
CodeRL: Mastering Code Generation through
Pretrained Models and Deep Reinforcement Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

Program synthesis or code generation aims to generate a program that satisfies a1

problem specification. Recent approaches using large-scale pretrained language2

models (LMs) have shown promising results, yet they have some critical limitations.3

In particular, they often follow a standard supervised fine-tuning procedure to train4

a code generation model from natural language problem descriptions and ground-5

truth programs only. Such paradigm largely ignores some important but potentially6

useful signals in the problem specification such as unit tests, which thus results7

in poor performance when solving complex unseen coding tasks. To address the8

limitations, we propose “CodeRL”, a new framework for program synthesis tasks9

through pretrained LMs and deep reinforcement learning (RL). Specifically, during10

training, we treat the code-generating LM as an actor network, and introduce a11

critic network that is trained to predict the functional correctness of generated12

programs and provide dense feedback signals to the actor. During inference, we13

introduce a new generation procedure with a critical sampling strategy that allows a14

model to automatically regenerate programs based on feedback from example unit15

tests and critic scores. For the model backbones, we extended the encoder-decoder16

architecture of CodeT5 with enhanced learning objectives, larger model sizes and17

better pretraining data. Our method not only achieves new SOTA results on the18

challenging APPS benchmark, but also shows strong zero-shot transfer capability19

with new SOTA results on the simpler MBPP benchmark.20

1 Introduction21

Considering program synthesis as a sequence-to-sequence task, pretrained language models (LMs)22

[Hendrycks et al., 2021, Chen et al., 2021a, Austin et al., 2021] can be adapted to receive input23

sequence as problem specification in natural language and generate a sequence of codes as the24

output program (See Figure 1, right, for an example). While these models achieve promising results,25

especially in basic programming tasks [Chen et al., 2021a, Austin et al., 2021], we observe that they26

still fail to generate codes to solve complex problems [Hendrycks et al., 2021, Li et al., 2022].27

There are two main limitations. First, current models are trained using a conventional next-token28

prediction (NTP) objective which maximizes the next ground-truth token likelihood. As noted in NLP29

domains [Bengio et al., 2015, Ranzato et al., 2016], training models only with next-token prediction30

objective in a "teacher-forcing" manner often leads to accumulating errors during test time when31

tokens are generated by conditioning on previously sampled tokens, not the ground-truth tokens. This32

issue becomes more serious in the domain of program synthesis, where token-matching scores such33

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

 Actor-Critic RL Finetuning with

Returns

Problem Specification
A string is a palindrome if it reads the same from the left to the right
and from the right to the left….If there is such a substring in s that
is not a palindrome, print the maximum length of such a substring….
Example Input and Output: Input: ‘hannah’ Output: 5

Solution Program

Unit Tests
 Input: wuffuw Output: 5
 Input: iiiiiii Output: 0…

Environment
Compiler

Policy
Pretrained LM (actor)

Action
Value Function

Critic
State Reward

Values

Problem Specification

Unit Tests I/O

Figure 1: A high-level overview of our CodeRL framework for program synthesis (Left) and an
example program synthesis task (Right)

as BLEU [Papineni et al., 2002, Ren et al., 2020] are more appropriate in partial program synthesis34

tasks (i.e. code completion) [Husain et al., 2019] but have failed to measure the functional correctness35

of complete programs [Hendrycks et al., 2021, Chen et al., 2021a]. Training only with NTP objective36

is hence, not ideal to tackle full program generation to solve programming problems.37

Secondly, current models fail to utilize the potential meaningful signals from unit tests, which directly38

determine the model performance by the functional correctness of programs. Current approaches39

neglect this important signal during model optimization as well as generation procedure. During40

optimization, unit tests could be factored into learning objectives to match the final goal of generating41

semantically correct programs. During inference, since unit tests are often parts of problem description42

(i.e. example unit tests), they are potentially powerful to further improve output programs.43

To address the above issues, we introduce “CodeRL”, a new framework to improve pretrained LMs for44

program synthesis tasks through reinfocement learning (See Figure 1, left). Specifically, we propose a45

training strategy that optimizes pretrained LMs for program synthesis tasks in an actor-critic approach46

[Konda and Tsitsiklis, 1999, Sutton et al., 1999]. We treat the pretrained LM as an actor network47

and synthetically sample sequences from this actor, including both correct and incorrect programs.48

These program samples are passed to a critic model which is trained as an error predictor to assess49

the functional correctness of these samples. We use the token-level hidden states extracted from the50

learned critic model to estimate the values/scores of output tokens of these synthetic samples. The51

actor network is then finetuned on these synthetic samples weighted by their critic scores. During52

inference, we introduce a new generation procedure that involves example unit tests and a critic53

to filter and select sub-sequences. These sub-sequences are utilized as seeds which condition the54

model to resample new tokens and obtain new output programs. This approach allows the model to55

automatically refine output programs based on their functional correctness during test time.56

We extend CodeT5 with better pretraining strategies as the foundation model for CodeRL. Our57

comprehensive experiments show that our models can achieve SOTA performance on the challenging58

APPS benchmark [Hendrycks et al., 2021]. Specifically, our models reach more than 2% pass@1,59

6% pass@5, and 19% pass@1000. Since our RL method is model-agnostic, we apply it to various60

large-scale models and achieve consistent performance gains. We further test its zero-shot transfer61

ability on a simpler MBPP benchmark [Austin et al., 2021], where it sets a new SOTA result of 63.0%62

pass@80 over a finetuned GPT-137B’s 61.4%. We release the improved CodeT5-large (770M) model63

which outperforms many pretrained LMs of much larger sizes.64

2 Related Work65

Program Synthesis. Program synthesis tasks can date back as early as the early adoption of66

machine learning research [Waldinger and Lee, 1969, Manna and Waldinger, 1971]. Earlier tasks67

include problem specifications in the form of input-output (IO) examples [Summers, 1977, Gulwani68

et al., 2012] and synthesis methods are limited to probabilistic approaches [Liang et al., 2010] or69

2

simple programming concepts [Joulin and Mikolov, 2015, Kurach et al., 2015]. As deep learning70

methods became popular, later approaches adopt neural models to induce output programs, assuming71

an inductive bias given large number of program samples [Parisotto et al., 2016, Balog et al., 2016,72

Devlin et al., 2017]. More recently, we witnessed the emergence of program synthesis tasks in which73

output programs are extended to general-purpose programming languages [Yin and Neubig, 2017, Xu74

et al., 2018, Chen et al., 2021a] and program specifications are fully described in natural English text75

[Hendrycks et al., 2021, Austin et al., 2021, Poesia et al., 2022]. These extensions have encouraged a76

rising number of applications of pretrained language models (LMs) to program synthesis to exploit77

the contextual representations learned from massive data of codes and natural languages [Feng et al.,78

2020, Clement et al., 2020, Wang et al., 2021, Wang and Komatsuzaki, 2021, Chen et al., 2022].79

Despite impressive results in basic programming problems and initial commercial deployment1,80

existing models still perform poorly against complex problems such as those from programming81

competitions on Codeforces [Hendrycks et al., 2021, Li et al., 2022].82

Reinforcement Learning for Sequence Generation. Related to the program synthesis tasks are83

research domains of sequence generation, in which RL approaches have demonstrated remarkable84

achievements. In these domains, RL approaches are used to exploit signals from non-differentiable85

metrics of the task at hand. Earlier work such as [Ranzato et al., 2016] adopts this strategy with86

REINFORCE algorithm [Williams, 1992] to directly optimize models for sequence-based test metrics87

such as BLEU [Papineni et al., 2002] and ROUGE [Lin, 2004] scores for translation models. In the88

same domain, Bahdanau et al. [2016] introduced an actor-critic framework [Sutton, 1984, Konda and89

Tsitsiklis, 1999]. In visual captioning domains, Rennie et al. [2017], Wang et al. [2018] proposed to90

use RL to optimize image captioning models using variants of CIDEr scores [Vedantam et al., 2015].91

Alternatively, Ren et al. [2017] derived a new goal-oriented return estimate using visual-semantic92

embedding. Johnson et al. [2017], Trivedi et al. [2021] introduce program generation as an auxiliary93

task to learn interpretable policies in question-answering and synthetic navigation tasks.94

Different from prior domains, in program synthesis, Austin et al. [2021], Chen et al. [2021a], Li et al.95

[2022] demonstrated very low correlation between token-based similarity metrics and functional96

correctness of programs. Hence, it is not trivial to define an appropriate optimization goal in this97

domain. We propose to exploit unit test signals, which directly exhibit functional correctness of98

programs, during both - model optimization and test-time generation stages. More related to our work99

are RL-based program synthesis [Guu et al., 2017, Bunel et al., 2018, Liang et al., 2018, Zhong et al.,100

2018] and execution-guided synthesis approaches [Ellis et al., 2019, Chen et al., 2021b]. However,101

these are limited to programming languages defined within a specific application domain only.102

3 CodeRL103

3.1 Program Synthesis Task104

Following a sequence-to-sequence approach, the program synthesis task contains a problem descrip-105

tion as an input sequence D and an output sequence of program Ŵ = (ŵ1, ..., ŵT), ŵt ∈ V 2 that106

can solve the problem. The output at each decoding step t is a distribution over the vocabulary V ,107

computed by the softmax function ŵt ∼ softmax(Linear(st)) where st is the contextual hidden108

state at decoding step t. Conventionally, during train time, model parameters, θ, are learned by109

maximizing the likelihood of the ground-truth reference programs. Denoting W = (w1, ...wT) as110

the ground-truth program, the objective is to minimize the cross-entropy loss:111

Lce(θ) = −
∑
t

log pθ(W |D) = −
∑
t

log[pθ(wt|w1:t−1, D)] (1)

where the conditional probability pθ is parameterized following the above softmax function. During112

test time, models generate sequences of programs by autoregressively sampling token ŵt from the113

distribution pθ(.|ŵ1:t−1, D). Models are evaluated against unit tests corresponding to the problem.114

1https://copilot.github.com/
2For simplicity, we use T as the notation of sequence length for all sequences which can actually be variable.

3

https://copilot.github.com/

Pretrained LM

Problem Solution
Program

Problem

 Actor-Critic RL Finetuning with

Solution
Program

Sampled
program

Returns

Unit
Tests

Actor
Network

Critic
Network

Finetuned
LM

Public
Code on
Github

pretraining

Figure 2: Overview of our actor-critic framework to optimize pretrained LMs for program synthesis

Each test includes a pair of input and ground-truth output. In real-world program synthesis tasks115

[Hendrycks et al., 2021], example unit tests are often given as parts of the problem specification.116

3.2 Pretraining Language Models on Code117

We adopt Transformer models as the backbone of our program synthesis systems. Specifically, this118

paper extends the CodeT5 model [Wang et al., 2021] as a foundation model for CodeRL.119

CodeT5. CodeT5 [Wang et al., 2021] is a multi-lingual code-aware language model pretrained on120

large-scale source code corpora curated from Github. With a unified encoder-decoder architecture,121

CodeT5 achieves state-of-the-art performance in a wide range of code intelligence tasks in the122

CodeXGLUE benchmark [Lu et al., 2021] including both code understanding and generation tasks.123

Improving Pretraining Data. We enlarge the Python pretraining dataset using the recently released124

large-scale Github Code dataset3. We filter the dataset by keeping only the code with licenses that125

at least permit academic use (“mit”, “apache-2”, “bsd-3-clause”, “bsd-2- 126 clause”, “cc0-1.0”,126

“unlicense”, “isc”). The resulting Python dataset (GCPY) has 10.5B tokens and is 10x larger than the127

CodeSearchNet (CSN) corpus [Husain et al., 2019] used in the original CodeT5 [Wang et al., 2021].128

Improving Pretraining Objective. While pretraining tasks in CodeT5 like masked span prediction129

(MSP) benefit code understanding tasks, they have a large discrepancy with program synthesis130

objectives. To mitigate this gap, we introduce a pretraining task of next-token prediction (NTP) into131

CodeT5. Specifically, we uniformly sample a pivot location for each code sample, then pass the132

content preceding the pivot to the encoder and remaining to the decoder. To control the length of133

input and output sequences, we restrict the pivot within 10% to 90% of the original sequence.134

3.3 Program Synthesis as an RL Problem135

We propose to formulate the Program Synthesis as an RL problem and apply an actor-critic RL136

approach to improve the performance of a pretrained LM by exploiting the unit test signals in both137

model optimization (See Figure 2) and generation procedure (See Figure 3).138

More formally, we can view the learned parameters of an LM model, θ as a stochastic policy, which139

decides an action as the prediction of each token. Following each action, an LM model updates its140

hidden state representations which are used by the policy to determine the next action in the next141

decoding step. At the end of the generation episode (i.e. an <endoftext> token is observed), the LM142

model receives a return r measured by the functional correctness of the generated program. The goal143

of RL finetuning is to minimize the expected return:144

Lrl(θ) = −EW s∼pθ
[r(W s)] (2)

where W s = (ws
1, ..., w

s
T) is a synthetic sample in which each token ws

t is sampled by the LM model145

at decoding time step t. Following the REINFORCE algorithm [Williams, 1992, Sutton and Barto,146

2018] and policy gradient theorem [Sutton et al., 1999] we can define an estimate of the gradient147

3https://huggingface.co/datasets/lvwerra/github-code

4

https://huggingface.co/datasets/lvwerra/github-code

∇θL(θ) of the non-differentiable return r as:148

∇θLrl(θ) ≈ −EW s∼pθ
[r(W s)∇θ log pθ(W

s|D)]

≈ −EW s∼pθ
[r(W s)

∑
t

∇θ log pθ(w
s
t |ws

1:t−1, D)] (3)

Defining Return by Unit Test Signals. For each sample sequence W s, the return r can be defined
heuristically by checking its functional correctness. We pass generated programs together with the
corresponding unit tests to a compiler. From the outputs of the tests, we can determine the return r:

r(W s) =


-1.0 , if W s cannot be compiled (i.e. compile error) (4)
-0.6 , if W s cannot be executed with unit tests (i.e. runtime error) (5)
-0.3 , if W s failed any unit test (6)
+1.0 , if W s passed all unit tests (7)

However, in related domains such as text-to-SQL research [Zhong et al., 2018, Xu et al., 2018], we149

note that this approach to estimate returns can lead to unstable training process with high variance of150

the gradient estimate following Eq. (3) with mini-batches in training.151

Return with a Baseline. In order to alleviate this variance, we adopt a “baseline” [Sutton and Barto,152

2018]. Specifically, we use a greedy decoding strategy as a baseline and any generated samples153

that outperform this baseline are given positive return estimation, and negative return estimation154

otherwise. This relative normalization technique allows models to explore imperfect programs, as155

long as their returns are better than the baseline’s. Given a training sample, we denote the return of156

the baseline r(W b) and the expected gradient is computed as:157

∇θLrl(θ) ≈ −EW s∼pθ
[(r(W s)− r(W b))

∑
t

∇θ log pθ(w
s
t |ws

1:t−1, D)] (8)

Note that at each decoding step t, our greedy decoding baseline is independent from the action ws
t158

and hence, the expected gradient term ∇θLrl(θ) from Eq. (3) remains the same in Eq. (8).159

Intermediate Return by Critic as Error Predictor. We observe that the above gradient estimate160

is only based on a final return at the end of the decoding process. However, programs often follow161

fixed syntactical rules in which a single token such as an additional white-space can render a program162

erroneous. Therefore, Eq. (8) becomes too restrictive. A straightforward solution is to use token-163

based similarity scores [Papineni et al., 2002, Ren et al., 2020]) between each subsequence W s
1:t and164

the ground truth. However, code matching is not an ideal return measure due to its poor correlation165

with program correctness [Hendrycks et al., 2021, Chen et al., 2021a, Austin et al., 2021] which can166

only be measured against fully complete programs.167

Alternatively, we introduce a critic model. The critic model is parameterized as a neural168

network with parameters ϕ that receives inputs as the problem description D and a sampled169

program W s = {ws
1, . . . , w

s
T }. The critic is trained to infer the unit test outcome; one of170

{CompileError,RuntimeError,FailedTest,PassedTest} as described in the return definitions in171

Eq. (4) to (7). The training objective of the critic ϕ can be expressed as:172

Lcritic(ϕ) = − log pϕ(u|W s, D) (9)

where u denotes the ground-truth unit test outcome given by the compiler. We use Transformer173

models of smaller sizes than the actor model as the base architecture for the critic model. The174

contextual hidden states of the program tokens (h1, . . . , hT) obtained from the critic model decoder175

are max-pooled along the sequence length dimension hpool = Pooling(h1, . . . , hT). The critic’s176

prediction on the unit test outcome is computed as û = softmax(Linear(hpool)).177

Given a learned critic, we use the probability distribution v̂t = softmax(Linear(ht)) to estimate the178

token-level value q̂ of ws
t in relation to the ground-truth unit test output (note that we use the token179

level contextual representation ht here, before the pooling operation). Specifically, q̂ϕ(ws
t) = v̂t[u]180

where v̂[.] denotes the probability of a specific unit test outcome from the four possible ones. We use181

5

Finetuned LM

Problem Example unit tests

Filter by example
unit test results

Hidden unit testsExtract example
input/output pairs

Seed1

if length(passed)==0

SeedM

…

Seed Sampling

Fail
PassSeed1

Sample
sub-sequences
by critic scoring

Generated Solutions

Seed1Seed1Seed
Seed1Seed1Seed1Seed

Seed1Seed1Seed1Seed

Figure 3: Overview of our Critic Sampling (CS) approach for program synthesis during inference

this estimate to train the actor LM model with intermediate returns:182

∇θLrl(θ) ≈ −EW s∼pθ
[(r(W s)− r(W b))

∑
t

q̂ϕ(w
s
t)∇θ log pθ(w

s
t |ws

1:t−1, D)] (10)

Generating Programs with Example Unit Tests and Critic. We leverage the unit tests provided in183

the input problem description to improve the generation procedure during inference too (see Figure 3184

for an overview). For each problem, we generate N programs, out of which we only select programs185

that pass example tests (leading to a set F) and filter out the rest. To improve sample quality, we186

perform another round of generation where we use sub-sequences from these filtered samples as187

prompts (or “seed” sequences) to the actor LM. We employ a separate critic model (ϕtest) to guide188

our choice of sub-sequences from these filtered samples. This critic model is trained with a similar189

objective as Eq. (9), but in a binary classification setup with {FailedTest,PassedTest} labels.190

Let W filter = {w1, . . . , wT } denote a generated sample that passes the example unit tests. We191

use the critic model to assign a value to each token q̂ϕtest(wt) = pϕtest(û = PassedTest|w1:t, D)192

corresponding to the critic’s predicted probability of the sub-sequence till t passing the unit tests.193

We split the sequence at position tmax corresponding to the highest critic assigned value and use194

the left split as the seed for the next stage. If this seed sequence till tmax contains a token with195

pϕtest(FailedTest) > pϕtest(PassedTest), we further chop it at this token by removing tokens on the196

right. This is done to pick prompts that are likely to generate successful programs in the next round.197

We use these seeds to initialize and condition the (actor) LM to resample new tokens till we encounter198

the <endoftext> token. In this round, each seed sequence can be stacked N/|F| times for upsampling.199

This results in the same number of output programs N . We call this generation procedure as “Critic200

Sampling” (CS). We use mini-batch generating to improve efficiency during inference and employ201

nucleus sampling with a batch size of N = 200. While we do incur additional cost to re-sample202

using the seed sequences, we are only required to generate partial programs in the re-generation stage,203

making this stage less expensive than conventional generating procedures.204

4 Experiments205

4.1 Experimental Setups and Datasets206

Pretraining Setup. We pretrain a CodeT5-large model (770M) from scratch following T5-large’s207

architecture [Raffel et al., 2020]. We follow the pretraining setups in CodeT5 [Wang et al., 2021]208

with the modifications as proposed in §3.2. We evaluate this new pretrained CodeT5 model on209

CodeXGLUE [Lu et al., 2021] and achieve new SOTA results (See the Supplementary).210

APPS Benchmark. We choose the challenging APPS program synthesis benchmark [Hendrycks211

et al., 2021], as it has large coding problems of varying difficulties collected from multiple coding212

websites. It includes training and test splits, each of which has 5000 samples of programming tasks213

with diverse levels of difficulty, including “Introductory”, “Interview”, and “Competition” levels.214

Each sample includes 20 unit tests on average to validate the functional correctness of programs.215

6

Table 1: Results on APPS: “Intro”: introductory, “Inter”: interview, “Comp”: competition-level tasks

(a) Performance by pass@k with k = {1, 5, 1000}
pass@1 pass@5 pass@1000Model Size Intro Inter Comp All Intro Inter Comp All Intro Inter Comp All

Codex 12B 4.14 0.14 0.02 0.92 9.65 0.51 0.09 2.25 25.02 3.70 3.23 7.87
AlphaCode 1B - - - - - - - - 17.67 5.24 7.06 8.09
GPT3 175B 0.20 0.03 0.00 0.06 - - - - - - - -
GPT2 0.1B 1.00 0.33 0.00 0.40 2.70 0.73 0.00 1.02 - - - -
GPT2 1.5B 1.30 0.70 0.00 0.68 3.60 1.03 0.00 1.34 25.00 9.27 8.80 12.32
GPT-Neo 2.7B 3.90 0.57 0.00 1.12 5.50 0.80 0.00 1.58 27.90 9.83 11.40 13.76
GPT-J 6B 5.60 1.00 0.50 1.82 9.20 1.73 1.00 3.08 35.20 13.15 13.51 17.63
CodeRL+CodeT5 770M 6.77 1.80 0.69 2.57 15.27 4.48 2.36 6.21 38.10 14.33 15.70 19.36

(b) Performance by n@k with k up to 50000 and n = {1, 5}

1@k 5@kModel Size k Intro Inter Comp All Intro Inter Comp All
Codex 12B 1000 22.78 2.64 3.04 6.75 24.52 3.23 3.08 7.46
AlphaCode 1B 1000 - - - - 14.36 5.63 4.58 7.17
AlphaCode 1B 10000 - - - - 18.18 8.21 6.65 9.89
AlphaCode 1B 50000 - - - - 20.36 9.66 7.75 11.42
CodeRL+CodeT5 770M 1000 16.52 6.16 4.15 7.83 24.49 8.58 7.82 11.61

Finetuning Setup. Due to the potential large number of trajectories (i.e. VT) to generate a sequence216

and the unstable feedback loop between actor and critic [Lillicrap et al., 2015, Wang et al., 2018],217

we applied imitation learning to first warm-start a pretrained LM model with Lce only for up to 10218

epochs. We then sampled sequences of program from this actor network to train the critic while219

keeping the parameters of the actor network frozen. For experiments with CodeT5 actor models, we220

use the CodeT5-small architecture for the critic model, and GPT2-small critic architecture when the221

actor models are GPT variants. After training the critic, we then apply both Lce and Lrl with equal222

weights to finetune the actor network.223

Evaluation. We follow [Hendrycks et al., 2021, Chen et al., 2021a] and evaluate the models using224

the pass@k metric, which is the percentage of problems solved by using k generated programs per225

problem. We also follow Li et al. [2022] and use n@k metric which only considers a subset of n226

candidates from k generated programs per problem. The subset of n candidates are typically selected227

by a filtering method by passing generated programs through example tests given as part of the228

problem description [Chen et al., 2021a, Li et al., 2022].229

For more details of experimental setup, please refer to the Supplementary Material.230

4.2 Experimental Results on APPS231

Baselines. As reported by Hendrycks et al. [2021], we compared our models with several baselines,232

including GPT2 [Radford et al., 2019], GPT-Neo [Black et al.], and GPT3 [Brown et al., 2020]. We233

also compare the results with Codex [Chen et al., 2021a] and AlphaCode [Li et al., 2022]. Note that234

by default, results of pretrained LMs (except for Codex and GPT3) are from models finetuned on235

APPS using the standard loss Lce only. In our ablations, since CodeRL is model-agnostic, we can236

also integrate it with GPT variants such as GPT-J [Wang and Komatsuzaki, 2021] and GPT-Neo.237

Overall Results. Firstly, Table 1a shows that the CodeRL with the CodeT5 model can achieve238

significant performance gains, outperforming many pretrained LMs of much larger sizes. Specifically,239

our approach achieved new SOTA results of 2.57% pass@1, 6.21% pass@5, and 19.36% pass@1000.240

Table 1b shows that when evaluating on a subset of filtered code samples, our CodeRL+CodeT5 can241

achieve SOTA results of 7.83% 1@k and 11.61% 5@k. Note that while CodeRL incurs additional242

computation cost during inference with CS, our approach only requires much lower k to achieve243

comparable performance with other models. Specifically, with k = 1000 only, our model performance244

is as good as AlphaCode with much larger generation budget of k = 50000.245

7

4.3 Ablation Studies246

In this section, for a fair comparison between variants of return estimates and learning objectives, we247

report the results of pass@k where k = {1, 5} with beam search decoding. For larger k, we report248

the results with and without CS procedure.249

Table 2: Ablation results with variants of return estimates

W b q̂ϕ
pass@1 pass@5

Intro Inter Comp All Intro Inter Comp All
A ✓ - 4.60 1.10 0.20 1.62 7.10 1.57 0.40 2.44
B - ✓ 4.00 0.87 0.20 1.36 5.60 1.30 0.20 1.94
C ✓ dist. 4.90 1.03 0.20 1.64 7.80 1.60 0.30 2.58
D ✓ ✓ 6.20 1.50 0.30 2.20 9.39 1.90 0.42 3.10

Impacts of Return Estimates.250

Table 2 show the results of251

CodeT5-770M trained by differ-252

ent approaches to estimate re-253

turns of code samples. Overall,254

we report that the CodeRL ob-255

jective with relative token-level256

return estimates by our critic model (Model D) can achieve the best performance on pass@1 and257

pass@5. Secondly, we note that using absolute returns without a baseline (Model B) could lead to the258

most performance drop, as this approach heavily penalizes all incorrect samples (even though they259

might still be better than a naive baseline). Thirdly, without a critic model, simply assigning identical260

rewards to all tokens in a code sample (Model A) is disadvantageous as these return estimates are261

too restrictive to be used as feedback signals for RL training. Finally, we experimented with a262

distance-based critic which assumes that token values decay linearly from t = 1 to t = T (Model C).263

The lower performance suggests the benefit of training a critic network to compute the returns.264

Table 3: Ablation results with different learning objectives

Lce Lrl
pass@1 pass@5

Intro Inter Comp All Intro Inter Comp All
GPT-Neo

- - 3.90 0.57 0.00 1.12 5.50 0.80 0.00 1.58
✓ - 2.70 0.90 0.10 1.10 5.00 1.43 0.30 1.92

✓(+W s) - 2.90 0.80 0.30 1.12 5.20 1.57 0.40 2.06
- ✓ 3.30 0.80 0.20 1.18 5.30 1.57 0.20 2.04
✓ ✓ 4.70 0.73 0.30 1.44 6.58 1.54 0.18 2.28

CodeT5-770M
- - 6.60 1.03 0.30 2.00 8.80 1.67 0.70 2.90
✓ - 4.60 0.93 0.10 1.50 7.00 1.37 0.20 2.26

✓(+W s) - 5.10 1.10 0.40 1.76 8.30 1.43 0.70 2.66
- ✓ 5.00 0.90 0.50 1.64 7.60 1.53 0.60 2.56
✓ ✓ 6.20 1.50 0.30 2.20 9.39 1.90 0.42 3.10

Impacts of Learning Objec-265

tives. Table 3 shows the results266

with different combinations of267

Lce and Lrl. We experiment268

with using only Lrl and note269

the problem of vanishing gra-270

dients during finetuning [Ran-271

zato et al., 2016, Bahdanau et al.,272

2016]. Secondly, we note that by273

using only Lce for further fine-274

tuning, despite improvement in275

losses during training time, the276

model performance indeed de-277

grades during test time. We expect these models are overfitting to the training data. Interestingly,278

a naive approach of Lce with synthetic samples W s, all of which are treated as correct codes with279

r(W s) = 1, still leads to some performance improvement with GPT-Neo on pass@5 (but not in280

other cases). Finally, we found that using both Lce and Lrl results in a more consistent performance281

improvement overall on pass@1 and pass@5 for the GPT-Neo and CodeT5 models.282

Table 4: Ablation results of critic sampling

Metric Approach Intro Inter Comp All

pass@200 without CS 26.79 8.73 7.60 12.12
with CS 29.10 9.67 9.50 13.52

pass@1000 without CS 35.30 13.33 13.60 17.78
with CS 38.10 14.33 15.70 19.36

1@1000 without CS 16.27 6.00 4.27 7.71
with CS 16.52 6.16 4.15 7.83

Impact of Critic Sampling. Table 4 shows the283

ablation results of critical sampling (CS) during284

inference. Overall, we found positive impact of285

CS for improving pass@200 and pass@1000286

metrics. Interestingly, we observe that CS does287

not provide a significant gain on the n@k metric.288

Note that n@k measures the solving rate among289

the subset F filtered from k samples. As CS290

will technically increase the size of this subset, the n@k metric will consider exponentially larger291

number of options of n samples than before. This will normalize n@k by a larger pool of n candidate292

set, resulting in less impact of CodeRL on the results. We recommend additional post-processing293

steps such as candidate ranking [Cobbe et al., 2021] to improve the n@k performance.294

Impacts of Pretraining Approaches for CodeT5. Table 5 reports the results of CodeT5 with295

different configurations of model sizes, pretraining data, and pretraining objectives.296

8

Table 5: Ablation results of CodeT5 pretrained model variants

Size Data Task pass@1 pass@5
Intro Inter Comp All Intro Inter Comp All

60M CSN MSP 1.40 0.67 0.00 0.68 2.60 0.87 0.10 1.06
220M CSN MSP 2.50 0.73 0.00 0.94 3.30 1.10 0.10 1.34
770M CSN MSP 3.60 0.90 0.20 1.30 4.30 1.37 0.20 1.72
770M +GCPY MSP 4.30 1.10 0.20 1.56 5.60 1.47 0.30 2.06
770M +GCPY +NTP 6.60 1.03 0.30 2.00 8.80 1.67 0.70 2.90

For a fair comparison, all models297

are only finetuned with Lce on298

APPS. As observed in prior work299

[Chen et al., 2021a, Austin et al.,300

2021], scaling up the number of301

model parameters or the size of302

the pretraining data can signifi-303

cantly improve model performance of downstream synthesis tasks. We also find that enhancing the304

pretraining objectives with next token prediction (NTP) is vital for generation tasks, surpassing just305

masked span prediction (MSP) from the original CodeT5.306

4.4 Zero-shot Evaluation on MBPP Benchmark307

Table 6: MBPP benchmark results

Model Size pass@80
GPT 224M 7.2
GPT 422M 12.6
GPT 1B 22.4
GPT 4B 33.0
GPT 8B 40.6
GPT 68B 53.6
GPT 137B 61.4
CodeRL+CodeT5 (ZS) 770M 63.0

Finally, we test the zero-shot transfer ability of CodeRL308

on another smaller and simpler program synthesis bench-309

mark MBPP [Austin et al., 2021]. Table 6 reports the310

results of our CodeRL+CodeT5 on MBPP benchmark311

compared with finetuned GPT models of up to 137B size.312

Our CodeRL+CodeT5 (ZS) was trained on APPS and then313

evaluated on MBPP in a zero-shot setting. We observe314

that CodeRL with CodeT5 of a much smaller model size315

yields surprisingly good zero-shot performance, setting a316

new SOTA result of 63.0% pass@80 over GPT-137B’s 61.4% pass@80. This validates the strong317

zero-shot transfer ability of CodeRL for unseen tasks. More analysis is included in Supplementary.318

5 Limitations and Broader Impacts319

One limitation of our approach is the computation cost of training critic model to estimate returns in320

addition to the original LM (actor network). However, in practice, we found that training a good critic321

model does not require large-scale models to attain a decent performance. For instance, a finetuned322

critic model initialized from a pretrained GPT-2 (small) can achieve over 75% error prediction323

accuracy on synthetic samples.324

Program synthesis can lead to substantial positive social impacts, e.g., transforming future software325

developing tools, increasing productivity of developers, and improving accessibility and quality of326

programming courses. Yet, some risks and bias issues are still worth considering before deploying327

such models at scale. For example, training data from public github code repos may contain328

vulnerabilities and the resulting synthesis models may generate programs with weak security measures329

[Hammond Pearce et al., 2021].330

6 Conclusion331

We present CodeRL, a novel framework for program synthesis, using deep reinforcement learning332

to improve pretrained LMs, by exploiting unit test signals in both training and inference stages.333

Specifically, we introduce an actor-critic training approach to optimize pretrained LMs with dense334

feedback signals on synthetic code samples. During inference, we propose a new generation procedure335

with critical sampling, which enables the model to automatically regenerate programs based on336

feedback from unit tests and critic scores. We integrate CodeRL with the improved CodeT5-large337

model (770M) and achieve new SOTA results on both the APPS and MBPP benchmarks, surpassing338

the prior SOTA by massive pretrained LMs of much larger model sizes. Our comprehensive analysis339

shows that CodeRL achieved consistent improvement upon the conventional pretrained LMs for code340

generation tasks. CodeRL is a general framework that integrates pretrained LMs and RL holistically341

for program synthesis, and can be extended and improved in various ways. For example, it can342

be easily integrated with other better pretrained LMs and can be improved with more fine-grained343

feedback from the environment, such as feedback received from a static code analyzer.344

9

References345

J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan, E. Jiang, C. Cai, M. Terry,346

Q. Le, et al. Program synthesis with large language models. arXiv preprint arXiv:2108.07732,347

2021.348

D. Bahdanau, P. Brakel, K. Xu, A. Goyal, R. Lowe, J. Pineau, A. Courville, and Y. Bengio. An349

actor-critic algorithm for sequence prediction. arXiv preprint arXiv:1607.07086, 2016.350

M. Balog, A. L. Gaunt, M. Brockschmidt, S. Nowozin, and D. Tarlow. Deepcoder: Learning to write351

programs. arXiv preprint arXiv:1611.01989, 2016.352

S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer. Scheduled sampling for sequence prediction with353

recurrent neural networks. Advances in neural information processing systems, 28, 2015.354

S. Black, G. Leo, P. Wang, C. Leahy, and S. Biderman. Gpt-neo: Large scale autoregressive language355

modeling with mesh-tensorflow, march 2021. URL https://doi. org/10.5281/zenodo, 5297715.356

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,357

G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural information358

processing systems, 33:1877–1901, 2020.359

R. Bunel, M. Hausknecht, J. Devlin, R. Singh, and P. Kohli. Leveraging grammar and reinforcement360

learning for neural program synthesis. In International Conference on Learning Representations,361

2018. URL https://openreview.net/forum?id=H1Xw62kRZ.362

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Edwards, Y. Burda,363

N. Joseph, G. Brockman, et al. Evaluating large language models trained on code. arXiv preprint364

arXiv:2107.03374, 2021a.365

Q. Chen, J. Lacomis, E. J. Schwartz, G. Neubig, B. Vasilescu, and C. Le Goues. VarCLR: Variable366

semantic representation pre-training via contrastive learning. In International Conference on367

Software Engineering, ICSE ’22, 2022.368

X. Chen, D. Song, and Y. Tian. Latent execution for neural program synthesis beyond domain-specific369

languages. Advances in Neural Information Processing Systems, 34, 2021b.370

C. Clement, D. Drain, J. Timcheck, A. Svyatkovskiy, and N. Sundaresan. PyMT5: multi-mode371

translation of natural language and python code with transformers. In Proceedings of the 2020372

Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 9052–9065,373

Online, Nov. 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.374

728. URL https://aclanthology.org/2020.emnlp-main.728.375

K. Cobbe, V. Kosaraju, M. Bavarian, J. Hilton, R. Nakano, C. Hesse, and J. Schulman. Training376

verifiers to solve math word problems. arXiv preprint arXiv:2110.14168, 2021.377

J. Devlin, J. Uesato, S. Bhupatiraju, R. Singh, A.-r. Mohamed, and P. Kohli. Robustfill: Neural378

program learning under noisy i/o. In International conference on machine learning, pages 990–998.379

PMLR, 2017.380

K. Ellis, M. Nye, Y. Pu, F. Sosa, J. Tenenbaum, and A. Solar-Lezama. Write, execute, assess: Program381

synthesis with a repl. Advances in Neural Information Processing Systems, 32, 2019.382

Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu, D. Jiang, and383

M. Zhou. CodeBERT: A pre-trained model for programming and natural languages. In Findings384

of the Association for Computational Linguistics: EMNLP 2020, pages 1536–1547, Online, Nov.385

2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.findings-emnlp.139.386

URL https://aclanthology.org/2020.findings-emnlp.139.387

10

https://openreview.net/forum?id=H1Xw62kRZ
https://aclanthology.org/2020.emnlp-main.728
https://aclanthology.org/2020.findings-emnlp.139

S. Gulwani, W. R. Harris, and R. Singh. Spreadsheet data manipulation using examples. Communica-388

tions of the ACM, 55(8):97–105, 2012.389

K. Guu, P. Pasupat, E. Liu, and P. Liang. From language to programs: Bridging reinforcement390

learning and maximum marginal likelihood. In Proceedings of the 55th Annual Meeting of the391

Association for Computational Linguistics (Volume 1: Long Papers), pages 1051–1062, Vancouver,392

Canada, July 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1097. URL393

https://aclanthology.org/P17-1097.394

B. A. Hammond Pearce, B. Tan, B. Dolan-Gavitt, and R. Karri. An empirical cybersecurity evaluation395

of github copilot’s code contributions. arXiv preprint arXiv:2108.09293, 2021.396

D. Hendrycks, S. Basart, S. Kadavath, M. Mazeika, A. Arora, E. Guo, C. Burns, S. Puranik, H. He,397

D. Song, and J. Steinhardt. Measuring coding challenge competence with apps. NeurIPS, 2021.398

H. Husain, H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt. Codesearchnet challenge:399

Evaluating the state of semantic code search. CoRR, abs/1909.09436, 2019.400

J. Johnson, B. Hariharan, L. Van Der Maaten, J. Hoffman, L. Fei-Fei, C. Lawrence Zitnick, and401

R. Girshick. Inferring and executing programs for visual reasoning. In Proceedings of the IEEE402

International Conference on Computer Vision, pages 2989–2998, 2017.403

A. Joulin and T. Mikolov. Inferring algorithmic patterns with stack-augmented recurrent nets.404

Advances in neural information processing systems, 28, 2015.405

V. Konda and J. Tsitsiklis. Actor-critic algorithms. Advances in neural information processing406

systems, 12, 1999.407

K. Kurach, M. Andrychowicz, and I. Sutskever. Neural random-access machines. arXiv preprint408

arXiv:1511.06392, 2015.409

Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond, T. Eccles, J. Keeling, F. Gi-410

meno, A. D. Lago, et al. Competition-level code generation with alphacode. arXiv preprint411

arXiv:2203.07814, 2022.412

C. Liang, M. Norouzi, J. Berant, Q. V. Le, and N. Lao. Memory augmented policy optimization for413

program synthesis and semantic parsing. Advances in Neural Information Processing Systems, 31,414

2018.415

P. Liang, M. I. Jordan, and D. Klein. Learning programs: A hierarchical bayesian approach. In416

Proceedings of the 27th International Conference on Machine Learning (ICML-10), pages 639–646,417

2010.418

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. Continuous419

control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.420

C.-Y. Lin. Rouge: A package for automatic evaluation of summaries. Text Summarization Branches421

Out, 2004.422

S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. B. Clement, D. Drain, D. Jiang,423

D. Tang, G. Li, L. Zhou, L. Shou, L. Zhou, M. Tufano, M. Gong, M. Zhou, N. Duan, N. Sundaresan,424

S. K. Deng, S. Fu, and S. Liu. Codexglue: A machine learning benchmark dataset for code425

understanding and generation. In NeurIPS Datasets and Benchmarks, 2021.426

Z. Manna and R. J. Waldinger. Toward automatic program synthesis. Communications of the ACM,427

14(3):151–165, 1971.428

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for automatic evaluation of machine429

translation. In Proceedings of the 40th annual meeting on association for computational linguistics,430

pages 311–318. Association for Computational Linguistics, 2002.431

11

https://aclanthology.org/P17-1097

E. Parisotto, A.-r. Mohamed, R. Singh, L. Li, D. Zhou, and P. Kohli. Neuro-symbolic program432

synthesis. arXiv preprint arXiv:1611.01855, 2016.433

G. Poesia, A. Polozov, V. Le, A. Tiwari, G. Soares, C. Meek, and S. Gulwani. Synchromesh: Reliable434

code generation from pre-trained language models. In International Conference on Learning435

Representations, 2022. URL https://openreview.net/forum?id=KmtVD97J43e.436

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language models are437

unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.438

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu.439

Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn.440

Res., 21:140:1–140:67, 2020.441

M. Ranzato, S. Chopra, M. Auli, and W. Zaremba. Sequence level training with recurrent neural442

networks. In Y. Bengio and Y. LeCun, editors, 4th International Conference on Learning Repre-443

sentations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings,444

2016. URL http://arxiv.org/abs/1511.06732.445

S. Ren, D. Guo, S. Lu, L. Zhou, S. Liu, D. Tang, N. Sundaresan, M. Zhou, A. Blanco, and S. Ma.446

Codebleu: a method for automatic evaluation of code synthesis. arXiv preprint arXiv:2009.10297,447

2020.448

Z. Ren, X. Wang, N. Zhang, X. Lv, and L.-J. Li. Deep reinforcement learning-based image captioning449

with embedding reward. In Proceedings of the IEEE conference on computer vision and pattern450

recognition, pages 290–298, 2017.451

S. J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, and V. Goel. Self-critical sequence training for image452

captioning. In Proceedings of the IEEE conference on computer vision and pattern recognition,453

pages 7008–7024, 2017.454

P. D. Summers. A methodology for lisp program construction from examples. Journal of the ACM455

(JACM), 24(1):161–175, 1977.456

R. S. Sutton. Temporal credit assignment in reinforcement learning. PhD thesis, University of457

Massachusetts Amherst, 1984.458

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.459

R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for reinforcement460

learning with function approximation. Advances in neural information processing systems, 12,461

1999.462

D. Trivedi, J. Zhang, S.-H. Sun, and J. J. Lim. Learning to synthesize programs as interpretable and463

generalizable policies. Advances in Neural Information Processing Systems, 34:25146–25163,464

2021.465

R. Vedantam, C. Lawrence Zitnick, and D. Parikh. Cider: Consensus-based image description466

evaluation. In Proceedings of the IEEE conference on computer vision and pattern recognition,467

pages 4566–4575, 2015.468

R. J. Waldinger and R. C. Lee. Prow: A step toward automatic program writing. In Proceedings of469

the 1st international joint conference on Artificial intelligence, pages 241–252, 1969.470

B. Wang and A. Komatsuzaki. GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model.471

https://github.com/kingoflolz/mesh-transformer-jax, May 2021.472

X. Wang, W. Chen, J. Wu, Y.-F. Wang, and W. Y. Wang. Video captioning via hierarchical rein-473

forcement learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern474

Recognition, pages 4213–4222, 2018.475

12

https://openreview.net/forum?id=KmtVD97J43e
http://arxiv.org/abs/1511.06732
https://github.com/kingoflolz/mesh-transformer-jax

Y. Wang, W. Wang, S. R. Joty, and S. C. H. Hoi. Codet5: Identifier-aware unified pre-trained476

encoder-decoder models for code understanding and generation. In EMNLP (1), pages 8696–8708.477

Association for Computational Linguistics, 2021.478

R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement479

learning. Machine learning, 8(3):229–256, 1992.480

X. Xu, C. Liu, and D. Song. SQLNet: Generating structured queries from natural language without re-481

inforcement learning, 2018. URL https://openreview.net/forum?id=SkYibHlRb.482

P. Yin and G. Neubig. A syntactic neural model for general-purpose code generation. In Proceedings483

of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long484

Papers), pages 440–450, Vancouver, Canada, July 2017. Association for Computational Linguistics.485

doi: 10.18653/v1/P17-1041. URL https://aclanthology.org/P17-1041.486

V. Zhong, C. Xiong, and R. Socher. Seq2SQL: Generating structured queries from natural lan-487

guage using reinforcement learning, 2018. URL https://openreview.net/forum?id=488

Syx6bz-Ab.489

Checklist490

1. For all authors...491

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s492

contributions and scope? [Yes] See Section 3 and 4493

(b) Did you describe the limitations of your work? [Yes] See Section 5.494

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See495

Section 5.496

(d) Have you read the ethics review guidelines and ensured that your paper conforms to497

them? [Yes]498

2. If you are including theoretical results...499

(a) Did you state the full set of assumptions of all theoretical results? [N/A]500

(b) Did you include complete proofs of all theoretical results? [N/A]501

3. If you ran experiments...502

(a) Did you include the code, data, and instructions needed to reproduce the main ex-503

perimental results (either in the supplemental material or as a URL)? [Yes] See the504

Supplementary.505

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they506

were chosen)? [Yes] See the Supplementary.507

(c) Did you report error bars (e.g., with respect to the random seed after running experi-508

ments multiple times)? [No] As it is very expensive to experiment with large-scale509

language models, we did not try different random seeds due to the limitation of compu-510

tation resources.511

(d) Did you include the total amount of compute and the type of resources used (e.g., type512

of GPUs, internal cluster, or cloud provider)? [Yes] See the configurations in the513

Supplementary.514

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...515

(a) If your work uses existing assets, did you cite the creators? [Yes] See the Supplemen-516

tary.517

(b) Did you mention the license of the assets? [Yes] See the Supplementary.518

(c) Did you include any new assets either in the supplemental material or as a URL? [No]519

We do not curate any new dataset in this paper. We will release the code and models.520

13

https://openreview.net/forum?id=SkYibHlRb
https://aclanthology.org/P17-1041
https://openreview.net/forum?id=Syx6bz-Ab
https://openreview.net/forum?id=Syx6bz-Ab
https://openreview.net/forum?id=Syx6bz-Ab

(d) Did you discuss whether and how consent was obtained from people whose data you’re521

using/curating? [N/A] All datasets evaluated in our experiments are publicly available522

for use.523

(e) Did you discuss whether the data you are using/curating contains personally identifiable524

information or offensive content? [N/A] The data we are using are code samples525

from public programming competitions which do not include personally identifiable526

information or offensive content.527

5. If you used crowdsourcing or conducted research with human subjects...528

(a) Did you include the full text of instructions given to participants and screenshots, if529

applicable? [N/A]530

(b) Did you describe any potential participant risks, with links to Institutional Review531

Board (IRB) approvals, if applicable? [N/A]532

(c) Did you include the estimated hourly wage paid to participants and the total amount533

spent on participant compensation? [N/A]534

14

	Introduction
	Related Work
	CodeRL
	Program Synthesis Task
	Pretraining Language Models on Code
	Program Synthesis as an RL Problem

	Experiments
	Experimental Setups and Datasets
	Experimental Results on APPS
	Ablation Studies
	Zero-shot Evaluation on MBPP Benchmark

	Limitations and Broader Impacts
	Conclusion

