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ABSTRACT

Federated Learning (FL) is a method of training machine learning models on pri-
vate data distributed over a large number of possibly heterogeneous clients such
as mobile phones and IoT devices. In this work, we propose a new federated
learning framework named HeteroFL to address heterogeneous clients equipped
with very different computation and communication capabilities. Our solution can
enable the training of heterogeneous local models with varying computation com-
plexities and still produce a single global inference model. For the first time, our
method challenges the underlying assumption of existing work that local models
have to share the same architecture as the global model. We demonstrate several
strategies to enhance FL training and conduct extensive empirical evaluations, in-
cluding five computation complexity levels of three model architecture on three
datasets. We show that adaptively distributing subnetworks according to clients’
capabilities is both computation and communication efficient.

1 INTRODUCTION

Mobile devices and the Internet of Things (IoT) devices are becoming the primary computing re-
source for billions of users worldwide (Lim et al., 2020). These devices generate a significant
amount of data that can be used to improve numerous existing applications (Hard et al., 2018).
From the privacy and economic point of view, due to these devices’ growing computational capa-
bilities, it becomes increasingly attractive to store data and train models locally. Federated learning
(FL) (Konečnỳ et al., 2016; McMahan et al., 2017) is a distributed machine learning framework that
enables a number of clients to produce a global inference model without sharing local data by aggre-
gating locally trained model parameters. A widely accepted assumption is that local models have to
share the same architecture as the global model (Li et al., 2020b) to produce a single global inference
model. With this underlying assumption, we have to limit the global model complexity for the most
indigent client to train its data. In practice, the computation and communication capabilities of each
client may vary significantly and even dynamically. It is crucial to address heterogeneous clients
equipped with very different computation and communication capabilities.

In this work, we propose a new federated learning framework called HeteroFL to train heteroge-
neous local models with varying computation complexities and still produce a single global infer-
ence model. This model heterogeneity differs significantly from the classical distributed machine
learning framework where local data are trained with the same model architecture (Li et al., 2020b;
Ben-Nun & Hoefler, 2019). It is natural to adaptively distribute subnetworks according to clients’
capabilities. However, to stably aggregate heterogeneous local models to a single global model un-
der various heterogeneous settings is not apparent. Addressing these issues is thus a key component
of our work. Our main contributions of this work are three-fold.

• We identify the possibility of model heterogeneity and propose an easy-to-implement
framework HeteroFL that can train heterogeneous local models and aggregate them stably
and effectively into a single global inference model. Our approach outperforms state-of-
the-art results without introducing additional computation overhead.

• Our proposed solution addresses various heterogeneous settings where different propor-
tions of clients have distinct capabilities. Our results demonstrate that even when the model
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heterogeneity changes dynamically, the learning result from our framework is still stable
and effective.
• We introduce several strategies for improving FL training and demonstrate that our method

is robust against the non-IID statistical heterogeneity. Also, the proposed method can re-
duce the number of communication rounds needed to obtain state-of-the-art results. Exper-
imental studies have been performed to evaluate the proposed approach.

2 RELATED WORK

Federated Learning aims to train massively distributed models at a large scale (Bonawitz et al.,
2019). FedAvg proposed by McMahan et al. (2017) is currently the most widely adopted FL base-
line, which reduces communication cost by allowing clients to train multiple iterations locally. Ma-
jor challenges involved in FL include communication efficiency, system heterogeneity, statistical
heterogeneity, and privacy (Li et al., 2020b). To reduce communication costs in FL, some studies
propose to use data compression techniques such as quantization and sketching (Konečnỳ et al.,
2016; Alistarh et al., 2017; Ivkin et al., 2019), and some propose to adopt split learning (Thapa
et al., 2020). To tackle system heterogeneity, techniques of asynchronous communication and active
sampling of clients have been developed (Bonawitz et al., 2019; Nishio & Yonetani, 2019). Statis-
tical heterogeneity is the major battleground for current FL research. A research trend is to adapt
the global model to accommodate personalized local models for non-IID data (Liang et al., 2020),
e.g., by integrating FL with other frameworks such as assisted learning (Xian et al., 2020), meta-
learning (Jiang et al., 2019; Khodak et al., 2019), multi-task learning (Smith et al., 2017), transfer
learning (Wang et al., 2019; Mansour et al., 2020), knowledge distillation (Li & Wang, 2019) and
lottery ticket hypothesis (Li et al., 2020a). Nevertheless, these personalization methods often in-
troduce additional computation and communication overhead that may not be necessary. Another
major concern of FL is data privacy (Lyu et al., 2020), as model gradient updates can reveal sensitive
information (Melis et al., 2019) and even local training data (Zhu et al., 2019; Zhao et al., 2020).

To our best knowledge, what we present is the first work that allows local models to have different ar-
chitectures from the global model. Heterogeneous local models can allow local clients to adaptively
contribute to the training of global models. System heterogeneity and communication efficiency
can be well addressed by our approach, where local clients can optimize low computation complex-
ity models and therefore communicate a small number of model parameters. To address statistical
heterogeneity, we propose a “Masking Trick” and demonstrate that personalization is unnecessary
for non-IID data in classification problems. We also propose a modification of Batch Normalization
(BN) (Ioffe & Szegedy, 2015) as privacy concern of running estimates hinders the usage of advanced
deep learning models.

3 HETEROGENEOUS FEDERATED LEARNING

3.1 HETEROGENEOUS MODELS

Federated Learning aims to train a global inference model from locally distributed data
{X1, . . . , Xm} across m clients. The local models are parameterized by model parameters
{W1, . . . ,Wm}. The server will receive local model parameters and aggregate them into a global
model Wg through model averaging. This process iterates multiple communication rounds and can
be formulated as W t

g = 1
m

∑m
i=1W

t
i at iteration t. At the next iteration, W t

g is transmitted to a
subset of local clients and update their local models as W t+1

i =W t
g .

In this work, we focus on the relaxation of the assumption that local models need to share the same
architecture as the global model. Since our primary motivation is to reduce the computation and
communication complexity of local clients, we consider local models to have similar architecture
but can shrink their complexity within the same model class. To simplify global aggregation and
local update, it is tempting to propose local model parameters to be a subset of global model pa-
rameters W t+1

i ⊆ W t
g . However, this raises several new challenges like the optimal way to select

subsets of global model parameters, compatibility of the-state-of-art model architecture, and mini-
mum modification from the existing FL framework. We develop Heterogeneous Federated Learning
(HeteroFL) to address these issues in the context of deep learning models.

2



Under review as a conference paper at ICLR 2021

Global model parameters Wg

Local parameters Wl
1

Local parameters Wl
2

Local parameters Wl
3

Figure 1: Global model parameters Wg are distributed to m = 6 local clients with p = 3 computa-
tion complexity levels.

A variety of works show that we can modulate the size of deep neural networks by varying the width
and depth of networks (Zagoruyko & Komodakis, 2016; Tan & Le, 2019). Because we aim to reduce
the computation complexity of local models, we choose to vary the width of hidden channels. In this
way, we can significantly reduce the number of local model parameters, while the local and global
model architectures are also within the same model class, which stabilizes global model aggregation.

We demonstrate our method of selecting subsets of global model parameters Wl for a single hidden
layer parameterized by Wg ∈ Rdg×kg in Fig. 1, where dg and kg are the output and input channel
size of this layer. It is possible to have multiple computation complexity levels W p

l ⊂ W p−1
l · · · ⊂

W 1
l as illustrated in Fig. 1. Let r be the hidden channel shrinkage ratio such that dpl = rp−1dg and

kpl = rp−1kg . It follows that the size of local model parameters |W p
l | = r2(p−1)|Wg| and the model

shrinkage ratio R =
|Wp

l |
|Wg| = r2(p−1). With this construction, we can adaptively allocate subsets of

global model parameters according to the corresponding capabilities of local clients. Suppose that
number of clients in each computation complexity level is {m1, . . . ,mp}. Specifically, we perform
global aggregation in the following way.

W p
l =

1

m

m∑
i=1

W p
i , W p−1

l \W p
l =

1

m−mp

m−mp∑
i=1

W p−1
i \W p

i , . . . (1)

W 1
l \W 2

l =
1

m−m2:p

m−m2:p∑
i=1

W 1
i \W 2

i (2)

Wg =W 1
l =W p

l ∪ (W p−1
l \W p

l ) ∪ · · · ∪ (W 1
l \W 2

l ) (3)

For notational convenience, we have dropped the iteration index t. We denote the W p
i as a ma-

trix/tensor. The W t
g [: dm, : km] denotes the upper left submatrix with a size of dm × km. Also,

W p−1,t+1
g \W p,t+1

g denotes the set of elements included in W p−1,t+1
g but excluded in W p,t+1

g .

We exemplify the above equations using Fig. 1. The first part of Equation (1) shows that the smallest
part of model parameters (blue, p = 3) is aggregated from all the local clients that contain it. In the
second part of Equation (1), the set difference between part p − 1 (orange) and p (blue) of model
parameters is aggregated from local clients with computation complexity level smaller than p − 1.
In Equation (2), the red part of model parameters can be similarly aggregated from m−m2:p = m1

clients. In Equation (3), the global model parametersW t
g is constructed from the union of all disjoint

sets of the partition. In summary, each parameter will be averaged from those clients whose allo-
cated parameter matrix contains that parameter. Thus, a model of an intermediate complexity will
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have parameters fully averaged with all the other larger models but partially with smaller models
(according to the corresponding upper left submatrix).

Several works show that wide neural networks can drop a tremendous number of parameters per
layer and still produce acceptable results (Han et al., 2015; Frankle & Carbin, 2018). The intuition is
thus to perform global aggregation across all local models, at least on one subnetwork. To stabilize
global model aggregation, we also allocate a fixed subnetwork for every computation complexity
level. Our proposed inclusive subsets of global model parameters also guarantee that smaller local
models will aggregate with more local models.

Thus, small local models can benefit more from global aggregation by performing less global aggre-
gation for part of larger local model parameters. We empirically found that this approach produces
better results than uniformly sampled subnetworks for each client or computation complexity level.

3.2 STATIC BATCH NORMALIZATION

After global model parameters are distributed to active local clients, we can optimize local model pa-
rameters with private data. It is well-known that the latest deep learning models usually adopt Batch
Normalization (BN) to facilitate and stabilize optimization. However, classical FedAvg and most
recent works avoid BN. A major concern of BN is that it requires running estimates of representa-
tions at every hidden layer. Uploading these statistics to the server will cause higher communication
costs and privacy issues Andreux et al. (2020) proposes to track running statistics locally..

We highlight an adaptation of BN named as static Batch Normaliztion (sBN) for optimizing privacy
constrained heterogeneous models. During the training phase, sBN does not track running estimates
and simply normalize batch data. We do not track the local running statistics as the size of local
models may also vary dynamically. This method is suitable for HeteroFL as every communication
round is independent. After the training process finishes, the server sequentially query local clients
and cumulatively update global BN statistics. Thus, this method greatly reduces the risk of leaking
private data because the calculation of BN statistics and the optimization of parameters are isolated.
We also empirically found this trick significantly outperforms other forms of normalization methods
including the InstanceNorm (Ulyanov et al., 2016), GroupNorm (Wu & He, 2018) , and LayerNorm
(Ba et al., 2016) as shown in Table 4 and Table 5.

3.3 SCALER

There still exists another cornerstone of our HeteroFL framework. Because we need to optimize
local models for multiple epochs, local model parameters at different computation complexity lev-
els will digress to various scales. This known phenomenon was initially discussed by the dropout
(Srivastava et al., 2014). To directly use the full model during the inference phase, inverted dropout
with dropout rate q scales representations with 1

1−q during the training phase. In practice, dropout is
usually attached after the activation layer as the selection of subnetworks is performed with masking.
Our method directly selects subnetworks from the subsets of global model parameters. Therefore,
we append a Scaler module right after the parametric layer and before the sBN and activation layers.
The Scaler module scales representations by 1

rp−1 during the training phase. After the global aggre-
gation, the global model can be directly used for inference without scaling. To further illustrate this
point, we include a comprehensive ablation study in Tables 4 and 5. A typical linear hidden layer
used in our HeteroFL framework can be formulated as

y = φ(sBN(Scaler(XmW
p
m + bpm))) (4)

where y is the output, φ(·) denotes a non-linear activation layer, e.g ReLU(), and W p
m, b

p
m are the

weight and bias for local model m at computation complexity level p. With all the practical meth-
ods mentioned above, we propose the complete pseudo-code for our HeteroFL framework in Algo-
rithm 1. The local capabilities information Lm is an abstraction of the computation and communica-
tion capabilities of a local client m. Once this information is communicated to the server, the server
can know the model complexity that should be allocated to the client. We can also optionally update
learning rates to facilitate optimization and local capabilities information if changing dynamically.
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Algorithm 1: HeteroFL: Heterogeneous Federated Learning
Input: Data Xi distributed on M local clients, the fraction C of active clients per

communication round, the number of local epochs E, the local minibatch size B, the
learning rate η, the global model parameterized by Wg , the channel shrinkage ratio r,
and the number of computation complexity levels P .

System executes:
Initialize W 0

g and local capabilities information L1:K

for each communication round t = 0, 1, 2, . . . do
Mt ← max(C ·M, 1)
St ← random set of Mt clients
for each client m ∈ St in parallel do

Determine computation complexity level p based on Lm

rm ← r(p−1), dm ← rmdg , km ← rmkg
W t

m ←W t
g [: dm, : km]

W t+1
m ← ClientUpdate(m, rm,W t

m)
end
for each computation complexity level p do

W p−1,t+1
g \W p,t+1

g ← 1
Mt−Mp:P,t

∑Mt−Mp:P,t

i=1 W p−1,t+1
i \W p,t+1

i

end
W t+1

g ←
⋃P

p=1W
p−1,t+1
g \W p,t+1

g

Update L1:K , η (Optional)
end
Query representation statistics from local clients (Optional)

ClientUpdate (m, rm,Wm):
Bm ← split local data Xm into batches of size B
for each local epoch e from 1 to E do

for batch bm ∈ Bm do
Wm ←Wm − η∇`(Wm, rm; bm)

end
end
Return Wm to server

4 EXPERIMENTAL RESULTS

We trained over 600 individual models for exploring and demonstrating the effectiveness of our
method. We experimented with MNIST and CIFAR10 image classification tasks and the WikiText2
language modeling task (LeCun et al., 1998; Krizhevsky et al., 2009; Merity et al., 2016; Devlin
et al., 2018).

Our experiments are performed with three different models including a CNN for MNIST, a preacti-
vated ResNet (PreResNet18) (He et al., 2016) for CIFAR10 and a Transformer (Vaswani et al., 2017)
for WikiText2. We replace BN in CNN and PreResNet18 with our proposed sBN, and attach the
Scaler module after each convolution layer. To study federated optimization, we adopt data partition
the same as in (McMahan et al., 2017; Liang et al., 2020). We have 100 clients, and the fraction C
of active clients per communication round is 0.1 throughout our experiments. For IID data partition,
we uniformly assign the same number of data examples for each client. For balanced non-IID data
partition, we assume that the label distribution is skewed, where clients will only have examples at
most from two classes and the number of examples per class is balanced. We note that there exist
other kinds of non-IID data partition, e.g., the unbalanced non-IID data partition where clients may
hold unbalanced labeled dataset and the feature distribution skew where clients may hold different
features. We conduct a masked language modeling task with a 15% masking rate and uniformly
assign balanced data examples for each client. It needs to point out that each client will roughly
have 3000 different words in their local dataset, while the total vocabulary size is 33278. The details
regarding hyperparameters and model architecture can be found in Table 6 of the Appendix.
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To study the effectiveness of our proposed HeteroFL framework, we construct five different com-
putation complexity levels {a, b, c, d, e} with the hidden channel shrinkage ratio r = 0.5. We have
tried various shrinkage ratios, and we found that it is most illustrative to use the discrete complexity
levels 0.5, 0.25, 0.125, and 0.0625 (relative to the most complex model). For example, model ‘a’ has
all the model parameters, while models ‘b’ to ‘e’ have the effective shrinkage ratios 0.5, 0.25, 0.125,
and 0.0625. We note that the complexity of ‘e’ is close to a logistic regression model. Our experi-
ments indicated that the ratio can be arbitrary between (0, 1] and dynamically change. In practice,
using a dictionary of discrete complexity levels are convenient for coordination purposes.

Each local client is assigned an initial computation complexity level. We annotate Fix for exper-
iments with a fixed assignment of computation complexity levels, and Dynamic for local clients
uniformly sampling computation complexity levels at each communication round. We perform dis-
tinct experiments for Fix and Dynamic assignments. All the figures are based on the Fix scenario,
where we considered models of different sizes, and each client is allocated with a fixed size. All the
tables are based on the Dynamic scenario, where we randomly vary the allocation of clients’ model
complexity, and the ratio of the number of weak learners is fixed to 50%.

The x-axis of figures represents the average model parameters. When 10% clients use
the model ’a’ and 90% use the model ’e’, the average number of model parameters is
0.1× (size of model ‘a’) + 0.9× (size of model ‘e’). We interpolate this partition from 10% to
100% with step size 10% to demonstrate the effect of proportionality of clients with various compu-
tation complexity levels.

To demonstrate the effect of dynamically varying computation and communication capabilities, we
uniformly sample from various combinations of computation complexity levels. For example, model
’a-b-c-d-e’ means that we uniformly sample from all possible available levels for every active client
at each communication round. We show the number of model parameters, FLOPs, and Space (MB)
to indicate the computation and communication requirements of our methods. For example, since
we uniformly sample levels, model a − e calculates computational metrics by averaging those of
model a and e. The ratio is calculated between the number of parameters of a given model with
respect to its 100% global model.

We compare our results to other baseline methods like Standalone, FedAvg, and LG-FedAvg gath-
ered from (Liang et al., 2020). Standalone means there is no communication between clients and
the server. In our experimental studies, we considered more complex models compared with the
existing work. In particular, the baseline models in LG-FedAvg used MLP (on MNIST) and CNN
(on CIFAR10). In terms of the number of parameters, our models ‘a-e’ (on MNIST) and ‘b-e’ (on
CIFAR10) are comparable with those baselines. In terms of the FLOPs, our model ‘d-e’ (on MNIST
and CIFAR10) can be compared with those baselines. The single-letter models ‘a’, ‘b’, ‘c’, ‘d’, ‘e’
are our implementations of the FedAvg equipped with the sBN and Masking CrossEntropy. The take-
away of Table 2 is that a weak learner that can only train a small model ‘e’ (on CIFAR10)(77.09%)
can boost its performance to ‘c-e’ (86.88%), ‘b-e’ (89.10%), or ‘a-e’ (90.29%), which are close to
the scenario where all the learners are strong, namely c(87.55%), b(89.82%), or a(91.99%). In par-
ticular, in ‘c-e’, ‘b-e’, or ‘a-e’, half of the clients are trained with larger models ‘c’, ‘b’, or ‘a’, while
the other half are trained with the model ‘e’. Only the aggregated global models ‘c’, ‘b’, or ‘a’ are
used during the testing stage. Although weak clients train smaller models ‘e’, they will test with the
largest models ‘c’, ‘b’, or ‘a’ to gain better performance.

Full results including other possible combinations can be found in appendix in Table 7-9. Finally, our
method is robust to dynamically varying model complexities. It is worth noting that our method does
not incur any additional computation overhead and can be readily adapted to existing applications.

We also perform experiments for balanced non-IID data partition and provide a simple trick to
achieve comparable results. As mentioned earlier, most state-of-the-art results of balanced non-IID
datasets suggest the personalization of local models to achieve better local results (Smith et al., 2017;
Liang et al., 2020; Li et al., 2020a). Here, the Local results assume that the training data distribution
and test data distribution for each local client are the same, and assign zero probability for those
classes that are not presented to a client during training. The Global results were calculated from the
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Figure 2: Interpolation experimental results for CIFAR10 (IID) dataset between global model com-
plexity ((a) a, (b) b, (c) c, (d) d) and various smaller model complexities.

global model applied to the test data directly. The Local results were cumulatively averaged from
the performance of each data example on each local client. Zhao et al. (2018) showed that the failure
of non-IID FL is related to the weight divergence among local model parameters trained locally for
many iterations. The weight divergence mostly occurs in the last classification layer of networks.

Thus, instead of a full Cross-Entropy Loss for all classes, we are motivated to train each local model
only with their corresponding classes. In this way, each local model will train a sub-task given lo-
cally available label information. Specifically, we mask out the output of the model before passing
it Cross-Entropy Loss, which we named as Masked Cross-Entropy Loss. We experimented with
several different ways of masking, we find replacing the last layer outputs that are not associated
with local labels with zero achieves both stable and comparable local and global results. When
aggregating local model parameters, we do not aggregate the untrained parameters in the last classi-
fication layers. Either the server can infer this information implicitly, or the local clients can report
which classes they have to the server explicitly. We provide a comprehensive ablation study in Ta-
bles 5. The results show that Masked Cross-Entropy Loss significantly improve local performance
and moderately global performance of balanced non-IID data partition task. Since our primary focus
is to address model heterogeneity, we leave the analysis of this trick to future work. We show the
results of Fix experiments in appendix in Fig. 5-8. Dynamic non-IID results are also included in
Table 1-3. The results show that our method performs comparably to those with personalized local
models. Our method is readily adaptable, free of computation overhead, and only rely on the single
global model for testing local and global results. It allows local clients to switch to another subtask
simply by changing its mask without querying the server for others’ personalized models.

We show the learning curves of 50% Fix and Dynamic assignments in appendix in Fig. 9-11. The
learning curves show that the optimization of HeteroFL for the IID dataset is stable and efficient.
Our method achieves better results with a fewer number of communication rounds, e.g., 800 for
Heterofl and 1800 for LG-FedAvg (Liang et al., 2020). We empirically discover gradient clipping

7



Under review as a conference paper at ICLR 2021

Model Ratio Parameters FLOPs Space (MB)
Accuracy

IID Non-IID

Local Global

a 1.00 1.6 M 80.5 M 5.94 99.53 99.85 98.92
a-e 0.50 782 K 40.5 M 2.98 99.46 99.89 98.96

a-b-c-d-e 0.27 416 K 21.6 M 1.59 99.46 99.85 98.29

b 1.00 391 K 20.5 M 1.49 99.53 99.87 99.10
b-e 0.51 199 K 10.4 M 0.76 99.51 99.67 98.51

b-c-d-e 0.33 131 K 6.9 M 0.50 99.52 99.88 98.99

c 1.00 99 K 5.3 M 0.38 99.35 99.56 96.34
c-e 0.53 53 K 2.9 M 0.20 99.39 99.79 97.27

c-d-e 0.44 44 K 2.4 M 0.17 99.31 99.76 97.85

d 1.00 25 K 1.4 M 0.10 99.17 99.86 97.86
d-e 0.63 16 K 909 K 0.06 99.19 99.63 97.70

e 1.00 7 K 400 K 0.03 98.66 99.07 92.84

Standalone (Liang et al., 2020) 1.00 633 K 1.3 M 2.42 86.24 98.72 30.41
FedAvg (Liang et al., 2020) 1.00 633 K 1.3 M 2.42 97.93 98.20 98.20

LG-FedAvg (Liang et al., 2020) 1.00 633 K 1.3 M 2.42 97.93 98.54 98.17

Table 1: Results of combination of various computation complexity levels for MNIST dataset. Full
results can be found in Table 7.

Model Ratio Parameters FLOPs Space (MB)
Accuracy

IID Non-IID

Local Global

a 1.00 9.6 M 330.2 M 36.71 91.19 92.38 56.88
a-e 0.50 4.8 M 165.9 M 18.43 90.29 92.10 59.11

a-b-c-d-e 0.27 2.6 M 88.4 M 9.78 88.83 92.49 61.64

b 1.00 2.4 M 83.3 M 9.19 89.82 93.83 55.45
b-e 0.51 1.2 M 42.4 M 4.67 89.10 90.68 59.81

b-c-d-e 0.33 801 K 27.9 M 3.05 87.92 91.90 59.10

c 1.00 604 K 21.2 M 2.30 87.55 91.09 55.12
c-e 0.53 321 K 11.3 M 1.22 86.88 91.83 63.47

c-d-e 0.44 265 K 9.4 M 1.01 85.79 91.49 55.42

d 1.00 152 K 5.5 M 0.58 84.21 90.77 61.13
d-e 0.63 95 K 3.5 M 0.36 82.93 90.89 56.16

e 1.00 38 K 1.5 M 0.15 77.09 89.62 54.16

Standalone (Liang et al., 2020) 1.00 1.8 M 3.6 M 6.88 16.90 87.93 10.03
FedAvg (Liang et al., 2020) 1.00 1.8 M 3.6 M 6.88 67.74 58.99 58.99

LG-FedAvg (Liang et al., 2020) 1.00 1.8 M 3.6 M 6.88 69.76 91.77 60.79

Table 2: Results of combination of various computation complexity levels for CIFAR10 dataset.
Full results can be found in Table 8.

stabilizes the optimization of HeteroFL as it prevents small models from gradient explosion. We
can therefore adopt a universal learning rate for heterogeneous local models. It is also perceivable
that aggregation of model parameters trained with non-IID data makes the optimization less stable.
Results of Dynamic show that global aggregation of dynamically varying computation complexities
is stable.
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Model Ratio Parameters FLOPs Space (MB) Perplexity

a 1.00 19.3 M 1.4 B 73.49 3.37
a-e 0.53 10.2 M 718.6 M 38.86 3.75

a-b-c-d-e 0.37 7.2 M 496.6 M 27.55 3.55

b 1.00 9.1 M 614.8 M 34.74 3.46
b-e 0.56 5.1 M 342.0 M 19.49 3.90

b-c-d-e 0.46 4.2 M 278.7 M 16.07 3.64

c 1.00 4.4 M 290.1 M 16.92 3.62
c-e 0.62 2.8 M 179.7 M 10.57 3.89

c-d-e 0.58 2.6 M 166.7 M 9.85 3.66

d 1.00 2.2 M 140.7 M 8.39 3.83
d-e 0.75 1.7 M 105.0 M 6.31 3.90

e 1.00 1.1 M 69.3 M 4.23 7.41

Table 3: Results of combination of various computation complexity levels for WikiText2 dataset.
Full results can be found in Table 9.

Model Normalization Scaler Accuracy IID

MNIST CIFAR10

a

None

N/A

99.2 81.3
IN 99.5 87.7
GN 99.5 81.0
LN 99.5 77.3
sBN 99.6 91.7

e

None

N/A

98.6 58.1
IN 97.4 66.4
GN 98.7 62.6
LN 98.6 53.7
sBN 98.7 77.0

a-e

None
7

99.5 80.1
sBN 99.0 90.1

None

3

99.2 80.4
IN 99.5 86.6
GN 99.5 76.0
LN 99.4 71.7
sBN 99.5 90.1

Table 4: Ablation Study of IID scenarios. The single-letter models ’a’ and ’e’ are FedAvg equiped
with various normalization methods. The sBN significantly outperforms other existing normaliza-
tion methods, including the InstanceNorm (IN), GroupNorm (GN) (the number of group G=4), and
LayerNorm (LN). Scaler is used for HeteroFL to train models of different sizes and moderately
improve the results.

5 CONCLUSIONS AND FUTURE WORK

We propose Heterogeneous Federated Learning (HeteroFL), which shows the possibility of coordi-
natively training local models much smaller than a global model to produce a single global infer-
ence model. Our experiments show that FL can be made more practical by introducing HeteroFL
and sBN and Mased Cross-Entropy Loss, as HeteroFL fully exploits local clients’ capabilities and
achieves better results with a fewer number of communication rounds. We demonstrate our results
with various model architectures, including CNN, PreResNet18, and Transformer, and show that
our method is robust to statistical heterogeneity and dynamically varying local capabilities. A future
direction is to distinct model classes as well as model heterogeneity. Also, the proposed methods
may be emulated to address heterogeneous few-shot learning, multi-modal learning, and multi-task
learning.
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