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ABSTRACT

In this work, we study the problem of partitioning a set of graphs into different
groups such that the graphs in the same group are similar while the graphs in
different groups are dissimilar. This problem was rarely studied previously, al-
though there have been a lot of work on node clustering and graph classification.
The problem is challenging because it is difficult to measure the similarity or dis-
tance between graphs. One feasible approach is using graph kernels to compute
a similarity matrix for the graphs and then performing spectral clustering, but the
effectiveness of existing graph kernels in measuring the similarity between graphs
is very limited. To solve the problem, we propose a novel method called Deep
Graph-Level Clustering (DGLC). DGLC utilizes a graph isomorphism network to
learn graph-level representations by maximizing the mutual information between
the representations of entire graphs and substructures, under the regularization of
a clustering module that ensures discriminative representations via pseudo labels.
DGLC achieves graph-level representation learning and graph-level clustering in
an end-to-end manner. The experimental results on six benchmark datasets of
graphs show that our DGLC has state-of-the-art performance in comparison to
many baselines.

1 INTRODUCTION

Graph-structured data widely exist in real-world scenarios, such as social networks (Newman, 2006)
and molecular analysis (Gilmer et al., 2017). Compared to other data formats, graph data explicitly
contain connections between data through the attributes of nodes and edges, which can provide rich
structural information for many applications. In recent years, machine learning on graph-structured
data gains more and more attention. Many supervised and unsupervised learning methods have been
proposed for graph-structured data in various applications.

The machine learning problems of graph-structured data can be organized into two categories: node-
level learning and graph-level learning. In node-level learning, the samples are the nodes in a single
graph. Node-level learning mainly includes node classification (Li et al., 2017; Wu et al., 2021; Xu
et al., 2021) and node clustering (Wang et al., 2017; Pan & Kang, 2021; Lin et al., 2021). Classical
node classification methods are often based on graph embedding (Yan et al., 2006; Cai et al., 2018)
and graph regularization (Subramanya & Bilmes, 2009; Bhagat et al., 2011), while recent advances
are based on graph neural networks (GNN) (Kipf & Welling, 2017; Xu et al., 2019; Wu et al., 2020).
Owing to the success of GNN in nodes classification, a few researchers have proposed GNN-based
methods for nodes clustering (Wang et al., 2019; Bo et al., 2020; Zhu & Koniusz, 2021).

Different from node-level learning, in graph-level learning, the samples are a set of graphs that can be
organized into different groups. Classical methods for graph-level classification are often based on
graph kernels (Vishwanathan et al., 2010; Yanardag & Vishwanathan, 2015) while recent advances
are based on GNN (Wu et al., 2020; Rong et al., 2020). Researchers generally utilize various types
of GNN, e.g., graph convolutional networks (GCNs) (Kipf & Welling, 2017) and graph isomorphism
network (GIN) (Xu et al., 2019) to learn graph-level representations by aggregating inherent node
information and structural neighbor information in graphs, then they train a classifier based on the
learned graph-level representations (Zhang et al., 2018; Sun et al., 2020; Wang et al., 2021; Doshi
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& Chepuri, 2022). Nevertheless, collecting large amounts of labels for graph-level classification is
costly in real-world, and the clustering on graph-level data is much more difficult than that on nodes
and still remains an open issue. It thereby shows the importance of exploring graph-level clustering,
namely partitioning a set of graphs into different groups such that the graphs in the same group
are similar while the graphs in different groups are dissimilar.

Previous research on graph-level clustering is very limited. The major reason is that it is difficult
to represent graphs as feature vectors or quantify the similarity between graphs in an unsupervised
manner. An intuitive approach to graph-level clustering is to perform spectral clustering (Ng et al.,
2001) over the similarity matrix produced by a graph kernels (Kondor & Pan, 2016; Du et al., 2019;
Togninalli et al., 2019) on graphs. Although there have been a few graph kernels such as random
walk kernel (Gärtner et al., 2003) and Weisfeiler-Lehman kernel (Shervashidze et al., 2011), most
of them rely on manual design that fails to provide desirable generalization capability for various
types of graphs and produce satisfactory similarity matrices for spectral clustering, which will be
demonstrated in Section 4.3.

Another solution comes with the encouraging development of GNNs. Some latest works such as
GCNs (Kipf & Welling, 2017) and GIN (Xu et al., 2019) have been proven to be effective in learning
node/graph-level representations for various downstream tasks, e.g., node clustering (Wang et al.,
2017; Bo et al., 2020; Liu et al., 2022) and graph classification (Sun et al., 2020; Sato et al., 2021;
You et al., 2021)—thanks to the powerful generalization and representation learning capability of
deep neural networks. Therefore, it may be possible to achieve graph-level clustering by performing
classical clustering algorithms such as k-means (Hartigan & Wong, 1979) and spectral clustering
over the graph-level representations produced by various unsupervised graph representation learning
methods (Grover & Leskovec, 2016; Narayanan et al., 2017; Adhikari et al., 2018; Sun et al., 2020).

Although the afore-mentioned GNN-based unsupervised graph-level representation learning meth-
ods have shown promising performance in terms of some down-stream tasks such as node clustering
and graph classification, they do not guarantee to generate effective features for the clustering tasks
on entire graphs. In contrast, the graph-level clustering may benefit from an end-to-end framework
that can learn clustering-oriented features in the graph-level representation learning. To this end, we
propose a novel graph clustering method called deep graph-level clustering (DGLC) in this paper.
The proposed method is a fully unsupervised framework and yields the clustering-oriented graph-
level representations via jointly optimizing two objectives: representation learning and clustering.
The main contributions of this paper are summarized as follows.

• We investigate the effectiveness of various graph kernels as well as unsupervised graph
representation learning methods in the problem of graph-level clustering.

• We propose an end-to-end graph-level clustering method. In the method, the clustering
objective can guide the representation learning for entire graphs, which is demonstrated to
be much more effective than those two-stage models in this paper.

• We conduct extensive comparative experiments of graph-level clustering on six benchmark
datasets. Our method is compared with five graph kernel methods and four cutting-edge
GNN representation learning methods, under the evaluation of three quantitative metrics
and one qualitative (visualization) metric. Our method has state-of-the-art performance.

2 PRELIMINARIES

The notations used in this paper are shown in Table 1. In the next two subsections, we briefly
introduce graph kernels and GNN based graph-level representation learning methods. We will also
illustrate how to apply them to graph-level clustering.

2.1 GRAPH KERNELS

Graph kernels are techniques typically used in both supervised and unsupervised learning that ex-
ploit graph topology. They aim to learn graph representation implicitly with predetermined graph
sub-structures. For a graph G, after its sub-graphs {Gi} are defined, the kernel is calculated accord-
ing to the occurrences of the sub-graphs of {Gi}. Namely, Kg(Gm, Gn) := F⊤

Gm
FGn , where FGi

denotes frequency. In recent years, much effort has been devoted to the identification of desirable
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Table 1: Notations for the main variables and parameters in this paper.
G Graph set G Graph set in a minibatch
V Node set E Edge set
X Node features set N (v) Neighborhood set of node v
G A single graph K Number of GNN hidden layers
hkv Learned feature for node v in k-th GNN layer akv Aggregated feature for node v in k-th GNN layer
Hϕ(G) Graph-level representaion Iϕ,ψ Mutual information estimator
fθ Cluster projector Zϕ,θ(G) Cluster embedding
c Number of clusters ϕ Parameters of GNN
ψ Parameters of mutual information estimator θ Parameter of clustering network

sub-graphs ranging from Graphlet kernel (Shervashidze et al., 2009), Random walk kernel (Vish-
wanathan et al., 2010), Shortest path kernel (Borgwardt & Kriegel, 2005) to Subgraph matching ker-
nel (Kriege & Mutzel, 2012), Pyramid match kernel (Nikolentzos et al., 2017), etc. For example, one
of the most popular kernels is the Weisfeiler-Lehman kernel (Shervashidze et al., 2011). It belongs
to subtree kernel family and could scale up to large and labeled graphs. Weisfeiler-Lehman kernel is
built upon other base kernels through Weisfeiler-Lehman test of isomorphism on graphs. The essen-
tial idea of Weisfeiler-Lehman kernel is to relabel the graph with not only the original label of each
vertex, but also the sorted set of labels of its neighbors (sub-tree structure). With runtime scaling only
linearly in the number of edges of the graphs, Weisfeiler-Lehman kernel is widely applied in com-
putational biology and social network analysis. However, Weisfeiler–Lehman kernel’s hashing step
is somewhat ad-hoc, with performance varying from data to data (Kondor & Pan, 2016). Another
state-of-the-art algorithm is the shortest-path kernel (Borgwardt & Kriegel, 2005), which is based
on paths instead of conventional walks and cycles. By transforming the original graph into shortest-
paths graph G̃v,u,e = {the number of occurrences of vertex v and u connected by shortest-path e},
it avoids the high computational complexity of graph kernels based on walks, subtrees and cycles. In
this paper, several graph kernels are selected as comparative models to test their efficiency on clus-
tering. More specifically, we perform spectral clustering with the similarity matrices computed by
graph kernels. One limitation is that existing graph kernels are not effective enough to quantify the
similarity between graphs. In addition, most of them cannot take advantages of the nodes features
and labels of graph. The related results and time complexity comparison can be found in Table 3-5
and Appendix A.5.

2.2 UNSUPERVISED GRAPH-LEVEL REPRESENTATION LEARNING

In recent years, GNN related models (Wu et al., 2020; Zhou et al., 2020) have shown state-of-the-art
performance in many graph-data related tasks such as nodes classification (Kipf & Welling, 2017;
Zhang et al., 2019) and graph classification (Zhang et al., 2018; Xu et al., 2019; Sun et al., 2020).
A number of graph representation learning methods have been proposed to handle the graph/node
classification and node clustering tasks. For example, Grover & Leskovec (2016) proposed to learn
low-dimensional mapping for nodes that maximally preserves the neighborhood information of
nodes. Veličković et al. (2019) proposed to learn node representations for node classification via
maximizing the mutual information between the patch representations and summarized graph rep-
resentations. Similarly, Sun et al. (2020) utilized the mutual information maximization strategy
and GIN (Xu et al., 2019) to learn graph representations for graph-level classifications. You et al.
(2020; 2021) took inspiration from the self-supervised learning to augment the graph data to con-
struct positive/negative pairs, thereby learn effective graph representations with contrastive learning
strategy (Chen et al., 2020).

It should be pointed out that existing graph representation learning methods rarely investigate the
graph-level clustering task, as it is far difficult than graph classification or node clustering. An intu-
itive strategy is to perform k-means (Hartigan & Wong, 1979) or spectral clustering (Ng et al., 2001)
on the learned graph-level representations given by those methods. Nevertheless, the clustering per-
formance is not desirable as can be observed in Section 4.4, because the representations learned
by those methods are not guaranteed to be suitable or effective for graph-level clustering. There-
fore, we present our DGLC method to investigate the way to learn clustering-oriented graph-level
representations, of which the learning is guided by an explicit clustering objective.
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3 METHODOLOGY

3.1 PROBLEM FORMULATION

Given a set of n graphs, i.e., G := {G1, G2, . . . , Gn}, where the i-th graph Gi = (Vi, Ei) has
node features Xi = {x(i)

v }v∈Vi and X := {X1,X2, . . . ,Xn}. The graph-level clustering aims to
partition the set G into a few non-overlapped groups, i.e., G = G(1)∪G(2)∪· · · G(c) and G(i)∩G(j) =
∅ for any i ̸= j, such that the graphs in the same group are similar while the graphs in different
groups are dissimilar, without using any label information.

Since the original graph data may not have graph-level feature vectors or they often contain redun-
dant and distracting information, a more effective way is to perform clustering in a latent space given
by some representation learning methods. Therefore, we propose to learn latent representations and
conduct clustering simultaneously, where the representation learning and clustering facilitate each
other. We formalize the objective function for graph-level clustering as follows

L(ϕ, θ) := Lr(gϕ(X ,G),X ,G) + Lc|θ(gϕ(X ,G)). (1)

In (1), Lr denotes the representation learning objective that aims to map the input data X ,G into a
latent space via a deep graph neural network with parameters ϕ. Lc|θ denotes the clustering objective
on the representations gϕ(X ,G) and is associated with a deep neural network with parameters θ that
may also contain the cluster centers or assignments. Note that there could be a trade-off parameter
between Lr and Lc|θ, but we just ignore it for convenience. We see that the objective L(ϕ, θ) does
not only learn cluster-oriented representations, but also directly produces clustering results. So there
is no need to perform k-means or spectral clustering after the pure representation learning like those
two-step models mentioned in Section 2.2.

3.2 LEARNING GRAPH-LEVEL REPRESENTATIONS

To learn effective representations of the graphs, we take advantages of GNN (Kipf & Welling, 2017;
Xu et al., 2019; Wu et al., 2020). GNN leverages the node information and structural information to
learn representations for node or graph. GNN aggregates the neighboring information of each node
to itself iteratively, thus the learned features could capture both the inherent node information and
its neighbors’ information. Specifically, the learned feature hv for node v in the k-th layer is

h(k)
v = COMBINE(k)

(
h(k−1)
v ,h(k)

v

)
= COMBINE(k)

(
h(k−1)
v ,AGGREGATE(k)({h(k−1)

u : u ∈ N (v)})
)
, (2)

where h
(k)
v denotes the aggregated neighbor features in k-th layer, N (v) is the neighborhood set of

node v. Particularly, the initial representation h
(0)
v is set as the node features of v, i.e., xv . It is worth

noting that more global information could be obtained as the layer deepens, while some more gener-
alized information would be possessed in the earlier layers (Xu et al., 2019). Therefore, considering
the information from various depths of the network would help us get more powerful representa-
tions for graph-level clustering tasks. Following the idea, we concatenate the representation learned
at each layer as

hiϕ = CONCAT
(
{h(k)

i }Kk=1)
)
, (3)

where hiϕ is concatenated representation for node i, and h
(k)
i is the representation learned in k-th

layer. After that, we can utilize a READOUT function to obtain the graph-level representation, i.e.,

Hϕ(Gj) = READOUT({hiϕ}
|Gj |
i=1 ), (4)

where |Gj | denotes the number of nodes in Gj . Therefore, for the given graph dataset G := {Gj ∈
G}nbj=1 in a batch, Hϕ(G) ∈ Rnb×Kdh can be regarded as the learned graph-level representations,
where nb is number of graphs in a batch, dh is the dimension of each hidden layer of GNN and K
is the number of GNN layers. Note that we use the sum readout strategy in this work.
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As the graph-level clustering is an unsupervised learning task, it is important to learn more rep-
resentative features in an unsupervised manner. We follow (Hjelm et al., 2019; Sun et al., 2020)
to achieve this by maximizing the mutual information between the representations of entire graphs
and substructure, since it has been demonstrated as a powerful unsupervised graph representation
learning technique. Specifically, for the given graph datasets in a batch G that follows an empirical
probability distribution P on the original data space, the estimator Iϕ,ψ of the mutual information
(MI) over the global and local pairs is defined as follows:

ϕ̂, ψ̂ = argmax
ϕ,ψ

∑
G⊆G

1

|G|

∑
i∈G

Iϕ,ψ(h
i
ϕ;Hϕ(G)) ≜ −Lr|ϕ,ψ, (5)

where |G| is the number of nodes in G, i denotes a single node in G, Iϕ,ψ can be parameterized by a
discriminator network T with parameter ψ. By using Jensen-Shannon MI estimator Nowozin et al.
(2016), Iϕ,ψ can be formulated as:

Iϕ,ψ(h
i
ϕ(G);Hϕ(G)) := EP[−sp(−Tϕ,ψ(hiϕ(s);Hϕ(s)))]− EP×P̃[sp(Tϕ,ψ(h

i
ϕ(s

′);Hϕ(s)))], (6)

where s denotes the input (positive) sample, and s′ denotes the negative sample from the distribution
P̃ that is identical to distribution P. Particularly, the combinations of global (graph-level) and local
(node-level) representations in a batch are used to produce negative samples. sp(y) = log(1 +
ey) indicates the softplus function. Note that we maximize the MI between graph-level and node-
level representations, which facilitates graph-level representations to contain as much information
as possible that is shared between node-level representations. It is intuitive that performing k-means
or spectral clustering directly on the graph-level representations learned seems to be an applicable
way, but it often tends to be a trivial solution because the representations learned in this way solely
are not guaranteed to be applicable for the graph-level clustering task that we focus in this work.

3.3 END-TO-END GRAPH-LEVEL CLUSTERING

To capture more suitable representations for graph-level clustering, we attempt to learn cluster-
oriented representations by introducing an explicit clustering objective. Specifically, we propose a
clustering network connected with the graph-level features in the representation learning network
described above. Then the graph-level features will be projected to the cluster embedding in the
low-dimensional latent space, which can be formalized as follows:

zj = fθ(Hϕ(Gj)), (7)

where zj denotes the learned cluster embedding for graph Gj , and fθ is the MLP-based clustering
projector with network parameter θ. Let Zϕ,θ(G) ∈ Rdz×nb be the cluster embeddings in a batch,
where dz is the dimension of cluster embedding layer. Subsequently, we take inspiration from
(Van der Maaten & Hinton, 2008; Xie et al., 2016) to define the graph-level cluster assignment
distribution Q based on Zϕ,θ(G) as follows:

qjt|ϕ,θ =
(1 + ∥zj − µt∥2)−1∑c
t=1(1 + ∥zj − µt∥2)−1

, (8)

where zj is the j-th column of Zϕ,θ(G), c is the number of clusters, µt is the t-th cluster center
that can be initialized by k-means, and qjt|ϕ,θ is the graph-level cluster assignment indicating the
probability that graphGj belongs to cluster t. Next, we can further define an auxiliary refined cluster
assignment distribution P to emphasizes those assignments with high confidence in Q as follows:

pjt =
q2jt|ϕ,θ/

∑nb
j=1 qjt|ϕ,θ∑c

t=1(q
2
jt|ϕ,θ/

∑nb
j=1 qjt|ϕ,θ)

, (9)

where P encourages a more pronounced gap between assignments with high and low probability in
Q and can be regarded as pseudo labels for guiding the optimization of Q. Therefore, we can define
the clustering objective by minimizing the KL-divergence between P and Q as follows:

Lc|ϕ,θ = KL(P ||Q) =

nb∑
j=1

c∑
t=1

pjt log
pjt
qjt|ϕ,θ

. (10)
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Lc|θ aims to force Q to approximate P , i.e., to let P guide the optimization of Q so that the high
confident assignment can be emphasized, which is also can also be regarded as a self-training strat-
egy. By jointly optimizing Eq. 5 and 10, we can construct an end-to-end deep graph-level clustering
framework that simultaneously implements graph-level representation learning and clustering. The
overall objective of DGLC in terms of minibatch optimization is as follows

Lbatch(ϕ, ψ, θ) = − 1

|G|

∑
i∈G

Iϕ,ψ(h
i
ϕ;Hϕ(G))

︸ ︷︷ ︸
Lr|ϕ,ψ

+

nb∑
j=1

c∑
t=1

pjt log
pjt
qjt|ϕ,θ︸ ︷︷ ︸

Lc|ϕ,θ

. (11)

4 EXPERIMENTS

In this section, we evaluate the proposed method in comparison with several state-of-the-art com-
petitors in graph-level clustering task. We first introduce the datasets and baseline methods used in
the experiment and describe the detailed settings of network and parameters. Then, we demonstrate
the effectiveness of our method through comprehensive experimental analysis.

4.1 DATASET DESCRIPTION AND BASELINE METHODS

Dataset: We use six well-known graph datasets in the experiment, including MUTAG1, PTC-MR2,
PTC-MM3, BZR4, ENZYMES5, COX26. We summarize the information of each dataset in Table 2.
More detailed information of each dataset refers to the Appendix A.1.

Table 2: Information of the six benchmark datasets.
Dataset name Number of graphs Range of nodes Average nodes Range of edges Average edges Classes

MUTAG 188 [10 - 28] 17.93 [20 - 66] 19.79 2
PTC-MR 344 [2 - 64] 14.29 [2 - 142] 14.69 2
PTC-MM 336 [2 - 64] 13.97 [2 - 142] 14.32 2
BZR 405 [13 - 57] 35.75 [26 - 120] 38.36 2
ENZYMES 600 [2 - 126] 32.63 [2 - 298] 62.14 6
COX2 467 [32 - 56] 41.22 [68 - 118] 43.45 2

Baseline methods: We compare our method with five state-of-the-art graph kernel methods
including Random walk kernel (RW) (Vishwanathan et al., 2010), Weisfeiler-Lehman kernel
(WL) (Shervashidze et al., 2011), Shortest path kernel (SP) (Borgwardt & Kriegel, 2005), Lovasz-
theta kernel (LT) (Johansson et al., 2014), Graphlet kernel (GK) (Shervashidze et al., 2009), and
four unsupervised graph-level representation learning methods including InfoGraph (Sun et al.,
2020), Gromov-Wasserstein factorization (GWF) (Xu et al., 2022), Graph contrastive learning
(GraphCL) (You et al., 2020), and Joint augmentation optimization (JOAO) (You et al., 2021).

4.2 EXPERIMENTAL SETTINGS

For the graph kernel methods we used, they are all normalized with the base graph kernel to be
Vertex Histogram kernel if needed, then we directly perform spectral clustering (Ng et al., 2001)
on the the similarity matrices produced by them to obtain the clustering results. While for the
unsupervised graph-level representation learning methods, we perform k-means (Hartigan & Wong,
1979) and spectral clustering on the learned graph-level representations. Particularly, for GWF (Xu

1https://www.chrsmrrs.com/graphkerneldatasets/MUTAG.zip
2https://www.chrsmrrs.com/graphkerneldatasets/PTC-MR.zip
3https://www.chrsmrrs.com/graphkerneldatasets/PTC-MM.zip
4https://www.chrsmrrs.com/graphkerneldatasets/BZR.zip
5http://www.chrsmrrs.com/graphkerneldatasets/ENZYMES.zip
6https://www.chrsmrrs.com/graphkerneldatasets/COX2.zip
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et al., 2022) we not only follow the original paper to perform k-means, but also perform spectral
clustering to evaluate its clustering performance.

To provide a fair comparison in our experiment, we use exactly the same network architecture as
our competitors of unsupervised graph representation learning (Sun et al., 2020; You et al., 2020;
2021), i.e., utilizing the Graph isomorphism network (GIN) (Xu et al., 2019) as the backbone GNN.
The cluster projector is constructed with a two-layer MLP-based fully-connected network. We use
Adam as the optimizer, the learning rate is chosen from [10−3, 10−5], the batch-size is set to 128
and the total running epoch is set to 20. Moreover, there are three important hyper-parameters in
our method, i.e., the layer numbers of GNN, the hidden dimension dh of each GNN layer and the
dimension dz of the clustering layer. We evaluate the influence of different values of them on the
graph-level clustering performance in Appendix A.3 due to the limitation of the paper length.

To evaluate the clustering performance, we consider three popular metrics including clustering ac-
curacy (ACC), normalized mutual information (NMI) and adjusted rand index (ARI). The detailed
definition of the three metrics refer to the Appendix A.2. We utilize Pytorch Geometric (Fey &
Lenssen, 2019) and GraKeL (Siglidis et al., 2020) libraries to implement our method and other
baseline methods. Note that we run all experiments 10 times with NVIDIA Tesla A100 GPU and
AMD EPYC 7532 CPU, and report their means and standard deviations.

4.3 EXPERIMENTAL RESULTS

We compare the proposed DGLC method with 13 baselines and state-of-the-art methods on the six
popular benchmarks. The experimental results are shown in Table 3-5, from which we have the
following observations.

Table 3: Clustering performance (ACC, NMI, ARI) on MUTAG and PTC-MR. The best result is
highlighted in bold.

Method
MUTAG PTC-MR

ACC NMI ARI ACC NMI ARI

Graph kernel followed by spectral clustering (SC)

RW(Vishwanathan et al., 2010)+SC 77.65±0.00 30.81±0.00 30.26±0.00 56.98±0.00 0.63±0.00 1.25±0.00
WL(Shervashidze et al., 2011)+SC 73.40±0.00 14.50±0.00 21.20±0.00 52.91±0.00 0.23±0.00 0.05±0.00
SP(Borgwardt & Kriegel, 2005)+SC 72.87±0.00 10.24±0.00 15.95±0.00 56.69±0.00 1.04±0.00 0.50±0.00
LT(Johansson et al., 2014)+SC 56.60±4.88 3.09±1.38 -0.62±0.63 55.17±1.32 0.40±0.65 0.19±0.52
GK(Shervashidze et al., 2009)+SC 67.02±0.00 1.74±0.00 1.04±0.00 56.40±0.00 1.32±0.00 0.31±0.00

Unsupervised graph representation learning followed by k-means (KM) and SC

InfoGraph(Sun et al., 2020)+KM 77.95±1.41 35.22±3.47 30.95±3.03 54.79±0.68 0.49±0.35 0.28±0.21
InfoGraph(Sun et al., 2020)+SC 72.58±4.83 28.68±4.93 19.85±5.91 56.10±0.33 1.50±0.26 0.20±0.13
GWF(Xu et al., 2022)+KM 66.94±7.68 12.46±9.31 13.32±10.53 56.33±3.52 1.09±0.88 1.65±1.50
GWF(Xu et al., 2022)+SC 73.92±4.30 18.35±3.85 24.48±4.69 55.32±4.03 0.89±0.84 1.49±1.44
GraphCL(You et al., 2020)+KM 77.07±1.21 35.69±2.83 28.99±2.65 54.33±0.76 1.15±0.55 0.16±0.29
GraphCL(You et al., 2020)+SC 73.22±2.66 32.19±2.05 23.44±2.45 56.13±0.42 1.31±0.30 1.17±0.24
JOAO(You et al., 2021)+KM 79.20±0.72 36.32±3.03 33.74±1.65 56.39±0.18 0.53±0.21 0.41±0.01
JOAO(You et al., 2021)+SC 70.72±2.85 27.73±0.23 17.12±2.03 56.16±0.22 1.03±0.33 0.19±0.11

DGLC(Ours) 84.68±0.89 35.75±2.51 47.01±2.64 60.93±0.57 2.98±0.43 4.29±0.52

First, graph kernel based graph-level clustering approaches are effective on only few datasets, while
achieving mediocre clustering performances on most datasets. For example, RW kernel performs
well on MUTAG and PTC-MR, but mediocre on PTC-MM and BZR. While the opposite results
are observed on LT kernel. This is because graph kernels are mainly based on hand-crafted design
and are not suitable for arbitrary datasets in practice. Second, the unsupervised graph representation
learning methods show potential in handling graph-level clustering. For example, JOAO obtains en-
couraging performance on MUTAG, BZR and COX2. GWF achieves state-of-the-art performance
on ENZYMES. Although such methods achieve promising graph-level clustering performance in
many cases, they still suffer from the undesirable graph-level representations learned for clustering,
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Table 4: Clustering performance (ACC, NMI, ARI) on PTC-MM and BZR. The best result is high-
lighted in bold.

Method
PTC-MM BZR

ACC NMI ARI ACC NMI ARI

Graph kernel followed by spectral clustering (SC)

RW(Vishwanathan et al., 2010)+SC 60.71±0.00 0.97±0.00 2.91±0.00 64.69±0.00 0.00±0.00 -0.15±0.00
WL(Shervashidze et al., 2011)+SC 62.20±0.00 1.50±0.00 3.87±0.00 75.56±0.00 0.50±0.00 3.76±0.00
SP(Borgwardt & Kriegel, 2005)+SC 62.20±0.00 1.63±0.00 0.73±0.00 79.51±0.00 4.13±0.00 3.97±0.00
LT(Johansson et al., 2014)+SC 61.19±0.88 0.73±0.55 1.09±1.06 78.35±0.35 0.69±0.28 1.12±1.03
GK(Shervashidze et al., 2009)+SC 62.20±0.00 1.63±0.00 0.73±0.00 61.23±3.36 1.06±1.21 3.13±3.74

Unsupervised graph representation learning followed by k-means (KM) and SC

InfoGraph(Sun et al., 2020)+KM 61.48±1.03 2.35±0.83 3.61±1.45 63.62±2.41 1.59±0.95 2.39±1.44
InfoGraph(Sun et al., 2020)+SC 61.96±1.53 2.12±0.99 4.55±0.83 73.53±2.66 3.66±2.52 5.04±3.12
GWF(Xu et al., 2022)+KM 53.37±3.18 0.30±0.37 0.38±1.09 53.00±0.31 3.42±0.45 -0.76±0.05
GWF(Xu et al., 2022)+SC 53.02±1.66 0.36±0.28 0.21±0.09 52.76±0.80 3.47±1.16 -0.71±0.32
GraphCL(You et al., 2020)+KM 58.93±0.74 0.27±0.15 0.60±0.14 71.43±4.09 1.04±0.77 3.07±1.03
GraphCL(You et al., 2020)+SC 62.09±0.56 2.14±0.43 3.36±0.87 72.88±1.66 1.90±0.38 3.47±0.59
JOAO(You et al., 2021)+KM 59.04±0.52 0.21±0.14 0.98±0.41 72.64±4.26 1.37±1.14 4.01±3.39
JOAO(You et al., 2021)+SC 62.41±0.80 2.00±0.78 4.28±1.34 72.98±1.59 2.75±1.30 5.62±3.74

DGLC(Ours) 63.30±0.81 2.70±0.45 5.53±0.61 80.98±0.60 9.79±0.92 20.53±1.84

Table 5: Clustering performance (ACC, NMI, ARI) on ENZYMES and COX2. The best result is
highlighted in bold.

Method
ENZYMES COX2

ACC NMI ARI ACC NMI ARI

Graph kernel followed by spectral clustering (SC)

RW(Vishwanathan et al., 2010)+SC 17.00±0.00 0.66±0.00 0.25±0.00 51.31±0.00 0.70±0.00 -0.92±0.00
WL(Shervashidze et al., 2011)+SC 21.00±0.00 3.09±0.00 1.48±0.00 50.54±0.00 0.51±0.00 -0.40±0.00
SP(Borgwardt & Kriegel, 2005)+SC 22.00±0.00 2.57±0.00 1.69±0.00 52.03±0.00 0.13±0.00 0.01±0.00
LT(Johansson et al., 2014)+SC 17.00±0.09 0.42±0.11 0.00±0.00 77.52±0.59 0.26±0.34 0.17±0.71
GK(Shervashidze et al., 2009)+SC 17.07±0.13 0.80±0.25 0.00±0.00 66.17±0.00 0.02±0.00 0.08±0.17

Unsupervised graph representation learning followed by k-means (KM) and SC

InfoGraph(Sun et al., 2020)+KM 22.06±0.98 2.40±0.45 1.25±0.52 56.74±3.04 3.30±0.60 0.17±0.10
InfoGraph(Sun et al., 2020)+SC 23.75±0.50 4.64±0.65 2.23±0.41 70.37±2.01 3.56±0.99 1.92±1.67
GWF(Xu et al., 2022)+KM 28.55±0.20 6.02±0.55 3.16±0.20 57.60±4.11 1.50±0.13 2.08±1.80
GWF(Xu et al., 2022)+SC 25.66±1.57 5.24±1.28 1.78±0.61 58.83±4.46 1.16±0.41 1.45±1.21
GraphCL(You et al., 2020)+KM 21.50±0.22 1.55±0.12 0.90±0.09 68.88±0.59 1.05±0.21 0.44±0.57
GraphCL(You et al., 2020)+SC 25.28±0.28 4.75±0.36 2.03±0.26 75.01±2.12 1.24±0.37 2.39±2.28
JOAO(You et al., 2021)+KM 21.66±0.37 1.60±0.01 0.94±0.02 70.56±2.03 1.19±0.34 0.44±0.43
JOAO(You et al., 2021)+SC 24.65±0.44 4.85±0.37 2.07±0.18 76.46±0.61 1.43±0.77 2.35±2.49

DGLC(Ours) 27.08±1.49 6.39±1.09 2.86±0.80 78.28±0.17 2.38±0.99 6.79±3.37

i.e., their representation learning do not explicitly optimize for the clustering task. Third, the pro-
posed DGLC method outperforms both types of the above solutions with a large margin in most
cases. For example, DGLC outperforms the runner-up with 5.48% and 13.27% advantages on MU-
TAG in terms of ACC and ARI, and with 1.47%, 5.66% and 14.91% advantages on BZR in terms
of ACC, NMI, and ARI. This fully demonstrates the effectiveness of our method. Compared with
graph kernel based approaches, DGLC is more general for different types of graph data. Compared
with the latest unsupervised graph representation learning approaches, DGLC has a clear clustering
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objective in the optimization and thus tends to learn clustering-oriented graph-level representations
and achieves state-of-the-art performance.

4.4 QUALITATIVE STUDY

In this section, we conduct a qualitative study to provide visual comparison for the graph-level
clustering. Specifically, we compare our method with several state-of-the-art unsupervised graph
representation learning methods including InfoGraph, GWF, GrahCL and JOAO by utilizing t-
SNE (Van der Maaten & Hinton, 2008) and visualize their learned graph-level representations on
MUTAG and ENZYMES. The visualization results are shown in Figure 1. We can observe that

      
   

 

  

 

 

 

 

 

 

 

 

 

 

   

 

  
 

 

         

   

 

  

 

 

 

 

 

 

        

   

 

  

  
 

 

 

 

 

 

 

   

 
 

 

    

 

 

 

   

   

 

  
 

 

 

 

 

 

         
   

 

  

 

 

 

 

 

 

 
 

  

 

 

(e) DGLC(d) JOAO(c) GraphCL(a) InfoGraph (b) GWF

(e) DGLC(d) JOAO(c) GraphCL(a) InfoGraph (b) GWF

Figure 1: t-SNE visualization of the learned graph-level representations of our methods and other
unsupervised graph representation learning methods. The first row is the visualization for MUTAG,
while the second row is for ENZYMES.

compared with other methods, DGLC explicitly reveals more compact intra-class structure and more
distinct inter-class discrepancy. For example, the learned representations of the two classes in MU-
TAG are more separated in our method compared to others. Besides, we can find that InfoGraph,
GraphCL and JOAO fail to capture good clustering structure for ENZYMES, while GWF and ours
do. In general, the visualization results of the learned graph-level representations also support the
effectiveness of our method.

4.5 PARAMETER SENSITIVITY ANALYSIS AND ABLATION STUDY

To evaluate the robustness of DGLC and the effectiveness of each component, we conduct the param-
eter sensitivity analysis and ablation study. Please see Appendix A.3 and A.4 for the experimental
results and discussions due to the limitation of the paper length.

4.6 COMPUTATIONAL TIME COMPARISON

We also demonstrate the time efficiency of DGLC by comparing the running time with several graph
kernels and unsupervised graph representation learning baselines. Please see Appendix A.5 for the
experimental results and discussions due to the limitation of the paper length.

5 CONCLUSION

This work has studied the problem of graph-level clustering and proposed an end-to-end deep graph-
level clustering method based on deep graph neural network. The proposed DGLC method leverages
the powerful representation learning capability of GIN and defines an explicit clustering objective
to help learn cluster-favor representations for graph-level clustering. We compared the proposed
method with two types of baselines, one is based on graph kernels followed by spectral clustering
and the other is based on graph-level representation learning followed by k-means and spectral
clustering. The experiments on six graph datasets have showed that our method has much higher
clustering accuracy than the baselines.

9
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A APPENDIX

A.1 DETAILED INFORMATION OF DATASET

We provide the detailed information of six graph datasets used in our experiment here:

• MUTAG is a compound dataset that contains 188 compounds, which are grouped into 2
categories based on the mutagenic effect of them to a bacterium. Note molecules possess
natural graph structure, where they are expressed by average 17.93 nodes (for atoms) and
19.79 edges (for chemical bonds).

• PTC-MR and PTC-MM are the subset of PTC dataset, which is a compound dataset that
divided into 2 categories based on the carcinogenicity to rodents. Note that PTC-MR con-
tains 344 compounds with average 14.29 nodes and 14.69 edges, while PTC-MM contains
336 compounds with average 13.97 ndoes and 14.32 edges, respectively.

• BZR is the ligand dataset for benzodiazepine receptor, which are divided into 2 classes
according to the activity and inactivity of compounds. Note that BZR contains 405 graphs
in total with average 35.75 nodes and 38.36 edges per graph.

• ENZYMES contains 600 protein data for 6 classes of enzymes, with 100 proteins per class.
Each protein data can be represented as a graph with average 32.63 nodes and 62.14 edges.

• COX2 consists of 467 inhibitor for cyclooxygenase-2 and are divided into 2 classes based
on whether the compounds are active or inactive. Note that each graph in this dataset is
with average 41.22 nodes and 43.45 edges.

A.2 DEFINITION OF THREE CLUSTERING METRICS

In this section, we introduce three clustering metrics used in this paper, with yj and ŷj denoting the
true labels and the predicted labels for graph Gj respectively.

Clustering accuracy (ACC): ACC is expressed as the comparison of the true labels and predicted
labels leveraged on sample size n, which is defined as follows:

ACC =

∑n
i=1 δ (yj , ŷj)

n
, where δ(x, y) =

{
1 if x = y
0 otherwise

}
(12)

Normalized mutual information (NMI): NMI score scales the mutual information scores by
some generalized mean of entropy of true label set Ω and cluster label set C. It can be formalized as
follows:

NMI(Ω, C) =
I(Ω;C)

(H(Ω) +H(C))/2
(13)

where I(Ω;C) = H(Ω)+H(C)−H(Ω, C) denotes the mutual information between Ω and C, and
H(·) is the information entropy.

Adjusted rand index (ARI): ARI score is an adjusted score of Rand index (RI) for chance. RI is
also a similarity measure by considering all pairs of samples and counting pairs that are assigned in
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the same or different clusters in the predicted and true labels. ARI can be formalized as follows:

ARI =
(RI − Expected RI)

(max(RI)− Expected RI)

=

∑
ij

(
nij
2

)
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]
/
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n
2

)
1
2
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+
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(
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−
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2
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/

(
n
2

) (14)

where ai =
∑r
j=1 nij , bi =

∑s
i=1 nij , nij denotes an entry from the contingency table of cluster i

and class j, r and s are numbers of clusters and classes.

Note that ACC and NMI range from [0, 1], while ARI ranges from [−1, 1]. The higher values of
ACC, NMI and ARI represent the better clustering performance.

A.3 PARAMETER SENSITIVITY ANALYSIS

We analyze the sensitivity of DGLC to the hyperparameters, i.e., the hidden dimension dh of GNN
layers, the embedding dimension dz of clustering layer and the number of GNN layers. Here we
take MUTAG and PTC-MR datasets as the example to evaluate the influence of the change of dh and
dz values. Specifically, we select the values of dh in [16, 32, . . . , 256] and dz in [5, 10, . . . , 30], the
results are shown in Figure 2. We can observe that the accuracy on both datasets are relatively stable,
showing little fluctuation when parameters vary. In contrast, NMI and ARI are of high performance
when the selection of parameters are moderate. In general, DGLC shows robust performance against
the two parameters. Nevertheless, we recommend to choose dz from 10 to 25 and dh from 32 to 128
to obtain better clustering performance in practice. Except for the ones mentioned above, we further
conduct the sensitivity analysis on the number of GNN hidden layers on three datasets (MUTAG,
PTC-MR and BZR). We vary the number of GNN hidden layers in [2, 3, . . . , 10]. The experimental
results are shown in Figure 3. It could be seen that PTC-MR is quite stable for all three metrics.
For MUTAG and BZR, whereas, DGLC shows better performance when setting the number of
GNN hidden layers to 4 and 5. In general, DGLC obtains relatively stable performance at different
numbers of GNN layers, despite fluctuations at some specific fetch values.

(a) MUTAG ACC (b) MUTAG NMI (c) MUTAG ARI

(d) PTC-MR ACC (e) PTC-MR NMI (e) PTC-MR ARI

Figure 2: Sensitivity analysis of accuracy, NMI and ARI regarding the dimension dh of GNN hidden
layers and the embedding dimension dz of clustering layer on MUTAG and PTC-MR datasets.
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Figure 3: Sensitivity analysis of ACC, NMI and ARI regarding the number of GNN hidden layers
on MUTAG, PTC-MR and BZR datasets

A.4 ABLATION STUDY

In this section, we conduct experiments to evaluate the influence of each proposed strategy on our
method. Specifically, we construct four degradation models of our method by respectively removing
some components of it. There are:

• DGLCd1: We remove the clustering loss and joint training strategy of DGLC and evaluate
the model by performing k-means on the learned graph-level representations, i.e., the model
can be regarded as InfoGraph in this way.

• DGLCd2: We keep the clustering loss and joint training strategy while directly using k-
means to produce the clustering results instead of producing the clustering labels with the
cluster label assignment Q.

• DGLCd3: We degrade DGLC as a two-stage model, i.e., we train the model by respec-
tively optimizing the graph representation learning objective and clustering objective. The
clustering results are still obtained from the graph-level cluster assignment Q in the second
training stage.

Table 6: Clustering performance (ACC, NMI, ARI) on MUTAG and BZR. The best result is high-
lighted in bold.

Method MUTAG BZR

ACC NMI ARI ACC NMI ARI

DGLCd1 77.95±1.41 35.22±3.47 30.95±3.03 63.62±2.41 1.59±0.95 2.39±1.44
DGLCd2 80.50±2.34 32.52±3.65 37.16±5.53 66.61±3.14 1.98±1.29 4.32±2.54
DGLCd3 81.48±2.31 30.89±3.98 38.34±6.61 73.87±2.58 2.92±2.30 5.35±3.96

DGLC 84.68±0.89 35.75±2.51 47.01±2.64 80.98±0.60 9.79±0.92 20.53±1.84

We run experiments on MUTAG and BZR to evaluate their performance. Table 6 summarizes the
experimental results, from which we have the following observations:

• Both DGLCd2 and DGLCd3 significantly outperform DGLCd1, which fully suggests that
learning clustering-oriented representations would benefit graph-level clustering.

• Producing clustering results from the graph-level cluster assignment Q is more reasonable
as the clustering performance degrades when directly performing k-means on the learned
cluster embeddings.

• Joint training with representation learning and clustering objectives yields better clustering
performance. For example, DGLC outperforms DGLCd3 by 3.20%, 4.86%, 8.67% in
terms of ACC, NMI and ARI on MUTAG.
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A.5 COMPUTATIONAL TIME COMPARISON

In this section, we compare the proposed DGLC with some baseline methods to demonstrate its effi-
ciency in time consuming. Specifically, for graph kernels, we select RW(Vishwanathan et al., 2010),
WL(Shervashidze et al., 2011), SP(Borgwardt & Kriegel, 2005) and LT(Johansson et al., 2014) as
our competitors. For unsupervised graph representation learning methods, we select GWF (Xu et al.,
2022) and InfoGraph (Sun et al., 2020). Note that we run 20 epochs for GWF, InfoGraph and DGLC
for fair comparison. Table 7 shows the running times of each method on six benchmark datasets used
in this paper. We can see that RW, LT and GWF are quite time consuming, especially on datasets
like ENZYMES and COX2 that contain numerous nodes and edges. In contrast, WL, SP, InfoGraph
and DGLC are much more efficient compared with them and have comparable time efficiency.

Table 7: Running time comparison (in seconds) on the six benchmark graph datasets.
Method MUTAG PTC-MR BZR PTC-MM ENZYMES COX2

RW(Vishwanathan et al., 2010)+SC 12.29 29.29 76.34 25.44 2346.51 2457.56
WL(Shervashidze et al., 2011)+SC 2.19 4.97 9.57 7.15 13.43 10.65
SP(Borgwardt & Kriegel, 2005)+SC 3.60 5.38 25.49 5.08 53.75 32.39
LT(Johansson et al., 2014)+SC 88.28 160.86 860.70 552.66 9117.17 6016.26
InfoGraph(Sun et al., 2020)+KM 12.69 17.12 30.80 18.03 38.21 34.87
InfoGraph(Sun et al., 2020)+SC 35.96 96.60 165.48 101.2 313.70 300.84
GWF(Xu et al., 2022)+KM 477.48 830.26 2480.76 803.81 3668.92 2945.12
GWF(Xu et al., 2022)+SC 566.41 911.37 2591.73 896.44 3954.87 3132.67

DGLC 10.16 12.12 25.66 12.84 31.87 30.50
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