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Abstract

Light-weight convolutional neural networks (CNNs) are specially designed for1

applications on mobile devices with faster inference speed yet modest performance.2

The convolutional operation can only capture local information in a window re-3

gion, which prevents performance from being further improved. Introducing self-4

attention into convolution can capture global information well, but it will largely5

encumber the actual speed. In this paper, we propose a hardware-friendly attention6

mechanism (dubbed DFC attention) and then present a new GhostNetV2 architec-7

ture for mobile applications. The proposed DFC attention is constructed based8

on fully-connected layers, which can not only execute fast on common hardware9

but also capture the dependence between long-range pixels. We further revisit the10

expressiveness bottleneck in previous GhostNet and propose to enhance expanded11

features produced by cheap operations with DFC attention, so that a GhostNetV212

block can aggregate local and long-range information simultaneously. Extensive13

experiments demonstrate the superiority of GhostNetV2 over existing architectures.14

For example, it achieves 75.3% top-1 accuracy on ImageNet with 167M FLOPs,15

significantly suppressing GhostNetV1 (74.5%) with a similar computational cost.16

1 Introduction17

In computer vision, the architecture of deep neural network plays a vital role for various tasks, such18

as image classification [16, 8], object detection [25, 24], and video analysis [15]. In the past decade,19

the network architecture has been evolving rapidly, and a series of milestones including AlexNet [16],20

GoogleNet [27], ResNet [8] and EfficientNet [30] have been developed. These networks have pushed21

the performances of a wide range of visual tasks to a high level.22

To deploy neural networks on edge devices like smartphone and wearable devices, we need to consider23

not only the performance of a model, but also its efficiency especially the actual inference speed.24

Matrix multiplications occupy the main part of computational cost and parameters. Developing light-25

weight models is a promising approach to reduce the inference latency. MobileNet [11] factorizes26

a standard convolution into depthwise convolution and point-wise convolution, which reduces the27

computational cost drastically. MobileNetV2 [26] and MobileNetV3 [10] further introduce the28

inverted residual block and improve the network architecture. ShuffleNet [35] utilizes the shuffle29

operation to encourage the information exchange between channel groups. GhostNet [7] proposes30

the cheap operation to reduce feature redundancy in channels. These light-weight neural networks31

have been applied in many mobile applications.32

Nevertheless, the convolution-based light-weight models are weak in modeling long-range depen-33

dency, which limits further performance improvement. Recently, Transformer-like models are34

introduced to computer vision, in which the self-attention module can capture the global information.35

The typical self-attention module requires quadratic complexity w.r.t. the size of feature’s shape and36
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Figure 1: Top-1 accuracy vs.FLOPs on ImageNet
dataset.
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Figure 2: Top-1 accuracy vs.latency on ImageNet
dataset.

is not computationally friendly. Moreover, plenty of feature splitting and reshaping operations are37

required to calculate the attention map. Though their theoretical complexity is negligible, these oper-38

ations incur more memory usage and longer latency in practice. Thus, utilizing vanilla self-attention39

in light-weight models is not friendly for mobile deployment. For example, MobileViT with massive40

self-attention operations is more than 7× slower than MobileNetV2 on ARM devices [21].41

In this paper, we propose a new attention mechanism (dubbed DFC attention) to capture the long-42

range spatial information, while keeping the implementation efficiency of light-weight convolutional43

neural networks. Only fully connected (FC) layers participate in generating the attention maps for44

simplicity. Specifically, a FC layer is decomposed into horizontal FC and vertical FC to aggregate45

pixels in a 2D feature map of CNN. The two FC layers involve pixels in a long range along their46

respective directions, and stacking them will produce a global receptive field. Moreover, starting47

from ate-of-the-art GhostNet, we revisit its representation bottleneck and enhance the intermediate48

features with the DFC attention. Then we construct a new light-weight vision backbone, GhostNetV2.49

Compared with the existing architectures, it can achieve a better tread-off between accuracy and50

inference speed (as shown in Figures 1 and 2).51

2 Related Work52

It is a challenge to design a light-weight neural architecture with fast inference speed and high53

performance simultaneously. SqueezeNet [13] proposes three strategies to design a compact model,54

i.e., replacing 3× 3 filters with 1× 1 filers, decreasing the number of input channels to 3x3 filters,55

and down-sampling late in the network to keep large feature maps. These principles are constructive,56

especially the usage of 1× 1 convolution. MobileNetV1 [11] replaces almost all the 3× 3 filers with57

1× 1 kernel and depth-wise separable convolutions, which dramatically reduces the computational58

cost. MobileNetV2 [26] further introduces the residual connection to the light-weight model, and59

constructs an inverted residual structure, where the intermediate layer of a block has more channels60

than its input and output. To keep representation ability, a part of non-linear functions are removed.61

MobileNeXt [36] rethinks the necessary of inverted bottleneck, and claims that the classic bottleneck62

structure can also achieve high performance. Considering the 1 × 1 convolution account for a63

substantial part of computational cost, ShuffleNet [35] replace it with group convolution. The channel64

shuffle operation to help the information flowing across different groups. By investigating the factors65

that affect the practical running speed, ShuffleNet V2 [20] proposes a hardware-friendly new block.66

By leveraging the feature’s redundancy, GhostNet [7] replaces half channels in 1× 1 convolution67

with cheap operations. Until now, GhostNet has been the SOTA light-weight model with a good68

trade-off between accuracy and speed.69

Besides manual design, a series of methods try to search for a light-weight architecture. For example,70

FBNet [34] designs a hardware-aware searching strategy, which can directly find a good trade-off71

between accuracy and speed on a specific hardware. Based on the inverted residual bottleneck,72

MnasNet [29], MobileNetV3 [10] search the architecture parameters,such as model width, model73

depth, convolutional filter’s size, etc. Though NAS based methods achieve high performance, their74

success is based on well-designed search spaces and architectural units. Automatic searching and75

manual design can be combined to find a better architecture.76
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3 Preliminary77

3.1 A Brief Review of GhostNet78

GhostNet [7] is SOTA light-weight model designed for efficient inference on mobile devices. Its79

main component is the Ghost module, which can replace the original convolution by generating more80

feature maps from cheap operations. Given input feature X ∈ RH×W×C with height H , width W81

and channel’s number C, a typical Ghost module can replace a standard convolution by two steps.82

Firstly, a 1× 1 convolution is used to generate the intrinsic feature, i.e.,83

Y ′ = X ∗ F1×1, (1)

where ∗ denotes the convolution operation. F1×1 is the point-wise convolution, and Y ′ ∈84

RH×W×C′
out is the intrinsic features, whose sizes are usually smaller than the original output85

features, i.e., C ′out < Cout. Then cheap operations (e.g., depth-wise convolution) are used to generate86

more features based on the intrinsic features. The two parts of features are concatenated along the87

channel dimension, i.e.,88

Y = Concat([Y ′, Y ′ ∗ Fdp]), (2)

where Fdp is the depth-wise convolutional filter, and Y ∈ RH×W×Cout is the output feature. Though89

Ghost module can reduce the computational cost significantly, the representation ability is inevitably90

weakened. The relationship between spatial pixels is vital to make accurate recognition. While in91

GhostNet, the spatial information is only captured by the cheap operations (usually implemented by92

3× 3 depth-wise convolution) for half of the features. The remaining features are just produced by93

1× 1 point-wise convolution, without any interaction with other pixels. The weak ability to capture94

the spatial information may prevent performance from being further improved.95

A block of GhostNet is constructed by stacking two Ghost modules (shown in Figure 4(a)). Similar to96

MobileNetV2 [26], it is also an inverted bottleneck, i.e., the first Ghost module acts as an expansion97

layer to increase the number of output channels, and the second Ghost module reduces the channels’98

number to match the shortcut path.99

3.2 Revisit Attention for Mobile Architecture100

Table 1: The comparison of theoretical FLOPs and practical
latency.

Model Top-1 Acc. FLOPs Latency
(%) (M) (ms)

GhostNet 73.9 141 31.1
+ Self Attention [21] 74.4 172 72.3

+ DFC Attention (Ours) 75.3 167 37.5

Originating from the NLP field [31],101

attention-based models are introduced102

to computer vision recently. For103

example, ViT [6] uses the standard104

transformer model stacked by self-105

attention modules and MLP modules.106

Wang et al.insert the self-attention op-107

eration into convolutional neural net-108

works to capture the non-local infor-109

mation [32]. A typical attention mod-110

ule usually has a quadratic complexity w.r.t. the feature’s size, which is unscalable to high-resolution111

images in downstream tasks such as object detection and semantic segmentation.112

A mainstream strategy to reduce attention’s complexity is splitting images into multiple windows113

and implementing the attention operation inside windows or crossing windows. For example, Swin114

Transformer [19] splits the original feature into multiple non-overlapped windows, and the self-115

attention is calculated within the local windows. MobileViT [21] also unfolds the feature into116

non-overlapping patches and calculates the attention across these patches. For the 2D feature map in117

CNN, implementing the feature splitting and attention calculation involves plenty of tensor reshaping118

and transposing operations. whose theoretical complexity is negligible. In a large model (e.g.,119

Swin-B [19] with several billion FLOPs) with high complexity, these operations only occupy a few120

portions of the total inference time. While for the light-weight models, their deploying latency cannot121

be overlooked.122

For an intuitive understanding, we equip the GhostNet model with the self-attention used in Mo-123

bileViT [21] and measure the latency on Huawei P30 (Kirin 980 CPU) with TFLite tool. We use124

the standard input’s resolution of ImageNet, i.e., 224 × 224, and show the results in Table 1. The125

attention mechanism only adds about 20% theoretical FLOPs, but requires 2× inference time on a126
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Figure 3: The information flow of DFC attention. The horizontal and vertical FC layers capture the
long-range information along the two directions, respectively.

mobile device. The large difference between theoretical and practical complexity shows that it is127

necessary to design a hard-ware friendly attention mechanism for fast implementation on mobile128

devices.129

4 Approach130

4.1 DFC Attention for Mobile Architecture131

In this section, we will discuss how to design an attention module for mobile CNNs. A desired132

attention is expected to have the following properties:133

• Long-range. It is vital to capture the long-range spatial information for attention to enhance134

the representation ability, as a light-weight CNN (e.g., MobileNet [11], GhostNet [7]) usually135

adopts small convolution filters (e.g., 1× 1 convolution) to save computational cost.136

• Deployment-efficient. The attention module should be extremely efficient to avoid slowing137

the inference down. Expensive transformations with high FLOPs or hardware-unfriendly138

operations are unexpected.139

• Concept-simple. To keep the model’s generalization on diverse tasks, the attention module140

should be conceptually-simple with little dainty design.141

Though self-attention operations [6, 22, 19] can model the long-range dependence well, they are not142

deployment-efficient as discussed in the above section. Compared with them, fully-connected (FC)143

layers with fixed weights are simpler and easier to implement, which can also be used to generate144

attention maps with global receptive fields. The detailed computational process is illustrated as145

follows.146

Given a feature Z ∈ RH×W×C , it can be seen as HW tokens zi ∈ RC , i.e., Z =147

{z11, z12, · · · , zHW }. A direct implementation of FC layer to generate the attention map is formu-148

lated as:149

ahw =
∑
h′,w′

Fhw,h′w′ � zh′w′ , (3)

where � is element-wise multiplication, F is the learnable weights in the FC layer, and A =150

{a11,a12, · · · ,aHW } is the generated attention map. Eq 3 can capture the global information by151

aggregating all the tokens together with learnable weights, which is much simpler than the typical152

self-attention [31] as well. However, its computational process still requires quadratic complexity153

w.r.t. feature’s size (i.e.,O(H2W 2))1, which is unacceptable in practical scenarios especially when154

the input images are of high resolutions. For example, the 4-th layer of GhostNet has a feature map155

with 3136 (56 × 56) tokens, which incurs prohibitively high complexity to calculate the attention156

map. Actually, feature maps in a CNN are usually of low-rank [28, 14], it is unnecessary to connect157

all the input and output tokens in different spatial locations densely. The feature’s 2D shape naturally158

provides a perspective to reduce the computation of FC layers, i.e., decomposing Eq. 3 into two FC159

layers and aggregating features along the horizontal and vertical directions, respectively. It can be160

1The computational complexity w.r.t. channel’s number C is omitted for brevity.
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Figure 4: The diagrams of blocks in GhostNetV1 and GhostNetV2. Ghost block is an inverted
residual bottleneck containing two Ghost modules, where DFC attention enhances the expanded
features to improve expressiveness ability.

formulated as:161

a′hw =

H∑
h′=1

FH
h,h′w � zh′w, h = 1, 2, · · · , H,w = 1, 2, · · · ,W, (4)

ahw =

W∑
w′=1

FW
w,hw′ � a′hw′ , h = 1, 2, · · · , H,w = 1, 2, · · · ,W, (5)

where FH and FW are transformation weights. Taking the original feature Z as input, Eq. 4 and Eq. 5162

are applied to the features sequentially, capturing the long-range dependence along the two directions,163

respectively. We dub this operation as decoupled fully connected (DFC) attention, whose information164

flow is shown in Figure 3. Owing to the decoupling of horizontal and vertical transformations, the165

computational complexity of the attention module can be reduced to O(H2W +HW 2). In the full166

attention (Eq. 3), all the patches in a square region participate in the calculation of the focused patch167

directly. In DFC attention, a patch is directly aggregated by patches in its vertical/horizontal lines,168

while other patches participate in the generation of those patches in the vertical/horizontal lines,169

having an indirect relationship with the focused token. Thus the calculation of a patch also involves170

all the patches in the square region. We visualize the attention in Figure 6 and show calculation171

process with diagrams (Figure A1) in the supplemental material.172

Eqs. 4 and 5 denote the general formulation of DFC attention, which aggregates pixels along173

horizontal and vertical directions, respectively. By sharing a part of transformation weights, it can174

be conveniently implemented with convolutions, leaving out the time-consuming tensor reshaping175

and transposing operations that affect the practical inference speed. To process input images with176

varying resolutions, the filter’s size can be decoupled with feature map’s size, i.e., two depth-wise177

convolutions with kernel sizes 1×KH and KW × 1 are sequentially applied on the input feature.178

When implemented with convolution, the theoretical complexity of DFC attention is denoted as179

O(KHHW +KWHW ). This strategy is well supported by tools such as TFLite and ONNX for180

fast inference on mobile devices.181

4.2 GhosetNet V2182

In this section, we use the DFC attention to improve the representation ability of lightweight models183

and then present the new vision backbone, GhostNetV2.184

Enhancing Ghost module. As discussed in 3.1, only half of features in Ghost module (Eqs. 1 and 2)185

interact with other pixels, which damages its ability to capture spatial information. Hence we use186

DFC attention to enhance Ghost module’s output feature Y for capturing long-range dependence187

among different spatial pixels.188
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The input feature X ∈ RH×W×C is sent to two branches, i.e., one is the Ghost module to produce189

output feature Y (Eqs. 1 and 2), and the other is the DFC module to generate attention map A (Eqs. 4190

and 5). Recalling that in a typical self-attention [31], linear transformation layers are used to transform191

input feature into query and key for calculating attention maps. Similarly, we also implement a 1× 1192

convolution to convert module’s input X into DFC’s input Z. The final output O ∈ RH×W×C of the193

module is the product of two branch’s output, i.e.,194

O = Sigmoid(A)� V(X), (6)

where � is the element-wise multiplication and Sigmoid is the scaling function to normalize the195

attention map A into range (0, 1).196

The information aggregation process is shown in Figure 5. With the same input, the Ghost module197

and DFC attention are two parallel branches extracting information from different perspectives. The198

output is their element-wise product, which contains information from both features of the Ghost199

module and attentions of the DFC attention module. The calculation of each attention value involves200

patches in a large range so that the output feature can contain information from these patches.201

Ghost branch

Attention branch

Output

Multiply

Focused patch

Participated patches in Ghost branch

Participated patches in Attention branch

Input

Figure 5: The information aggregation process
of different patches.

Feature downsampling. As Ghost mod-202

ule (Eqs. 1 and 2) is an extremely efficient oper-203

ation, directly paralleling the DFC attention with204

it will introduces extra computational cost. Hence205

we reduce the feature’s size by down-sampling206

it both horizontally and vertically, so that all the207

operations in DFC attention can be conducted on208

the smaller features. By default, the width and209

height are both scaled to half of their original210

lengths, which reduces 75% FLOPs of DFC at-211

tention. Then produced feature map is then up-212

sampled to the original size to match the feature’s213

size in Ghost branch. We naively use the average214

pooling and bilinear interpolation for downsam-215

pling and upsampling, respectively, whose impacts216

are empirically investigated in Table A8 in the sup-217

plemental material. Noticing that directly implementing sigmoid (or hard sigmoid) function will218

incur longer latency, we also deploy the sigmoid function on the downsampled features to accelerate219

practical inference. Though the value of attention maps may not be limited in range (0,1) strictly, we220

empirically find that its impact on the final performance is negligible (Table A7 in the supplemental221

material).222

GhostV2 bottleneck. GhostNet adopts an inverted residual bottleneck containing two Ghost modules,223

where the first module produces expanded features with more channels, while the second one224

reduces channel’s number to get output features. This inverted bottleneck naturally decouples the225

“expressiveness” and “capacity” of a model [26]. The former is measured by the expanded features226

while the latter is reflected by the input/output domains of a block. The original Ghost module227

generates partial features via cheap operations, which damages both the expressiveness and the228

capacity. By investigating the performance difference of equipping DFC attention on the expanded229

features or output features (Table 7 in Section 5.3), we find that enhancing ‘expressiveness’ is more230

effective. Hence we only multiply the expanded features with DFC attention.231

Figure 4(b) shows the diagram of GhostV2 bottleneck. A DFC attention branch is parallel with the232

first Ghost module to enhance the expanded features. Then the enhanced features are sent to the233

second Ghost module for producing output features. It captures the long-range dependence between234

pixels in different spatial locations and enhances the model’s expressiveness.235

5 Experiments236

In this section, we empirically investigate the proposed GhostNetV2 model. We conduct experiments237

on the image classification task with the large-scale ImageNet dataset [5]. To validate its general-238

ization, we use GhostNetV2 as backbone and embed it into a light-weight object detection scheme239

YOLOV3 [24]. Models with different backbone are compared on MS COCO dataset [18]. At last, we240

conduct extensive ablation experiments for better understanding GhostNetV2. The practical latency241

is measured on Huawei P30 (Kirin 980 CPU) with TFLite tool.242
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Table 2: Comparison of SOTA light-weight models over classification accuracy, the number of
parameters and FLOPs on ImageNet dataset.

Model Params (M) FLOPs (M) Top-1 Acc. (%) Top-5 Acc. (%)

MobileNetV1 0.5× [11] 1.3 150 63.3 84.9
MobileNetV2 0.6× [26] 2.2 141 66.7 -

ShuffleNetV1 1.0× (g=3) [35] 1.9 138 67.8 87.7
ShuffleNetV2 1.0× [20] 2.3 146 69.4 88.9

MobileNetV3-L 0.75× [10] 4.0 155 73.3 -
GhostNetV1 1.0× [7] 5.2 141 73.9 91.4
GhostNetV1 1.1× [7] 5.9 168 74.5 92.0

GhostNetV2 1.0× 6.1 167 75.3 92.4

MobileNetV1 1.0× [11] 4.2 575 70.6 -
MobileNetV2 1.0× [26] 3.5 300 72.8 90.8
ShuffleNetV2 1.5× [20] 3.5 299 72.6 90.6

FE-Net 1.0× [3] 3.7 301 72.9 -
FBNet-B [34] 4.5 295 74.1 -

ProxylessNAS [2] 4.1 320 74.6 92.2
MnasNet-A1 [29] 3.9 312 75.2 92.5
MnasNet-A2 [29] 4.8 340 75.6 92.7

MobileNetV3-L 1.0× [10] 5.4 219 75.2 -
MobileNeXt 1.0× [36] 3.4 300 74.0 -

MobileNeXt+ 1.0× [36] 3.94 330 76.1 -
GhostNetV1 1.3× [7] 7.3 226 75.7 92.7
GhostNetV1 1.4× [7] 8.2 264 76.1 92.9

GhostNetV2 1.3× 8.9 269 76.9 93.4

FBNet-C [34] 5.5 375 74.9 -
EfficientNet-B0 [30] 5.3 390 77.1 93.3

MnasNet-A3 [29] 5.2 403 76.7 93.3
MobileNetV3-L 1.25× [10] 7.5 355 76.6 -

MobileNeXt+ 1.1× [36] 4.28 420 76.7 -
MobileViT-XS [21] 2.3 700 74.8 -

GhostNetV1 1.7× [7] 11.0 378 77.2 93.4
GhostNetV2 1.6× 12.3 399 77.8 93.8

5.1 Image Classification on ImageNet243

Setting. The classification experiments are conducted on the benchmark ImageNet (ILSVRC 2012)244

dataset, which contains 1.28M training images and 50K validation images from 1000 classes. We245

follow the training setting in [7] and report results with single crop on ImageNet dataset. All the246

experiments are conducted with PyTorch [23] on NVIDIA Tesla V100 GPUs.247

Results. The performance comparison of different models on ImageNet is shown in Table 2, Figure 1248

and Figure 2. Several light-weight models are selected as the competing methods. GhostNet [7],249

MobileNetV2 [26], MobileNetV3 [10], and ShuffleNet [35] are widely-used light-weight CNN250

models with SOTA performance. By combing CNN and Transformer, MobileViT [22] is a new251

backbone presented recently. Compared with them, GhostNetV2 achieves significantly higher252

performance with lower computational cost. For example, GhostNetV2 achieves 75.3% top-1253

accuracy with only 167 FLOPs, which significantly outperform GhostNet V1 (74.5%) with similar254

computational cost (167M FLOPs).255

Practical Inference Speed. Considering the light-weight model is designed for mobile applications,256

we practically measure the inference latency of different models on an arm-based mobile phone,257

using the TFLite tool [4]. Owing to the deploying efficiency of DFC attention, GhostNetV2 also258

achieves a good trade-off between accuracy and practical speed. For example, with similar inference259

latency (e.g., 37 ms), GhostNetV2 achieves 75.3% top-1 accuracy, which is obviously GhostNet V1260

with 74.5% top-1 accuracy.261

5.2 Object Detection on COCO262

Setting. To validate the generalization of GhostNetV2, we further conduct experiments on the object263

detection task. The experiments are conducted on MS COCO 2017 dataset, composing of 118k264
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Table 3: Results of object detection on MS COCO dataset.
Backbone Resolution Backbone FLOPs (M) AP AP50 AP75 APS APM APL

MobileNetV2 1.0× [26]
320× 230

613 22.2 41.9 21.4 6.0 23.6 35.8
GhostNet V1 1.1× 338 21.8 41.2 20.8 5.7 22.3 37.3
GhostNetV2 1.0× 342 22.3 41.4 21.9 6.0 22.8 38.1

Table 4: Effectiveness of DFC attention with MobileNetV2 on ImageNet dataset.

Model Params (M) FLOPs (M) Top-1 Acc. (%) Top-5 Acc. (%)

MobileNetV2 1.0 × 3.5 300 72.8 90.8
MobileNetV2 1.1 × 4.1 338 73.0 90.0

MobileNetV2 1.1 × + SE [12] 4.0 338 73.8 91.0
MobileNetV2 1.1 × + CBAM [33] 4.0 338 74.0 91.4

MobileNetV2 1.1 × + CA [9] 4.1 350 74.5 91.8
MobileNetV2 1.0 × + DFC (Ours) 4.3 344 75.4 92.4

training images and 5k validation images. We embed different backbone into a widely-used detection265

head, YOLOv3 [24] and follow the default training strategy provided by MMDetection 2. Specifically,266

based on the pre-trained weights on ImageNet, the models are fine-tuned with SGD optimizer for 30267

epochs. The batchsize is set to 192 and initial learning to 0.003. The experiments are conducted with268

input resolutions 320× 320.269

Results. Table 3 compares the proposed GhostNetV2 model with GhostNet V1. With different270

input resolutions, GhostNetV2 shows obvious superiority to the GhostNet V1. For example, with271

similar computational cost (i.e., 340M FLOPs with 320×320 input resolution), GhostNetV2 achieves272

22.3% mAP, which suppresses GhostNet V1 by 0.5 mAP. We conclude that capturing the long-range273

dependence is also vital for downstream tasks, and the proposed DFC attention can effectively endow274

a large receptive field to the Ghost module, and then construct a more powerful and efficient block.275

5.3 Ablation Studies276

In this section, we conduct extensive experiments to investigate the impact of each component in277

GhostNetV2. The experiments are conducted with GhostNetV2 1× on ImageNet. We include a part278

of experiments here and more discussions can be found in the supplemental material.279

Table 5: Comparison with NAS-based lightweight
non-Local networks.

Model Top1-Acc. FLOPs Latency
(%) (M) (ms)

AutoNL-S [17] 76.5 267 76.4
GhostNetV2 1.3× 76.9 269 56.7
AutoNL-L [17] 77.7 353 101.6

GhostNetV2 1.6× 77.8 399 77.6

Discussion with NAS-based lightweight non-280

local networks. Auto-NL [17] is a NAS-based281

work following the typical paradigm of self-282

attention (i.e., (xxT )x, or x(xxT ), where x is283

a vector), whose computational cost is saved by284

reducing the feature’s dimensions and replacing285

convolution with light-weight depthwise convo-286

lution. It also requires ’einsum’, tensor reshap-287

ing, and transposing operations for practical im-288

plementation, which incur large latency. Since289

only theoretical FLOPs are reported in [17], we measure its latency using the same devices for290

GhostNetV2 (Huawei P30 with Kirin 980 CPU) and show the results in Table 5. AutoNL suffers291

much higher latency (76.4ms v.s. 56.7ms) than GhostNet with lower accuracy (76.5% v.s. 76.9%).292

NAS-based methods (e.g., Auto-NL [17], OFA [1]) and GhostNetV2 actually focus on different293

aspects of designing architectures. Auto-NL [17] searches the architecture’s configuration (e.g.,294

location for inserting LightNL, channel’s number in each layer) to pursue high performance. OFA [1]295

also searches the architecture configures for specific hardware and uses more training tricks (e.g.,296

progressive shrinking, knowledge distillation) to improve performance. While GhostNetV2 focuses297

on how to design a hardware-friendly attention mechanism, which doesn’t optimize the network298

architecture and training recipe. Searching network’s configuration and improving training recipe299

have the potential to further improve GhostNetV2’s performance.300

2https://github.com/open-mmlab/mmdetection.
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Table 6: The location for implementing DFC
attention.

Stage Top1-Acc. Params FLOPs
(%) (M) (M)

None 73.9 5.2 141
1 74.8 5.3 150
2 75.0 5.4 152
3 74.7 5.8 147

All 75.3 5.8 168

Table 7: Enhancing expressiveness or capac-
ity.

Model Top1-Acc. Params FLOPs
(%) (M) (M)

Baseline 73.9 (+0.0) 5.2 141
Expressiveness 75.3 (+1.4) 6.1 167

Capacity 74.8 (+0.9) 6.1 162
Both 75.5 (+1.6) 7.0 188

Experiments with other models. As a universal module, the DFC attention can also be embedded301

into other architectures for enhancing their performance. The resultsof MobileNetV2 with different302

attention modules are shown in Table 4. SE [12] and CBAM [33] are two widely-used attention303

modules, and CA [9] is a SOTA method presented recently. The proposed DFC attention achieves304

higher performance than these existing methods. For example, the proposed DFC attention improves305

the top-1 accuracy of MobileNetV2 by 2.4%, which suppresses CA (1.5%) by a large margin.306

Table 8: The impact of kernel
size in DFC attention.

Kernel sizes Top1-Acc.
(%)

(3, 3, 3) 74.8
(7, 5, 5) 75.0
(7, 7, 5) 74.2
(9, 7, 5) 75.3

(11, 9, 7) 75.3

The impact of kernel size in DFC attention. We split the Ghost-307

NetV2 architecture into 3 stages by the feature’s size, and apply308

DFC attention with different kernel size (Table 8). The kernel sizes309

1 × 3 and 3 × 1 cannot capture the long-range dependence well,310

which results in the worst performance (i.e., 74.8%). Increasing the311

kernel size to capture the longer range information can significantly312

improve the performance.313

The location for implementing DFC attention. The GhostNetV2314

model can be split into 4 stages by the feature’s size, and we em-315

pirically investigate how the implementing location affects the final316

performance. The results are shown in Table 6, which empirically317

shows that the DFC attention can improve performance when implementing it on any stage. Exhaus-318

tively adjusting or searching for proper locations has the potential to further improve the trade-off319

between accuracy and computational cost, which exceeds the scope of this paper. By default, we320

deploy the DFC attention on all the layers.321

Enhancing expressiveness or capacity. We implement the DFC attention on two Ghost modules322

and show the results in Table 7. As discussed in Section 4.2, the former enhances expanded features323

(expressiveness) while the latter improves the block’s capacity. With similar computational costs,324

enhancing the expanded features brings 1.4% top-1 accuracy improvement, which is much higher325

than enhancing the output feature. Though enhancing both of the features can further improve the326

performance, the computational cost also increases accordingly. By default, we only enhance the327

expanded features in an inverse residual bottleneck.328

Layer 5 Layer 10 Layer 15

Vertical/Horizontal 

Attention

Full Attention

Figure 6: Visualization of attention maps.

Visualization of decoupled attention and full at-329

tention. We visualize the decoupled attention pro-330

duced by stacking vertical and horizontal attentions331

and compare it with full attention. In low layers, the332

decoupled attention shows some cross-shaped pat-333

terns, indicating patches from the vertical/horizontal334

lines participate more. As the depth increases, the335

pattern of the attention map diffuses and becomes336

more similar to the full attention. More discussions337

can be found in the supplemental material.338

6 Conclusion339

This paper proposes a hardware-friendly DFC attention and presents a new GhostNetV2 architecture340

for mobile applications. The DFC attention can capture the dependence between pixels in long-range341

spatial locations, which significantly enhances the expressiveness ability of light-weight models. It342

decomposes a FC layer into horizontal FC and vertical FC, which has large receptive fields along the343

two directions, respectively. Equipped this computation-efficient and deployment-simple modules,344

GhostNetV2 can achieve a better trade-off between accuracy and speed. Extensive experiments on345

benchmark datasets (e.g., ImageNet, MS COCO) validate the superiority of GhostNetV2.346
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