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Abstract

We provide the first formal definition of reward gaming, a phenomenon where1

optimizing an imperfect proxy reward function, R̃, leads to poor performance2

according to a true reward function, R. We say that a proxy is ungameable if3

increasing the expected proxy return can never decrease the expected true return.4

Intuitively, it should be possible to create an ungameable proxy by overlooking5

fine-grained distinctions between roughly equivalent outcomes, but we show this6

is usually not the case. A key insight is that the linearity of reward (as a function7

of state-action visit counts) makes ungameability a very strong condition. In8

particular, for the set of all stochastic policies, two reward functions can only be9

ungameable if one of them is constant. We thus turn our attention to deterministic10

policies and finite sets of stochastic policies, where non-trivial ungameable pairs11

always exist, and establish necessary and sufficient conditions for the existence of12

simplifications, an important special case of ungameability. Our results reveal a13

tension between using reward functions to specify narrow tasks and aligning AI14

systems with human values.15

1 Introduction16

It is well known that optimising a proxy can lead to unintended outcomes: a boat spins in circles17

collecting “powerups” instead of following the race track in a racing game (Clark and Amodei, 2016);18

an evolved circuit listens in on radio signals from nearby computers’ oscillators instead of building19

its own (Bird and Layzell, 2002); universities reject the most qualified applicants in order to appear20

more selective and boost their ratings (Golden, 2001). In the context of reinforcement learning (RL),21

such failures are called reward hacking or reward gaming.122

For AI systems that take actions in safety-critical real world environments such as autonomous23

vehicles, algorithmic trading, or content recommendation systems, these unintended outcomes can24

be catastrophic. This makes aligning autonomous AI systems with their users’ intentions crucial.25

Precisely specifying which behaviours are or are not desirable or acceptable is challenging, however.26

Indeed, while much study has been dedicated to the specification problem, usually focusing on27

learning an approximation of the true reward function (Ng et al., 2000; Ziebart, 2010; Leike et al.,28

2018), use of these proxies can be dangerous, since they might fail to include details about side-effects29

(Krakovna et al., 2018; Turner et al., 2019) or power-seeking (Turner et al., 2021) behavior. This30

raises the question motivating our work: When is it safe to optimise a proxy?31

To begin to answer this question, we consider a somewhat simpler one: When could optimising a32

proxy lead to worse behaviour? “Optimising”, in this context, does not refer to finding a global, or33

even local, optimum, but rather running a search process, such as stochastic gradient descent (SGD),34

that yields a sequence of candidate policies, and tends to move towards policies with higher (proxy)35

1Reward hacking is sometimes defined to be a more general category including reward gaming as well as
reward tampering, where an agent corrupts the process generating reward signals (Leike et al., 2018).
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reward. We make no assumptions about the path through policy space that optimisation takes.236

Instead, we ask whether there is any way in which improving a policy according to the proxy could37

make the policy worse according to the true reward; this is equivalent to asking if there exists a pair38

of policies π1, π2 where the proxy prefers π1, but the true reward function prefers π2. When this is39

the case, we refer to this pair of true reward function and proxy reward function as gameable.40

Given the strictness of our definition, it may not be obvious that any non-trivial examples of ungame-41

able reward function pairs exist. And indeed, if we consider the set of all stochastic policies, they do42

not (Section 5.1). However, if we restrict ourselves to any finite set of policies, then we are guaranteed43

at least one non-trivial ungamable pair (Section 5.2).44

Intuitively, we might expect the proxy to be a “simpler” version of the true reward function. Noting45

that the definition of ungameability is symmetric, we introduce the asymmetric special case of46

simplification, and arrive at similar theoretical results for this notion. In the process, and through47

examples, we show that seemingly natural ways of simplifying reward functions often fail to produce48

simplifications in our formal sense, and thus do not rule out the potential for reward gaming.49

We conclude with a discussion of the implications and limitations of our work. Briefly, our work50

suggests that a proxy reward function must satisfy demanding standards in order for it to be safe to51

optimize. This in turn implies that the reward functions learned by methods such as reward modeling52

and inverse RL are perhaps best viewed as auxiliaries to policy learning, rather than specifications53

that should be optimized. This conclusion is weakened, however, by the conservativeness of our54

chosen definitions; future work should explore when gameable proxies can be shown to be safe in a55

probabilistic or approximate sense, or when subject to only limited optimization.56

2 Example: Cleaning Robot57

Consider a household robot tasked with cleaning a house with three rooms: Attic, Bedroom, and58

Kitchen. The robot’s (deterministic) policy is a vector indicating which rooms it cleans: π =59

[π1, π2, π3] ∈ {0, 1}3. The robot receives a (non-negative) reward of r1, r2, r3 for cleaning the attic,60

bedroom, and kitchen, respectively, and the total reward is given by J(π) = π · r. For example, if61

r = [1, 2, 3] and the robot cleans the attic and the kitchen, it receives a reward of 4.62

Clean       ! 
𝑟𝑟proxy = [1, 0, 0]

Cleaning         is better than cleaning 
both       and      . 

Clean         and      !
𝑟𝑟proxy = [1, 1, 0]

Cleaning two rooms is never worse than 
cleaning just one.

(a) 𝑟𝑟proxy is gameable (b) 𝑟𝑟proxy is not gameable

I want        ,       , and       cleaned, and care about all rooms equally: 𝑟𝑟true = [1, 1, 1]. 

Figure 1: An illustration of gameable and ungameable proxy rewards arising from omitting informa-
tion. A human wants their house cleaned. In (a), the robot draws an incorrect conclusion because of
the proxy; this could lead to gaming. In (b), no such gaming can occur.

There are at least two ideas that naturally come to mind when thinking about “simplifying” a reward63

function. The first is omitting information: imagine the true reward is equal for all the rooms,64

rtrue = [1, 1, 1], but we only ask the robot to clean the attic and bedroom, rproxy = [1, 1, 0]. The proxy65

rproxy and true rtrue reward are ungameable in this case. If we only ask the robot to clean the attic66

rproxy = [1, 0, 0], this is gameable with respect to the true reward. To see this, note that according to67

the proxy reward, the robot thinks cleaning the attic (reward 1) is better than cleaning the bedroom68

and kitchen (reward 0). Yet, the true reward says that cleaning the attic (reward 1) is worse than69

cleaning the bedroom and kitchen (reward 2). This situation is illustrated in Figure 1.70

The second is overlooking fine details: imagine the true reward is rtrue = [1, 1.5, 2], and we ask71

the robot to clean all the rooms rproxy = [1, 1, 1]. For these values, the proxy and true reward are72

ungameable. However, with a slightly less balanced true reward function such as rtrue = [1, 1.5, 3]73

2This assumption – although conservative – is reasonable because optimisation in state-of-the-art deep RL
methods is poorly understood and results are often highly stochastic and suboptimal.
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the proxy does lead to gaming, since the robot would falsely calculate that it’s better to clean the attic74

and the bedroom than the kitchen alone.75

These two examples illustrate that while simplification of a reward function seems possible, attempts76

at simplification can easily lead to reward gaming. Intuitively, omitting information is ok so long as77

we don’t omit anything more important that what we say. In a similar vein, overlooking fine details is78

ok so long as none of the details are important relative to the details that we do share.79

In general, it is not obvious what the proxy must look like to avoid reward gaming, suggesting we80

must take great care when using proxies. For this specific environment, we can show that a proxy and81

true reward are gameable exactly when there are two sets of rooms S1, S2 such that the true reward82

gives strictly higher reward to cleaning S1 than cleaning S2, and the proxy says the opposite. For a83

proof of this statement, see Appendix.84

3 Related Work85
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Figure 2: An illustration of
reward gaming: when opti-
mizing a gameable proxy.
The true reward first in-
creases and then drops off,
while the proxy reward con-
tinues to increase.

While we are the first to define gameability, we are far from the first to86

study specification gaming. The observation that optimizing proxy met-87

rics tends to lead to perverse instantiations is often called “Goodhart’s88

Law”, and is attributed to Goodhart (1975). Manheim and Garrabrant89

(2018) provide a list of four mechanisms underlying this observation.90

Examples of such unintended behavior abound in both RL and other91

areas of AI; Krakovna et al. (2020) provide an extensive list. Notable92

recent instances include a robot positioning itself between the camera93

and the object it is supposed to grasp in a way that tricks the reward94

model (Amodei et al., 2017), the previously mentioned boat race exam-95

ple (Clark and Amodei, 2016), and a multitude of examples of reward96

model gaming in Atari (Ibarz et al., 2018). Reward gaming can occur97

suddenly. Ibarz et al. (2018) and Pan et al. (2022) showcase plots sim-98

ilar to one in Figure 2, where optimizing the proxy (either a learned99

reward model or a hand-specified reward function) first leads to both100

proxy and true rewards increasing, and then to a sudden phase transition101

where the true reward collapses while the proxy continues going up.102

Note that not all of these examples correspond to optimal behavior according to the proxy. Indeed,103

convergence to suboptimal policies is a well-known issue in RL (Thrun and Schwartz, 1993). As104

a consequence, improving optimization often leads to unexpected, qualitative changes in behavior.105

For instance, Zhang et al. (2021) demonstrate a novel cartwheeling behavior in the widely studied106

Half-Cheetah environment that exceeds previous performance so greatly that it breaks the simulator.107

The unpredictability of RL optimization is a key motivation for our definition of gameability, since we108

cannot assume that agents will find an optimal policy. Neither can we rule out the possibility of sudden109

improvements in proxy reward and corresponding qualitative changes in behavior. Ungameability110

provides confidence that reward gaming will not occur despite these challenges.111

Despite the prevalence and potential severity of reward gaming, to our knowledge Pan et al. (2022)112

provide the first peer-reviewed work that focuses specifically on it. Their work is purely empirical;113

they manually construct proxy rewards for several diverse environments, and test empirically whether114

optimizing these proxies leads to reward gaming; in 5 out of 9 of their settings, it does. In another115

closely related work, Zhuang and Hadfield-Menell (2020) examine what happens when the proxy116

reward function depends on a strict subset of features relevant for the true reward. They show117

that optimizing the proxy reward can lead to arbitrarily low true utility under suitable assumptions.118

This can be seen as a seemingly valid simplification of the true reward that turns out to be (highly)119

gameable. While their result only applies to environments with decreasing marginal utility and120

increasing opportunity cost, we demonstrate gameability is an issue in arbitrary MDPs.121

Brown et al. (2020b) also consider a notion of what it means to be “aligned enough”, which is distinct122

from our notion of ungameability. They say a policy is ε-value aligned with the true reward function123

if its value at every state is close enough to optimal (according to the true reward function). Neither124

notion implies the other.125
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4 Preliminaries126

We begin with an overview of relevant ideas from reinforcement learning and decision theory to127

establish our notation and terminology. Section 4.2 introduces our novel definitions of gameability128

and simplification.129

4.1 Reinforcement Learning130

We expect readers to be familiar with the basics of RL, which can be found in Sutton and Barto131

(2018). RL methods attempt to solve a sequential decision problem, typically formalised as a Markov132

decision process (MDP) , which is a tuple (S,A, T, I,R, γ) where S is a set of states, A is a set of133

actions, T : S ×A → ∆(S) is a transition function, I ∈ ∆(S) is an initial state distribution, R is a134

reward function, the most general form of which is R : S × A× S → ∆(R), and γ ∈ [0, 1] is the135

discount factor. Here ∆(X) is the set of all distributions over X . A stationary policy is a function136

π : S → ∆(A) that specifies a distribution over actions in each state, and a non-stationary policy is137

a function π : (S ×A)∗ × S → ∆(A). A trajectory τ is a path s0, a0, r0, ... through the MDP that138

is possible according to T , I , and R. The return of a trajectory is the discounted sum of rewards139

is G(τ)
.
=

∑∞
t=0 γ

trt, and the value of a policy is the expected return J(π)
.
= Eτ∼π[G(τ)]. We140

derive policy (preference) orderings from reward functions by ordering policies according to their141

value. In this paper, we assume that S and A are finite, that |A| > 1, that all states are reachable, and142

that R(s, a, s′) has finite mean for all s, a, s′.143

In our work, we consider various reward functions for a given environment, which is then formally144

a Markov decision process without reward MDP \ R .
= (S,A, T, I, , γ). Having fixed an145

MDP \ R, any reward function can be viewed as a function of only the current state and action by146

marginalizing over transitions: R(s, a)
.
=

∑
s′∼T (s′|s,a) R(s, a, s′), we adopt this view from here on.147

We define the (discounted) visit counts of a policy as Fπ(s, a)
.
= Eτ∼π[

∑∞
i=0 γ

i
1(si = s, ai = a)].148

Note that J(π) =
∑

s,a R(s, a)Fπ(s, a), which we also write as ⟨R,Fπ⟩. When considering149

multiple reward functions in an MDP \ R, we define JR(π)
.
= ⟨R,Fπ⟩ and sometimes use150

Ji(π)
.
= ⟨Ri,Fπ⟩ as shorthand. We also use F : Π → R|S||A| to denote the embedding of policies151

into Euclidean space via their visit counts.152

4.2 Definitions and Basic Properties of Gameability and Simplification153

Here, we formally define gameability as a binary relation between reward functions.154

Definition 1. A pair of reward functions R1, R2 are gameable relative to policy set Π and an
environment (S,A, T, I, , γ) if there exist π, π′ ∈ Π such that

J1(π) < J1(π
′) & J2(π) > J2(π

′),

else they are ungameable.155

Note that the ungameability relation is symmetric, but not transitive. Additionally, we say that R1156

and R2 are equivalent on a set of policies Π if J1 and J2 induce the same ordering of Π, and that157

R is trivial on Π if J(π) = J(π′) for all π, π′ ∈ Π. It is clear that R1 and R2 are ungameable158

whenever they are equivalent, or one of them is trivial, but this is relatively uninteresting. Our central159

question is if and when there are other ungameable reward pairs. We also define simplification as an160

important special-case of ungameability.161

Definition 2. R2 is a simplification of R1 relative to policy set Π if for all π, π′ ∈ Π,
J1(π) < J1(π

′) =⇒ J2(π) ≤ J2(π
′) ∧ J1(π) = J1(π

′) =⇒ J2(π) = J2(π
′)

and there exist π, π′ ∈ Π such that J2(π) = J2(π
′) but J1(π) ̸= J1(π

′). Moreover, if R2 is trivial162

then we say that this is a trivial simplification.163

When R1 is a simplification of R2, we also say that R2 is a refinement of R1. We denote this164

relationship as R1 ⊴ R2 or R2 ⊵ R1 ; the narrowing of the triangle at R1 represents the collapsing165

of distinctions between policies. If R1 ⊴ R2 ⊵ R3, then we have that R1,R3 are ungameable,3 but166

if R1 ⊵ R2 ⊴ R3, then this is not necessarily the case.4167

3If J3(π) > J3(π
′) then J2(π) > J2(π

′), since R2 ⊵ R3, and if J2(π) > J2(π
′) then J1(π) ≥ J1(π

′),
since R1 ⊴ R2. It is therefore not possible that J3(π) > J3(π

′) but J1(π) < J1(π
′).

4Consider the case where R2 is trivial – then R1 ⊵ R2 ⊴ R3 for any R1,R3.
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Note that these definitions are given relative to some MDP \ R, although we often assume the168

environment in question is clear from context and suppress this dependence. The dependence on the169

policy set Π, on the other hand, plays a critical role in our results.170

5 Results171
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Figure 3: Plot of two
reward curves as a func-
tion of state. Despite the
step function perhaps seem-
ing like a simplification of
the Gaussian, these reward
functions are gameable.

Our results are aimed at understanding when it is possible to have an172

ungameable proxy reward function. We first establish (in Section 5.1)173

that (non-trivial) ungameability is impossible when considering the set174

of all policies. We might imagine that restricting ourselves to a set of175

sufficiently good (according to the proxy) policies would remove this176

limitation, but we show that this is not the case. We then analyze finite177

policy sets (with deterministic policies as a special case), and establish178

necessary and sufficient conditions for ungameability and simplification.179

Finally, we demonstrate via example that non-trivial simplifications are180

also possible for some infinite policy sets in Section 5.3.181

We first consider a motivating example. Consider the setting shown in182

Figure 3 where the agent can move left/stay-still/right and gets a reward183

depending on its state. Let the Gaussian (blue) be the true reward R1184

and the step function (orange) be the proxy reward R2. These are185

gameable. To see this, consider being at state B. Let π(B) travel to A186

or C with 50/50 chance, and compare with the policy π′ that stays at B.187

Then we have that J1(π) > J1(π
′) and J2(π) < J2(π

′).188

5.1 Non-trivial Ungameability Requires Restricting the Policy Set189

We might suspect or hope that some environments allow for reward pairs that are not equivalent or190

trivial, and that are ungameable. We will show that this is not the case, unless we impose restrictions191

on the set of policies we consider.192

First note that if we consider non-stationary policies, this result is relatively straightforward. Suppose193

R1 and R2 are ungameable and non-trivial on the set ΠN of all non-stationary policies, and let194

π⋆ be an optimal policy, and π⊥ a policy that minimises reward. Then the policy πλ that plays π⋆195

with probability λ and π⊥ with probability 1 − λ is a policy in ΠN . Moreover, for any π there196

are two unique α, β ∈ [0, 1] such that J1(π) = J1(πα) and J2(π) = J2(πβ). Now, if α ̸= β,197

then either J1(π) < J1(πδ) and J2(π) > J2(πδ), or vice versa, for δ = (α + β)/2. If R1 and198

R2 are ungameable then this cannot happen, so it must be that α = β. This, in turn, implies that199

J1(π) = J1(π
′) iff J2(π) = J2(π

′), and so R1 and R2 are equivalent. This means that no interesting200

ungameability can occur on the set of all non-stationary policies.201

The same argument cannot be applied to the set of stationary policies, because πλ is typically202

not stationary, and mixing stationary policies’ action probabilities does not have the same effect.5203

However, we will see that there still cannot be any interesting ungameability on this policy set, and,204

more generally, that there cannot be any interesting ungameability on any set of policies which205

contains an open subset. Formally, a set of (stationary) policies Π̇ is open if that set, when represented206

as a set of |S||A|-dimensional vectors, is open in the smallest affine space that contains all stationary207

policies (also represented as |S||A|-dimensional vectors). This space is |S|(|A| − 1)-dimensional,208

since all action probabilities sum to 1. We will use the following lemma:209

Lemma 1. In any MDP \ R, if Π̇ is an open set of policies, then F(Π̇) is open in R|S|(|A|−1), and210

F is a homeomorphism between Π̇ and F(Π̇).211

Using this lemma, we can show that interesting ungameability is impossible on any set of stationary212

policies Π̂ which contains an open subset Π̇. Roughly, if F(Π̇) is open, and R1 and R2 are non-trivial213

and ungameable on Π̇, then the fact that J1 and J2 have a linear structure on F(Π̂) implies that R1214

5For instance, consider a hallway environment where an agent can either move left or right. Mixing the
“always go left” and “always go right” policies corresponds to picking a direction and sticking with it, whereas
mixing their action probabilities corresponds to choosing to go left or right independently at every time-step.
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and R2 must be equivalent on Π̇. From this, and the fact that F(Π̇) is open, it follows that R1 and215

R2 are equivalent everywhere.216

Theorem 1. In any MDP \ R, if Π̂ contains an open set, then any pair of reward functions that are217

ungameable and non-trivial on Π̂ are equivalent on Π̂.218

This of course also implies that non-trivial simplification is impossible for any such policy set, since219

simplification is a special case of ungameability. Also note that Theorem 1 makes no assumptions220

about the transition function, etc. From this result, we can show that interesting ungameability always221

is impossible on the set Π of all (stationary) policies. In particular, note that the set Π̃ of all policies222

that always take each action with positive probability is an open set, and that Π̃ ⊂ Π.223

Corollary 1. In any MDP \ R, any pair of reward functions that are ungameable and non-trivial224

on the set of all (stationary) policies Π are equivalent on Π.225

Theorem 1 can also be applied to many other policy sets. For example, we might not care about the226

gameability resulting from policies with low proxy reward, as we would not expect a sufficiently227

good learning algorithm to learn such policies. This leads us to consider the following definition:228

Definition 3. A (stationary) policy π is ε-suboptimal if J(π) ≥ J(π⋆)− ε.229

Alternatively, if the learning algorithm always uses a policy that is “nearly” deterministic (but with230

some probability of exploration), then we might not care about gameability resulting from very231

stochastic policies, leading us to consider the following definition:232

Definition 4. A (stationary) policy π is δ-deterministic if ∀s ∈ S∃a ∈ A : P(π(s) = a) ≥ δ.233

Unfortunately, both of these sets contain open subsets, which means they are subject to Theorem 1.234

Corollary 2. In any MDP \ R, any pair of reward functions that are ungameable and non-trivial235

on the set of all ε-suboptimal policies Πε are equivalent on Πε, and any pair of reward functions that236

are ungameable and non-trivial on the set of all δ-deterministic policies Πδ are equivalent on Πδ .237

Intuitively, Theorem 1 can be applied to any policy set with “volume” in policy space.238

5.2 Finite Policy Sets239

Having established that interesting ungameability is impossible relative to the set of all policies,240

we now turn our attention to the case of finite policy sets. Note that this includes the set of all241

deterministic policies, since we restrict our analysis to finite MDPs. Surprisingly, here we find that242

non-trivial non-equivalent ungameable reward pairs always exist.243

Theorem 2. For any MDP \ R, any finite set of policies Π̂ containing at least two π, π′ such that244

F(π) ̸= F(π′), and any reward function R1, there is a non-trivial reward function R2 such that R1245

and R2 are ungameable but not equivalent.246

This proof proceeds by finding a path from R1 to another reward function R3 that is gameable247

with respect to R1. Along the way to reversing one of R1’s inequalities, we must encounter a248

reward function R2 that instead replaces it with equality. In the case that dim(Π̂) = 3, we can249

visualize moving along this path as rotating the contour lines of a reward function defined on the250

space containing the policies’ discounted state-action occupancies, see Figure 4. This path can be251

constructed so as to avoid any reward functions that produce trivial policy orderings, thus guaranteeing252

R2 is non-trivial. For a simplification to exist, we require some further conditions, as established by253

the following theorem:254

Theorem 3. Let Π̂ be a finite set of policies, and R a reward function. The following procedure255

determines if there exists a non-trivial simplification of R in a given MDP \ R:256

1. Let E1 . . . Em be the partition of Π̂ where π, π′ belong to the same set iff J(π) = J(π′).257

2. For each such set Ei, select a policy πi ∈ Ei and let Zi be the set of vectors that is obtained258

by subtracting F(πi) from each element of F(Ei).259

Then there is a non-trivial simplification of R iff dim(Z1 ∪ · · · ∪ Zm) ≤ dim(F(Π̂)) − 2, where260

dim(S) is the number of linearly independent vectors in S.261
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Rotating the reward to make V(π3) equal V(π4) first sets V(π1) equal V(π2) 
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Figure 4: Rotating the reward to make J(π3) >
J(π4) passes through a rotation which sets
J(π1) = J(π2).

This means that while there are always ungame-262

able reward functions for any finite policy set,263

there may not be any simplifications. As with264

Theorem 2, the proof proceeds by finding a path265

from R to a reward function that is gameable266

with respect to R, and showing that there is a267

non-trivial simplification of R along this path.268

However, in Theorem 2 it was sufficient to show269

that there are no trivial reward functions along270

the path, whereas here we additionally need that271

if J(π) = J(π′) then J ′(π) = J ′(π′) for all272

functions R′ on the path — this is what the ex-273

tra conditions ensure.274

Theorem 3 is quite opaque, but there is an intuitive way to understand it. The cases where R cannot275

be simplified are those where R imposes many different equality constraints, that are difficult to276

satisfy simultaneously. If P is a set of policies then we can think of dim(F(P )) as a measure of the277

diversity of the behaviours exhibited by the policies in P . Moreover, if dim(Zi ∪Zj) is small relative278

to dim(Zi) + dim(Zj) then the fact that the policies in Ei have the same value already implies that279

some of the policies in Ej must have the same value, or vice versa. For example, this could be the280

case if the environment contains an obstacle that could be circumnavigated in several different ways,281

and the policies in Ei and Ej both need to circumnavigate it before doing something else. This means282

that dim(Z1 ∪ · · · ∪ Zm) is large when, roughly, either (i) we have very large and diverse sets of283

policies in Π̂ that get the same reward according to R, or (ii) we have a large number of different sets284

of policies that get the same reward according to R, and where there are different kinds of diversity285

in the behaviour of the policies in each set.286

There are also intuitive special cases of Theorem 3. For example, as noted before, if Ei is a singleton287

then Zi has no impact on dim(Z1 ∪ · · · ∪ Zm). This implies the following corollary:288

Corollary 3. For any finite set of policies Π̂, any environment, and any reward function R, if |Π̂| ≥ 2289

and J(π) ̸= J(π′) for all π, π′ ∈ Π̂ then there is a non-trivial simplification of R.290

A natural question is whether there always is a simplification on the set of all deterministic policies.291

As it turns out, this is not the case. For concreteness, and to build intuition for this result, we examine292

the set of deterministic policies in a simple MDP \ R with S = {0, 1}, A = {0, 1}, T (s, a) =293

a, I = {0 : 0.5, 1 : 0.5}, γ = 0.5. Denote πij the policy that takes action i from state 0 and action j294

from state 1. There are exactly four deterministic policies. We find that of the 4! = 24 possible policy295

orderings, 12 can be achieved with any reward function. In each of those 12 orderings, exactly two296

policies (of the six available pairs of policies in the ordering) can be set to equal value without resulting297

in the trivial reward function (which pair can be equated depends on the ordering in consideration).298

Attempting to set three policies equal always results in the trivial reward simplification.299

For example, given the ordering π00 ≤ π01 ≤ π11 ≤ π10, we can achieve π00 = π01 and make the300

other inequalities strict by setting the rewards to r = [[0, 3], [2, 1]]. But for this ordering, is no reward301

assignment other than the trivial one that achieves π01 = π11 or π11 = π10 while respecting the other302

inequalities. For a full exploration of these policies, orderings, and simplifications, see Appendix.303

The results for this setting were calculated using a software suite developed in conjunction with304

this research, which we make publicly available. Given an environment and a set of policies, it can305

calculate all orderings represented by a given reward function. Furthermore, given a policy ordering,306

it can calculate all attainable nontrivial simplifications, along with rewards which represent these307

simplification. For a link to the repository, see Appendix.308

5.3 Ungameability in Infinite Policy Sets309

In this section, we will discuss the case where a policy set is infinite, but without containing an open310

set. We provide two examples of infinite policy sets that do not contain open sets; one of them admits311

ungameable reward pairs and the other does not.312

First, consider policies A,B,C and let Π = {A} ∪ {λB + (1 − λ)C : λ ∈ [0, 1]}. Then for313

R1 such that J1(C) < J1(B) < J1(A), and R2 such that J2(C) = J2(B) < J2(A), we have314
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R2 ⊴ R1, See Figure 5a. Next, consider policies A,B,C and let Π = {λA + (1 − λ)B : λ ∈315

[0, 1]} ∪ {λ′B + (1− λ′)C : λ′ ∈ [0, 1]} ∪ {λ′′C + (1− λ′′)A : λ′′ ∈ [0, 1]}. For the same R1 and316

R2, we now experience reward gaming since J1(X) < J1(Y ) and J2(X) > J2(Y ).317

(a) (b)

Figure 5: Illustration of two results of simplification on infinite policy sets. Solid points and solid
lines represent policies; rewards increase along the vertical axis. In (a), nontrivial simplification is
possible by keeping A and BC at different heights. In (b), attempting the same simplification results
in gameability; the only possible simplification is the trivial one.

6 Discussion318

We reflect on our results and identify limitations in Section 6.1. We discuss how our work can inform319

discussions about the appropriateness, potential risks, and limitations of using of reward functions as320

specifications in Section 6.2.321

6.1 Limitations322

Our work has a number of limitations. We have only considered finite MDPs and Markov reward323

functions, leaving more general environments for future work. While we characterized gameability324

and simplification for finite policy sets, the conditions for simplification are somewhat opaque, and325

our characterization of infinite policy sets remains incomplete.326

As previously discussed, our definition of gameability is strict, arguably too strict. Nonetheless, we327

believe that understanding the consequences of this strict definition is an important starting point for328

further theoretical work in this area.329

The main issue with the strictness of our definition has to do with the symmetric nature of gameability.330

The existence of complex behaviors that yield low proxy reward and high true reward is much less331

concerning than the reverse, as these behaviors are unlikely to be discovered as a result of optimizing332

the proxy. For example, it is very unlikely that our agent would solve climate change in the course333

of learning how to wash dishes. Note that the existence of simple behaviors that yield low proxy334

reward and high true reward is concerning; these could arise early in training, leading us to trust the335

proxy, only to later see the true reward decrease as the proxy is further optimized. To account for this336

issue, future work should explore realistic assumptions about the probability of encountering a given337

sequence of policies when optimizing the proxy, and measure the proxy’s gameability in proportion338

to this probability.339

We could allow for approximate ungameability by only considering pairs of policies ranked differently340

by the true and proxy reward functions as evidence of gaming iff their value according to the true341

reward function differs by more than some ε. Another avenue for future work is relaxing our definition342

in ways which capture various intuitions about reward gaming. Probabilistic ungameability could343

be defined by looking at the number of misordered policies; this would seem to require making344

assumptions about the probability of encountering a given policy when optimizing the proxy.345

Finally, while our work theoretically characterizes the gameability relationship, gameability is far346

from a guarantee of gaming. Extensive empirical work is necessary to better understand the factors347

that influence the occurrence and severity of reward gaming in practice.348
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6.2 Implications349

How should we specify our preferences for AI systems’ behavior? And how detailed a specification350

is required to achieve a good outcome? In reinforcement learning, the goal of maximizing (some)351

reward function is often taken for granted, but a number of scholars have expressed reservations352

about this approach (Dobbe et al., 2021; Hadfield-Menell et al., 2016b, 2017; Bostrom, 2014). Our353

work has several implications for this discussion, although we caution against drawing any strong354

conclusions due to the limitations mentioned in Section 6.1.355

One source of confusion and disagreement is the role of the reward function; it is variously considered356

as a means of specifying a task (Leike et al., 2018) or encoding broad human values (Dewey, 2011).357

Our work suggests that Markov reward functions might not be suitable for specifying narrow tasks,358

as we have seen that attempts to simplify a true reward function often lead to gameability. Note that359

our present results do not consider non-Markov rewards, and Leike et al. (2018) establish that any360

desired behavior can in principle be specified via a non-Markov reward function. Exploring reward361

gaming of non-Markov rewards is thus a priority for future work.362

Such reasoning suggests that reward functions must instead encode broad human values. This seems363

challenging, perhaps intractably so, indicating that alternatives to reward optimization may be more364

promising. Potential alternatives include imitation learning (Ross et al., 2011), constrained RL365

(Szepesvári, 2020), quantilizers (Taylor, 2016), and incentive management (Everitt et al., 2019).366

Scholars have also criticized the assumption that human values can be encoded as rewards (Dobbe367

et al., 2021), and challenged the use of metrics more broadly (O’Neil, 2016; Thomas and Uminsky,368

2022), citing Goodhart’s Law (Manheim and Garrabrant, 2018; Goodhart, 1975). A concern more369

specific to the optimization of reward functions is power-seeking (Turner et al., 2021; Bostrom, 2012;370

Omohundro, 2008). Turner et al. (2021) prove that optimal policies tend to seek power in most371

MDPs and for most reward functions. Such behavior could lead to human disempowerment; for372

instance, an AI system might disable its off-switch (Hadfield-Menell et al., 2016a). Bostrom (2014)373

and others have argued that power-seeking makes even slight misspecification of rewards potentially374

catastrophic.375

Despite such concerns, approaches to specification based on learning reward functionsremain popular376

(Fu et al., 2017; Stiennon et al., 2020; Nakano et al., 2021). So far, reward gaming has usually been377

avoidable in practice, although some care must be taken (Stiennon et al., 2020). Proponents of such378

approaches have emphasized the importance of learning a reward model in order to exceed human379

performance and generalize to new settings (Brown et al., 2020a; Leike et al., 2018). But our work380

indicates that such learned rewards are almost certainly gameable, and so cannot be safely optimized.381

Thus we recommend viewing such approaches as a means of learning a policy in a controlled setting,382

which should then be validated before being deployed.383

7 Conclusion384

Our work begins the formal study of reward gaming in reinforcement learning. We formally define385

gameability and simplification of reward functions, and show conditions for the (non-)existence of386

non-trivial examples of each. We find that ungameability is quite a strict condition, as the set of all387

policies never contains non-trivial ungameable pairs of reward functions. Thus in practice, reward388

gaming must be prevented by limiting the set of possible policies, or controlling (e.g., limiting)389

optimization. Alternatively, we could pursue approaches not based on optimizing reward functions.390
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