52 99.88  98.99

c 1.00 9 K 53M 0.38 99.35 99.56 96.34

c-e 0.53 53K 29M 0.20 99.39 99.79 97.27

c-d-e 0.44 44 K 24M 0.17 99.31 99.76  97.85

d 1.00 25K 1.4M 0.10 99.17 99.86 97.86

d-e 0.63 16 K 909 K 0.06 99.19 99.63 97.70

e 1.00 7K 400 K 0.03 98.66 99.07 92.84

Standalone (Liang et al.,[2020) 1.00 633 K 1.3M 2.42 86.24 98.72 30.41
FedAvg (Liang et al.|[2020) 1.00 633 K 1.3M 2.42 97.93 9820 98.20
LG-FedAvg (Liang et al.[|2020)  1.00 633 K 1.3M 2.42 9793 98.54 98.17

Table 1: Results of combination of various computation complexity levels for MNIST dataset. Full
results can be found in Table [7l

Accuracy
Model Ratio Parameters FLOPs  Space (MB)
Non-I1ID

m -

Local Global

a 1.00 9.6 M 3302 M 36.71 91.19 9238 56.88

a-e 0.50 48M 1659 M 18.43 90.29 92.10 59.11

a-b-c-d-e 0.27 26 M 884 M 9.78 88.83 9249 6l1.64

b 1.00 24M 833 M 9.19 89.82 93.83 5545

b-e 0.51 1.2M 424 M 4.67 89.10 90.68 59.81

b-c-d-e 0.33 801 K 279M 3.05 87.92 9190 59.10

c 1.00 604 K 212M 2.30 87.55 91.09 55.12

c-e 0.53 321K 11.3M 1.22 86.88 91.83 63.47

c-d-e 0.44 265 K 94 M 1.01 85.79 9149 5542

d 1.00 152K 55M 0.58 8421 90.77 61.13

d-e 0.63 95K 35M 0.36 8293 90.89 56.16

e 1.00 38K 1.5M 0.15 77.09 89.62 54.16

Standalone (Liang et al.||2020)  1.00 1.8M 3.6 M 6.88 1690 87.93 10.03
FedAvg (Liang et al.[[2020) 1.00 1.8M 3.6M 6.88 67.74 58.99 58.99
LG-FedAvg (Liang et al.[[2020)  1.00 1.8M 3.6M 6.88 69.76  91.77  60.79

Table 2: Results of combination of various computation complexity levels for CIFAR10 dataset.
Full results can be found in Table 8]

stabilizes the optimization of HeteroFL as it prevents small models from gradient explosion. We
can therefore adopt a universal learning rate for heterogeneous local models. It is also perceivable
that aggregation of model parameters trained with non-IID data makes the optimization less stable.
Results of Dynamic show that global aggregation of dynamically varying computation complexities
is stable.
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Model  Ratio Parameters FLOPs  Space (MB) Perplexity

a 1.00 193 M 14B 73.49 3.37
a-e 0.53 102 M 718.6 M 38.86 3.75
a-b-c-d-e  0.37 72M 496.6 M 27.55 3.55
b 1.00 9.1 M 614.8 M 34.74 3.46
b-e 0.56 5.1 M 342.0 M 19.49 3.90
b-c-d-e  0.46 42M 278.1M 16.07 3.64
c 1.00 44 M 290.1 M 16.92 3.62
c-e 0.62 28M 179.7TM 10.57 3.89
c-d-e 0.58 26 M 166.7 M 9.85 3.66
d 1.00 22M 140.7M 8.39 3.83
d-e 0.75 1.7M 105.0 M 6.31 3.90

e 1.00 I.1M 69.3 M 4.23 7.41

Table 3: Results of combination of various computation complexity levels for WikiText2 dataset.
Full results can be found in Table 0l

Model Normalization Scaler Accuracy IID

MNIST CIFARI10

None 99.2 81.3

IN 99.5 87.7

a GN N/A 99.5 81.0

LN 99.5 77.3

sBN 99.6 91.7

None 98.6 58.1

IN 97.4 66.4

e GN N/A 98.7 62.6

LN 98.6 53.7

sBN 98.7 77.0

None X 99.5 80.1

sBN 99.0 90.1

None 99.2 80.4

ae IN 99.5 86.6

GN v 99.5 76.0

LN 994 71.7

sBN 99.5 90.1

5 CONCLUSIONS AND FUTURE WORK

We propose Heterogeneous Federated Learning (HeteroFL), which shows the possibility of coordi-
natively training local models much smaller than a global model to produce a single global infer-
ence model. Our experiments show that FL. can be made more practical by introducing HeteroFL
and sBN and Mased Cross-Entropy Loss, as HeteroFL fully exploits local clients’ capabilities and
achieves better results with a fewer number of communication rounds. We demonstrate our results
with various model architectures, including CNN, PreResNet18, and Transformer, and show that
our method is robust to statistical heterogeneity and dynamically varying local capabilities. A future
direction is to distinct model classes as well as model heterogeneity. Also, the proposed methods
may be emulated to address heterogeneous few-shot learning, multi-modal learning, and multi-task
learning.
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