
Submitted to the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

LIDL: LOCAL INTRINSIC DIMENSION ESTIMATION
USING LIKELIHOOD

Anonymous authors
Paper under double-blind review

ABSTRACT

We investigate the problem of local intrinsic dimension (LID) estimation. LID of
the data is the minimal number of coordinates which are necessary to describe the
data point and its neighborhood without the significant information loss. Existing
methods for LID estimation do not scale well to high dimensional data because
they rely on estimating the LID based on nearest neighbors structure, which may
cause problems due to the curse of dimensionality. We propose a new method
for Local Intrinsic Dimension estimation using Likelihood (LIDL), which yields
more accurate LID estimates thanks to the recent progress in likelihood estimation
in high dimensions, such as normalizing flows (NF). We show our method yields
more accurate estimates than previous state-of-the-art algorithms for LID estima-
tion on standard benchmarks for this problem, and that unlike other methods, it
scales well to problems with thousands of dimensions. We anticipate this new ap-
proach to open a way to accurate LID estimation for real-world, high dimensional
datasets and expect it to improve further with advances in the NF literature.

1 INTRODUCTION

Figure 1: Comparison of LIDL and meth-
ods from Kleindessner & Luxburg (2015).
Based on data from Table 1.

One of the important problems in representation learn-
ing is estimation of the intrinsic dimensionality (ID) of
the data (Ansuini et al., 2019; Li et al., 2018; Ruben-
stein et al., 2018), which we will refer to as IDE. It
is a well-studied problem in the context of dimension-
ality reduction, clustering and classification problems
(Camastra & Staiano, 2016; Kleindessner & Luxburg,
2015; Vapnik, 2013). E.g. using more dimensions than
necessary can lead to several problems, such as an in-
crease in the space required to store data, and a decrease
in the algorithm speed, since it generally depends on
data dimensionality. Besides, building reliable classi-
fiers becomes harder when the ID grows (curse of di-
mensionality) (Bellman, 2015). ID is also relevant for
some prototype-based clustering algorithms (Claussen
& Villmann, 2005; Struski et al., 2018). IDE becomes
even more important in the context of representation
learning: Rubenstein et al. (2018) show how the mis-
match between the latent space dimensionality and the
intrinsic data dimensionality may hurt the performance of auto-encoder based generative models
like VAE (Kingma & Welling, 2014), WAE (Tolstikhin et al., 2017) or CWAE (Knop et al., 2020).

IDE methods can be divided into two broad categories: global and local (Camastra & Staiano,
2016). The former aims to give a single estimate of the dimensionality of the entire dataset. How-
ever, describing the ID structure of a dataset using just a single number might discard the nuanced
information available such as when the data lies on a union of manifolds with different numbers of
dimensions. In contrast, local methods (Carter et al., 2009) aim to estimate the local dimensional-
ity of the data manifold in the neighborhood of an arbitrary point on the manifold. This approach
gives more insight into the nature of the dataset and provides more options to summarize the dimen-
sionality of the manifold from the global perspective, similarly to how in general the estimate of

1

Submitted to the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

the density of a random variable provides richer information than just the estimates of its summary
statistics. Most existing methods (Kleindessner & Luxburg, 2015; Levina & Bickel, 2004; Hino
et al., 2017; Camastra & Staiano, 2016) tend to analyze the local structure of the manifold by inves-
tigating the sample’s neighborhood, which unfortunately does not scale well to higher dimensions
due to the curse of dimensionality affecting such approaches.

Figure 2: Images from Celeb-A dataset with low (1st row),
medium (2nd row), high (3rd row) LID estimates calculated
using our algorithm.

To address this problem, we propose
a new method for Local Intrinsic Di-
mension estimation using Likelihood
(LIDL), which yields more accurate
LID estimates thanks to the recent
progress in likelihood estimation in
high dimensions. Our method makes
use of the observation that LID can
be estimated using likelihood esti-
mates under data distributions per-
turbed with isotropic Gaussian noise
of varying magnitude. Those likeli-
hoods can be estimated sufficiently accurately even in high dimensional spaces thanks to the recent
progress in neural density estimators; in this work, we make use of the novel model class of NF
(Dinh et al., 2014; Rezende & Mohamed, 2015; Kingma & Dhariwal, 2018).

Our contributions We introduce an algorithm for LID estimation based on NF models, we show
that the algorithm outperforms other methods for low dimensional standard benchmarks for this
problem, and that it scales well to high-dimensional datasets.

2 METHOD

The manifold hypothesis (Fefferman et al., 2016), which we assume, says that locally every data
point is sampled from a distribution defined on a K–dimensional manifold embedded in a higher
dimensional space of dimension M . A K–dimensional manifold, is a topological space with the
property that each point has a neighborhood that is homeomorphic to the Euclidean space of di-
mension K. A dataset D ⊆ RM is said to have ID equal to K if its elements lie entirely, without
information loss, within a K-dimensional manifold of RM (Camastra & Staiano, 2016).

Firstly, we present the insight that lies at the core of our method. Let’s analyze how the probability
density around point xj from the data manifold behaves, when the points around it are perturbed
with a small isotropic Gaussian noise ε ∼ N (0, δI), ε ∈ RM . This distribution is parametrized
by a single scalar parameter δ, which controls the noise amplitude. The important thing to notice
is, that we perturb xj by adding noise of dimensionality M , so after this operation the perturbed
point x̂j no longer lies on the manifold if K < M , and we can estimate its probability density in
RM . We can rotate whole space in a way, that locally around xj the manifold is aligned with first K
dimensions of the data space. This operation does not change probability density of x̂j but simplifies
our inference. If we do this, we can divide our space into dimensions that lie entirely on the data
manifold in the neighborhood of xj , and for those that are orthogonal to it. We can now calculate
density of this perturbed point in RM using this separation and fact, that the noise is independent
from the data distribution.

Adding the noise to the first K dimensions means adding the noise in the directions that lie on the
manifold. When we assume that the noise amplitude is small and the distribution is approximately
constant near xj , this operation just moves data points around the manifold without changing their
probability density (except a small fraction of points near the edges). We are going to show how it
works on the example of the uniform distribution on the [a, b] interval in R1:

fD+δ(x) =

∞∫
−∞

fD(x)fδ(x− g)dg = C

b∫
a

fδ(x− g)dg =
C

2

[
erf

(
b− x√

2δ2

)
− erf

(
a− x√

2δ2

)]
where erf is an error function; fD(x) = 1

b−a , where a < x < b, is a data distribution; fδ(x) =
1√
2πδ2

e−x
2/2δ2 , where −∞ < x < ∞, is a noise distribution; fD+δ is the data distribution fD

2

Submitted to the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

perturbed with noise fδ and C = 1
b−a . For points x that lie between a and b and in a distance at least

a few δ’s away from the edges of the data distribution the probability density is in practice equal
1
b−a . If we take δ that is small enough, probability density for majority of the distribution will not
be affected by adding the noise.

If we add the noise in the directions that are orthogonal to the data manifold we lower the logarithm
of probability density proportionally to the number of dimensions orthogonal to the data manifold.
The noise fδ does not change on-manifold density of the data (as we shown in previous paragraph)
and is independent from fD in the directions orthogonal to the manifold, so the joint distribution
fD+δ is the product of fD and fO – the probability density of the noise for the dimensions orthogonal
to the manifold. If the original point from the distribution has a density fD(x), the probability
density of perturbed point measured at xj has a probability density equal fD+δ(x) = fD(x) ∗
fO(0) = fD(x) ∗ (1/

√
2πδ2)L where L = M − K. If we take logarithm of both sides of the

equation and we obtain:

log fD+δ(xj) = log fD(xj) + L log
1

δ
+ L log

1√
2π

= −L log δ + const. (1)

If we use a few NF models (described in Appendix B) to obtain estimate qi(xj) of the perturbed
distributions fD+δi(xj)’s for a few values of δi, we can fit linear regression algorithm for those
points and obtain estimate of Lj at the point xj . This estimate can then be used to calculate Kj ,
i.e. the manifold dimensionality at xj . Interesting thing is, that after we estimate L using regression
we can substitute it into Eq. 1 and calculate log fD(x) – the density on the original manifold.
Complementary derivation of this approach for Gaussian distribution can be found in Appendix C.
Now we are ready to introduce LIDL algorithm.

LIDL Algorithm To estimate LID at a set of N points S = x1, ..., xj , ..., xN in the dataset D
we have to fit d > 1 NF models Fi (i = 1, ..., d) to d datasets Di. Each Di is perturbed version
of D with different noise N (0, δiI) added to each point. The probability density for the same
coordinates is different when estimated by different Fi and it goes down monotonically as the value
of δi increases. If we then calculate values of log pi(xj) for a point xj obtained from different models
Fi and plot them against log δi used to perturb the dataset Di they line up around the straight line.
Slope of this line is equal L = M − K, i.e. the difference between the data space dimensionality
and the manifold dimensionality at the point xi. Algorithm is written out in details in Appendix A.

3 EXPERIMENTS

Behavior for different ranges of δ’s For many real-world datasets the manifold thickness varies
in different on-manifold directions in space, and in our method we make an assumption, that δ
is much smaller than manifold thickness in any on-manifold direction. But what happens when
our assumption is not true? We analyzed this behavior on some artificial datasets. We pre-
pared a rectangular dataset with one side of the rectangle equals 0.01 and other one equals 1.

Figure 3: 2D lollipop dataset
used in our experiments.

When we used LIDL with δ’s around 0.0001 to estimate ID, we
get the number of manifold dimensions k ≈ 2. When we used δ’s
around 0.01 on the same dataset, we get 1 < k < 2, when we used
δ’s around 0.1 we get k ≈ 1 and for bigger deltas k was smaller
than 1. We also analyzed this behavior on artificial datasets with
the whole spectrum of dimension thicknesses, and we observed,
that we roughly count number of dimensions thicker than z when
we use δ’s around z.

Lollipop dataset For the first experiment we used an artificial
1D/2D dataset shown in Fig. 3. We trained MAF (Papamakarios
et al., 2017) model to fit to 8 different datasets Di perturbed with
0.02 ≤ δi ≤ 0.04. Average of LID estimated for points in the the
head of the lollipop is 1.96 and for points from the stick part it was
1.0.

3

Submitted to the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

Comparison with other algorithms on artificial datasets We collated LIDL with other LID esti-
mation algorithms (Levina & Bickel, 2004; Kleindessner & Luxburg, 2015) for intrinsic dimension
estimation by comparing it with estimates in Table 1 from Kleindessner & Luxburg (2015). Each
algorithm from this table was tested on a dataset of size 1000, so we used the data set of the same
size for LIDL training (we used 750 examples from this set for training and 250 for validation).
We used RQ-NSF(Durkan et al., 2019) and MAF models on this datasets. We trained for 20000
batches of size 750 with early stopping after 1000 batches without improvement on the validation
dataset. We present results of this comparison (each one with standard deviation calculated using 10
experiments) in Table 1 and show the results from it in Fig. 1. We can clearly see on this figure, that
LIDL gives results closer to the original dimensionality, than any other LID estimation algorithms,
especially for higher dimensions.

Table 1: LIDL comparison with algorithms from Table 1 in Kleindessner & Luxburg (2015).
Distribution ID ECAP (V) EDP (V) MLE CorrDim RegDim LIDL

uniform on a helix in R3 1 1.00±.05 0.88±.01 1.00±.01 1.00±.11 0.99±.01 0.97±.15

Swiss roll in R3 2 2.14±.05 1.44±.01 1.94±.02 1.99±.23 1.87±.04 2.68±.35

N5(0, I) ⊆ R5 5 5.33±.07 2.47±.01 5.00±.04 4.91±.56 4.86±.05 5.00±.02

uniform on sphere S7 ⊆ R8 7 5.88±.06 2.82±.01 6.53±.07 6.85±.66 6.23±.09 7.02±.18

uniform on [0, 1]12 in R12 12 7.74±.08 3.04±.01 9.32±.10 10.66±1.18 8.78±.10 11.55±.33

High-dimensional artificial datasets We trained LIDL on four datasets of size 10K with Gaussian
distribution embedded in higher dimensional space with ID equals 1, 10, 100 and 1K dimensions.
Results are presented in Table 2. We obtain highest error (relative and absolute) for the 2K dimen-
sional dataset (with manifold with ID equals 1K), which may be due the small sample size compared
to dimensionality of the data space. We can see from those experiments, that LIDL has no problem
with scaling to higher dimensions.

Table 2: LIDL estimated ID in higher dimensions.
Data distribution N1(0, I) ⊆ R2 N10(0, I) ⊆ R20 N100(0, I) ⊆ R200 N1000(0, I) ⊆ R2000

LIDL ID Estimate 1.02±.04 10.14±.08 100.92±.62 1048.42±21.52

Figure 4: At the first three rows we show MNIST
images with low, medium and high estimates from
LIDL. Three bottom rows show FMNIST images
with low, medium and high estimates from LIDL.

Image datasets We ran LIDL on MNIST
(image size 32x32x1) (LeCun & Cortes, 2010),
FMNIST (32x32x1) (Xiao et al., 2017) and
Celeb-A (64x64x3) (Liu et al., 2015) datasets
using Glow (Kingma & Dhariwal, 2018) as a
density model. Estimated dimensionalities for
MNIST images span roughly from 50 to 250,
for FMNIST those numbers are 100 and 500
and for Celeb-A we estimated dimensionalities
between 3500 and 8000. We sorted the dataset
according to the dimensionality and observed,
that more complicated examples have higher di-
mensionalities. Some small, medium and high
dimensional images are shown in Fig. 2 and 4.

More results and details of our experiments can
be found in Appendix D.

4 CONCLUSIONS

We introduced an algorithm for LID estimation based on NF as density estimators, provided a the-
oretical justification for it and showed that it can scale to datasets of thousands of dimensions. Our
approach however is limited by the ability of NF models to scale to even higher dimensions. For
now we are not able to cope with datasets of images consisting millions of pixels. We hope that
current intensive research on NF models will make them able to scale to those datasets eventually
and automatically make LIDL to be able to estimate LID for them as well.

4

Submitted to the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

REFERENCES

Alessio Ansuini, Alessandro Laio, Jakob H Macke, and Davide Zoccolan. Intrinsic dimension of
data representations in deep neural networks. In Advances in Neural Information Processing
Systems, pp. 6111–6122, 2019.

Richard E Bellman. Adaptive control processes: a guided tour. Princeton university press, 2015.

Francesco Camastra and Antonino Staiano. Intrinsic dimension estimation: Advances and open
problems. Information Sciences, 328:26–41, 2016.

Kevin M Carter, Raviv Raich, and Alfred O Hero III. On local intrinsic dimension estimation and
its applications. IEEE Transactions on Signal Processing, 58(2):650–663, 2009.

Gabriel B Cavallari, Leonardo SF Ribeiro, and Moacir A Ponti. Unsupervised representation learn-
ing using convolutional and stacked auto-encoders: a domain and cross-domain feature space
analysis. In 2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp.
440–446. IEEE, 2018.

Jens Christian Claussen and Thomas Villmann. Magnification control in winner relaxing neural gas.
Neurocomputing, 63:125–137, 2005.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components esti-
mation. arXiv preprint arXiv:1410.8516, 2014.

Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline flows. arXiv
preprint arXiv:1906.04032, 2019.

Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. nflows: normalizing flows
in pytorch, November 2020. URL https://doi.org/10.5281/zenodo.4296287.

Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. Testing the manifold hypothesis.
Journal of the American Mathematical Society, 29(4):983–1049, 2016.

Hideitsu Hino, Jun Fujiki, Shotaro Akaho, and Noboru Murata. Local intrinsic dimension estimation
by generalized linear modeling. Neural Computation, 29(7):1838–1878, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014. URL
http://arxiv.org/abs/1412.6980. cite arxiv:1412.6980Comment: Published as a con-
ference paper at the 3rd International Conference for Learning Representations, San Diego, 2015.

Diederik P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
arXiv preprint arXiv:1807.03039, 2018.

D.P. Kingma and M. Welling. Auto-encoding variational Bayes. arXiv:1312.6114, 2014.

Matthäus Kleindessner and Ulrike Luxburg. Dimensionality estimation without distances. In Artifi-
cial Intelligence and Statistics, pp. 471–479, 2015.

Szymon Knop, Przemysław Spurek, Jacek Tabor, Igor Podolak, Marcin Mazur, and Stanisław Jas-
trzebski. Cramer-wold auto-encoder. Journal of Machine Learning Research, 21, 2020.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http://yann.
lecun.com/exdb/mnist/.

Elizaveta Levina and Peter Bickel. Maximum likelihood estimation of intrinsic dimension. Advances
in neural information processing systems, 17:777–784, 2004.

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic dimension
of objective landscapes. arXiv preprint arXiv:1804.08838, 2018.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In Proceedings of International Conference on Computer Vision (ICCV), December 2015.

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density
estimation. arXiv preprint arXiv:1705.07057, 2017.

5

https://doi.org/10.5281/zenodo.4296287
http://arxiv.org/abs/1412.6980
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Submitted to the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Interna-
tional Conference on Machine Learning, pp. 1530–1538. PMLR, 2015.

Paul K Rubenstein, Bernhard Schoelkopf, and Ilya Tolstikhin. On the latent space of wasserstein
auto-encoders. arXiv preprint arXiv:1802.03761, 2018.

Łukasz Struski, Jacek Tabor, and Przemysław Spurek. Lossy compression approach to subspace
clustering. Information Sciences, 435:161–183, 2018.

Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schoelkopf. Wasserstein auto-
encoders. arXiv preprint arXiv:1711.01558, 2017.

Vladimir Vapnik. The nature of statistical learning theory. Springer science & business media,
2013.

Yasi Wang, Hongxun Yao, and Sicheng Zhao. Auto-encoder based dimensionality reduction. Neu-
rocomputing, 184:232–242, 2016.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Appendices
A LIDL ALGORITHM

Algorithm 1: LIDL – algorithm for local intrinsic dimension estimation using NF.
Input: Dataset D;

d – number of models to estimate;
M – dimensionality of the data space;
∆ = (δ1, ..., δd) – list of δ’s;
Set S of N points from RM , at which we want to estimate LID;

Result: List of Kj’s – LID estimates for points in S;
for δi in ∆ do

initialize model Fi;
while Fi not converged do

Sample batch b from D;
Sample noise ni from N (0, δi);
bi ← b+ ni;
Make training step on Fi using bi;

end
for xj in S do

for Fi in (F1, ...,Fd) do
Estimate likelihood qij at point xj using model Fi;

end
Calculate regression coefficient Lj for a list of d pairs:
((log q1j , log δ1), ..., (log qdj , log δd));
Kj ←M − Lj ;

end
end

We observed that when perturbing the original dataset with different noise sample in each batch we
obtain more accurate results when estimating LID, than when we perturb the dataset once at the
beginning of the training. It also stabilizes training, especially for larger values of δ.

6

Submitted to the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

B NORMALIZING FLOWS

NF are very flexible tools for approximating probability distributions. They use parametrized non-
linear invertible transformation fθ and change of variable formula to transform a simple density π(z)
into a more complicated one. NF are trained using gradient-based methods (e.g. SGD) to maximize
log-likelihood of the data

max
θ

∑
i

log q(xi)

where

q(x) = π(fθ(x))

∣∣∣∣det
∂fθ(x)

∂x

∣∣∣∣ .
We used MAF (Papamakarios et al., 2017), RQ-NSF (Durkan et al., 2019) and Glow (Kingma &
Dhariwal, 2018) models in our experiments. Model selection criterion was: we took the simplest
model able to fit the data.

C ALTERNATIVE DERIVATION FOR GAUSSIAN DISTRIBUTION

Normal distribution with a diagonal covariance matrix We have a M -dimensional i.i.d. ran-
dom variable X ∈ RM with a normal density on a K-dimensional subspace of RM , K < M :

X ∼ N (µ,Σ), µ = (0, . . . , 0︸ ︷︷ ︸
M

), Σ = diag(σ2
1 , . . . , σ

2
K︸ ︷︷ ︸

K

, 0, . . . , 0︸ ︷︷ ︸
L

),

where L = M −K.

Assume we add an isotropic normal noise ε ∼ N (0, δ), ε ∈ RM to X and thus we obtain a new
random variable X ′ = X + ε which is also normally distributed with µ′ = µ and covariance matrix
Σ′ taking the form

Σ′ = Σ + δ2I = diag(σ2
1 + δ2, . . . , σ2

K + δ2︸ ︷︷ ︸
K

, δ2, . . . , δ2︸ ︷︷ ︸
L

). (2)

Then the differential entropy of X ′ takes the form

hX′ = −
∫
pX′(x) log pX′(x) dx (3)

= −
∫
N (x|µ,Σ′) logN (x|µ,Σ′) dx (4)

=
1

2
ln det (2πeΣ′) (5)

=
1

2
ln det Σ′ + const (6)

=
1

2

K∑
i=1

ln(σ2
i + δ2) +

1

2

M∑
i=K+1

ln(δ2) + const (7)

=
1

2

K∑
i=1

ln(σ2
i + δ2) + L ln(δ) + const. (8)

We are interested in the differential entropy as a function of the magnitude of the added noise δ, i.e.,
hX′(δ). Assuming that ∀i, δ � σi we can approximate the first term of equation 8 as constant wrt δ
since d ln δ2

dδ � d ln(σ2
i+δ

2)
dδ , yielding

hX′(δ) = L ln(δ) + const. (9)

We can approximate the differential entropy hX′(δ) through the negative of expected log-likelihood
of the trained density estimator pX′ under the empirical data distribution p̂X′ which is simply the
Maximum Likelihood training loss for a density estimator with parameters θ,

L (θ, δ) = −Ex∼p̂X′ (x|δ) [pX′(x; δ, θ)] ≈ hX′(δ) (10)

7

Submitted to the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

where p̂X′(x|δ) is the empirical data distribution over X ′ (the dataset with added normal noise of
magnitude δ), and pX′(x; δ, θ) is the density under the generative model trained on data with added
noise of magnitude δ.

Let’s assume we’ve trained multiple density estimators for different values δ (or a single density
estimator conditioned on δ) and evaluated Lf (δ) = L (θf,δ, δ) for multiple values of δ where θf,δ
are the final parameters of the training of the density estimator on data with noise of magnitude
δ). From equation 9 we see we are able to form it into a linear regression problem which allows
us to estimate the value of l, and hence the dimensionality of the subspace generating distribution
k = K = M − L, as per

Lf (δ) = L ln(δ) + const. (11)

Normal distribution with an arbitrary covariance matrix In case of a normal distribution with
an arbitrary covariance matrix Σ, thanks to Eigendecomposition Σ can always be expressed as Σ =
QΛQ−1 where Λ is a diagonal matrix whose diagonal elements are the Eigenvalues of Σ and Q
is the square orthonormal m ×m matrix whose columns are Eigenvectors of Σ. Transforming the
frame of reference according to Q the covariance matrix diagonalizes as following

Q−1Σ′Q = Q−1(Σ + δ2I)Q = Q−1ΣQ+ δ2Q−1IQ = Λ + δ2Q−1Q = Λ + δ2I.

Given that our procedure doesn’t depend on the frame of reference (since the noise ε is isotropic),
the method from previous paragraph applies in this setting.

D EXPERIMENTAL DETAILS AND OTHER RESULTS

δ sampling In each experimented we used δ’s equally distanced in logarithmic scale. This means
that when we write, that we used n δ’s between a and b, this means that we used ∆ = (a, exp(log a+
γ), exp(log a+ 2γ), ..., exp(log a+ (n− 2)γ), b) in LIDL, where γ = (log b− log a)/(n− 1).

Lollipop dataset we used MAF implementation from nflows library (Durkan et al., 2020). Each
model was trained for 10K steps on batches of size 1K sampled from the lollipop distribution using
Adam optimizer (Kingma & Ba, 2014) with learinig rate equal 0.002. We trained 8 models using
δ’s between 0.02 and 0.04.

Comparison with other algorithms on artificial datasets we used MAF and RQ-NSF imple-
mentations from nflows library. RQ-NSF was used for helix and Swiss roll datasets, MAF was used
for rest of the datasets. Each model was trained on training set containing 750 examples for maxi-
mum of 20K steps on batches of size 750. Model was optimized using Adam method (Kingma &
Ba, 2014) with learning rate equal 0.00002. We used early stopping after 1K steps without improve-
ment on validation set containing 250 examples. We trained 8 models using δ’s between 0.08 and
0.12.

High-dimensional artificial datasets we used MAF implementation from nflows library. Each
model was trained on training set containing 7500 examples for maximum of 20K steps on batches of
size 750. Model was optimized using Adam method (Kingma & Ba, 2014) with learning rate equal
0.00002. We used early stopping after 1K steps without improvement on validation set containing
2500 examples. We trained 8 models using δ’s between 0.08 and 0.12.

Image datasets we used a pytorch Glow implementation from https://github.com/
chaiyujin/glow-pytorch. Models for MNIST and FMNIST datasets were trained on 8 δ’s
between 0.01 and 0.1 for 200 epochs with batch size equal 64. Optimization was done using Adam
with learning rate equals 0.00005. Models on Celeb-A were trained on the same δ’s, but for 40
epochs, batch size equal 16 and learning rate equal 0.00002.

Dimensionality distributions for MNIST and FMNIST Empirical CDF’s for both datasets are
presented in Fig. 5 and 6. For MNIST dataset we obtained dimensionalities between 40 and 250
dimensions. Maximum dimensionality reported in Table 1 in Kleindessner & Luxburg (2015) is 15.
From the other hand the best classification results using auto-encoder representation as an input is

8

https://github.com/chaiyujin/glow-pytorch
https://github.com/chaiyujin/glow-pytorch

Submitted to the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

Figure 5: Empirical cumulative distribution function (CDF) of 5000 examples from MNIST dataset.
Each line represents CDF for separate class in dataset. Class number (which also is a represented
digit in this case) can be found in legend.

reported in Cavallari et al. (2018) and Wang et al. (2016) for bottleneck size in auto-encoder greater
than 100, which is in accordance with our result. This is the reason we think that dimensionalities
estimated by LIDL seems more reasonable than those reported in Kleindessner & Luxburg (2015)

Figure 6: Empirical cumulative distribution function (CDF) of 5000 examples from FMNIST
dataset. Each line represents CDF for separate class in dataset. Class number can be found in
legend.

Training time and its connection with dimensionality We observed, that the longer the training
was, the lower the dimensionalities were. The effect was stronger for real-world datasets. We
also observed that validation and test dataset dimensionality was often slightly higher than the train
dataset dimensionality. We think that it may be connected to the process of training NF: we observed
that they often wrap roughly around the major shapes of the original manifold and during the process
of training they are fitting to the smaller and smaller details of the manifold. For artificial datasets we
used validation loss increase as a criterion for stopping the training. For image datasets we trained
the models for an amount of epochs sufficient to obtain a good quality samples from NF model.

9

	Introduction
	Method
	Experiments
	Conclusions
	Appendices
	LIDL algorithm
	Normalizing Flows
	Alternative derivation for Gaussian distribution
	Experimental details and other results

