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Abstract

A common approach to prediction and planning in partially observable domains is
to use recurrent neural networks (RNNs), which ideally develop and maintain a
latent memory about hidden, task-relevant factors. We hypothesize that many of
these hidden factors in the physical world are constant over time, changing only
sparsely. Accordingly, we propose Gated Ly Regularized Dynamics (GateLORD),
a novel recurrent architecture that incorporates the inductive bias to maintain stable,
sparsely changing latent states. The bias is implemented by means of a novel
internal gating function and a penalty on the Ly norm of latent state changes. We
demonstrate that GateLORD can compete with or outperform state-of-the-art RNN's
in a variety of partially observable prediction and control tasks. GateLORD tends
to encode the underlying generative factors of the environment, ignores spurious
temporal dependencies, and generalizes better, improving sampling efficiency and
prediction accuracy as well as behavior in model-based planning and reinforcement
learning tasks. Moreover, we show that the developing latent states can be easily
interpreted, which is a step towards better explainability in RNNs.

1 Introduction

When does the meeting start? Where are my car keys? Is the stove turned off? Humans memorize
lots of information over extended periods of time. In contrast, classical planning methods assume
that the state of the environment is fully observable at every time step [1]. This assumption does not
hold for realistic applications, where generative processes are only indirectly observable or entities
are occluded. Planning in such Partially Observable Markov Decision Processes (POMDP) is a
challenging problem, because suitably-structured memory is required for decision making.

Recurrent neural networks (RNNs) are often used to deal with partial observability [2—4]. They
encode past observations by maintaining latent states, which are iteratively updated. However,
continuously updating the latent state causes past information to quickly “wash out”. Long-Short
Term Memory networks (LSTM, [5]) and Gated Recurrent Units (GRU, [6]) deal with this problem
by using internal gates. However, they cannot leave their latent states completely unchanged, because
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small amounts of information continuously leak through the sigmoidal gating functions. Additionally,
inputs typically need to pass through the latent state to affect the output, making it hard to disentangle
observable from unobservable information within their latent states.

Our hypothesis is that many generative latent factors in the physical world are constant over extended
periods of time. Thus, there might not be the need to update memory at every time step. For example,
consider dropping an object: If the drop-off point as well as some latent generative factors, such as
gravity and aerodynamic object properties, are known, iteratively predicting the fall can be reasonably
accomplished by a non-recurrent process. Similarly, when an agent picks up a key, it is sufficient to
memorize that the key is inside their pocket. However, latent factors typically do change significantly
and systematically at particular points in time. For example, the aerodynamic properties of an object
change drastically when the falling object shatters on the floor, and the location of the key changes
systematically when the agent removes it from their pocket.

These observations are related to assumptions used in causality research. A common assumption is
that the generative process of a system is composed of autonomous mechanisms that describe causal
relationships between the system’s variables [7-9]. When considering Markov Decision Processes,
it has been proposed that these mechanisms tend to interact sparsely in time and locally in space
[10, 11]. Accordingly, causal models aim at creating dependencies between variables only when
there exists a causal relationship between them, in order to improve generalization [8]. Updating
the latent state of a model in every time step, on the other hand, induces the prior assumption that
the generative latent state typically depends on all previous inputs. Thus, by suitably segmenting
the dependencies of the latent variables over time, one can expect improved generalization across
spurious temporal dependencies.

Very similar propositions have been made for human cognition. Humans tend to perceive their stream
of sensory information in terms of events [12—16]. Event Segmentation Theory (EST) [16] postulates
a set of active event models, which encode event-respective aspects over extended periods of time
and switch individually at event transitions. To learn about the transitions and consolidate associated
latent event encodings, measurements of surprise and other significant changes in predictive model
activities, as well as latent state stability assumptions, have been proposed as suitable inductive event
segmentation biases [16-22]. Explicit relations to causality have been put forward in [23].

In accordance to EST and our sparsely changing latent factor assumption, we introduce Gated Lg
Regularized Dynamics (GateLORD). GateLORD applies Ly-regularized gates, inducing an inductive
learning bias to encode piecewise constant latent state dynamics. GateLORD thus becomes able
to memorize task-relevant information over long periods of time. The main contributions of this
work can be summarized as follows. (i) We introduce a stochastic, rectified gating function for
controlling latent state updates, which we regularize towards sparse updates using the Ly norm.
(i) We demonstrate that our network performs as good or better than state-of-the-art RNNs for
prediction or control in various partially-observable problems with piecewise constant dynamics.
(iii) We also show that the inductive bias leads to better generalization under distributional shifts.
(iv) Lastly, we show that the latent states can be easily interpreted by humans.

2 Background

Let fp : X x H — ) x H be a recurrent neural network (RNN) with learnable parameters 6 mapping
inputs' &; € X and h,_; € H the latent (hidden) state to the output §j; € ) and updated latent states
h;. The training dataset D consists of sequences of input-output pairs d = [(x1,¥1),- .., (T, yr)]
of length T'. In this paper, we consider the prediction and control of systems that can be described
by a partially observable Markov decision process (POMDP) with state space S, action space A,
observations space O, and deterministic hidden transitions S x A — 8.

"Notation: bold lowercase letters denote vectors (e.g., ). Vector dimensions are denoted by superscript (e.g.
x = [z',2%,...,2"] € R™). Time or other additional information is denoted by subscript (e.g., ;).
2We treat the prediction of time series without any actions as a special case of the POMDP with A = (.



3 Ly-regularization of latent state changes

We want the RNN fj to learn to solve a task, while maintaining piecewise constant latent states over
time. The network creates a dynamics of latent states h, when applied to a sequence: (g;, h;) =
fo(xs, hy_1) starting from some hg. The most suitable measure to determine how much a time-series
is piecewise constant is the Ly norm applied to temporal changes. With the change in latent state as
Ah; = h;_1 — h;, we define the Lj-loss as

Lr,(Ah) = | Ah|, =Y (AR #0), (1)

j=1
which penalizes the number of non-zero entries of the vector of latent state changes Ah.

The regularization loss from Eq. | can be combine in the usual way with the task objective to yield
the overall learning objective £ of the network:

£(D,0) = Eawp | Y Loast(Ge, 90) + Aoro(Ahy)| @
t

with (g, ht) = fo(xt, hi—1). The task-dependent loss L.k (¢, ) can be, for instance, the mean-
squared error for regression or cross-entropy loss for classification. The hyperparameter \ controls
the trade-off between the task-based loss and the desired latent state regularization.

Unfortunately, we cannot directly minimize this loss using gradient-based techniques, such as
stochastic gradient descent (SGD), due to the non-differentiability of the L(-term. Louizos et al. [24]
proposed a way to learn L regularization of the learnable parameters of a neural network with SGD.
They achieve this by using a set of stochastic gates controlling the parameters’ usage. Each learnable
parameter 67 that is subject to the Lg loss is substituted by a gated version "7 = ©(s/)#7 where
O(-) is the Heaviside step function (©(s) = 0 if s < 0 and 1 otherwise) and s is determined by a
distribution ¢(s|v) with learned parameters v. Thus, 7 is only non-zero if s/ > 0. This allows to
rewrite the Lg loss (Eq. 1) for 6’ as:

L1, (6" ,v)=6"],=>_ O(s) with s ~ g¢(s; ), 3)
j

where parameters v influence sparsity and are affected by the loss.

To tackle the problem of non-differentiable binary gates, we can use a smooth approximation as
a surrogate [24-26]. Alternatively, we can substitute its gradients during the backward pass, for
example using the straight-through estimator [27], which treats the step function as a linear function
during the backward pass, or approximate its gradients as in the REINFORCE algorithm [28].

To transfer this approach to regularize the latent state dynamics in an RNN, we require an internal
gating function A(+) € [0, 1], which controls whether the latent state is updated or not. For instance:

hy=h;_1 + A(S)Aﬁt_l with AiLt_l = ilt —h;_4 4)

where h is the proposed new latent state and s is a stochastic variable depending on the current input
and previous latent state and the parameters, i.e. s; ~ q(s;; ¢, hy—1,v). For brevity, we merge the
parameters v into the overall parameter set, i.e. v C 6. For computing Eq. 2 we need to binarize the
gate by applying the step function ©(A(s)). Thus we can rewrite Eq. 2 as

L(D,0) = Edw[zctask(yt,yt) + AZG(A(st))] ®)

LSTMs and GRUs use deterministic sigmoidal gates for A in Eq. 4 to determine how to update
their latent state. However, it is not straight forward to apply this approach to them (detailed in
Suppl. A). Thus, we instead introduce a novel RNN, that merges components from GRUs and LSTMs,
to implement the proposed L regularization of latent state changes while still allowing the network to
make powerful computations. We name our network Gated L Regularized Dynamics (GateLORD).
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Figure 1: Architecture overview. (a) GateLORD with its three subnetworks. The gating function
controls the latent state update (red), the recommendation function computes a new latent state (blue)
and the output function computes the output (purple). (b) Gate-activation function A (ReTanh).
(c) Heaviside step function © and its gradient estimator. (d) Overall architecture.

4 GateLORD

The core of GateLORD implements the general mapping (9, b:) = fy(x+, ht—1) using three func-
tions, or subnetworks: (1) a recommendation network r, which proposes a new candidate latent
state, (2) a gating network g, which determines how the latent state is updated, and (3) an output
Sfunction, which computes the output based on the updated latent state and the input. The network is
systematically illustrated in Fig. la.

The overall processing is described by the following equations:

st ~N(g(xy, hi—1),X) (sample gate input) (6)
A(8) := max(0, tanh(s)) (new gating function) (7)
hi=hi 1+ A(st) © (r(xe, he—1) — hi—1) (update or keep latent state) (8)
¥ = p(xs, ht) © oy, hy), (compute output) 9

where ® denotes element-wise multiplication (Hadamard product).

We start with the control of the latent state in Eq. 8. Following Eq. 4, a new latent value is proposed
by the recommendation function r(x., h,—1) and the update is “gated” by A(s). Importantly, if
A(s) = 0 no change to the latent state occurs. Note that the update in Eq. 8 is in principle equivalent
to the latent state update in GRUs [6], for which it is typically written as hy = A(s) ® (@, hi—1) +
(1 —A(s)) ©® hy—1 with A(s) a deterministic sigmoidal gate.

Because we aim for piecewise constant latent states, the gating function A defined in Eq. 7 needs
to be able to output exactly zero. A potential choice would be the Heaviside function, i.e. either
copy the new latent state or keep the old one. This, however, does not allow any multiplicative
computation. So a natural choice is to combine the standard sigmoid gate of RNNs with the step-
function: A(s) = max(0, tanh(s)) which we call ReTanh (rectified tanh)’. Figure 1b shows the
activation function A depending on its input. The gate is closed (A(s%) = 0) for all inputs s* < 0. A
closed gate results in a latent state that remains constant in dimension i, i.e., hi = hi_,. On the other

hand, for s* > 0 the latent state is interpolated between the proposed new value and the old one.

The next puzzle piece is the input to the gate. Motivated from the L regularization in Eq. | we use a
stochastic input. However, in our RNN setting, it should depend on the current situation. Thus, we
use a Gaussian distribution for ¢ with the mean determined by the gating network g(xy, hy—1) as
defined in Eq. 6. We chose a fixed diagonal covariance matrix 3, which we set to X% = 0.1. To
train our network using backpropagation, we implement the sampling using the reparametrization
trick [29]. Accordingly, we introduce a noise variable € and compute the gate activation as

st =g(xe, he1) + € with GNN(O,Z). (10)

During testing we set € = 0 to achieve maximally accurate predictions.

*Note that tanh(s) = 2 - sigmoid(2s) — 1.



Finally the output ¢ is computed from the inputs and the new latent state h; in Eq. 9. Inspired
by LSTMs [5], the output is determined by a multiplication of a normal branch (p(x;, b)) and a
sigmoidal gating branch (o(x+, h;)). We thus enable both additive as well as multiplicative effects of
x; and h; on the output, enhancing the expressive power of the piecewise constant latent states.

In our implementation, all subnetworks are MLPs. 7, p use a tanh output activation; o uses a sigmoid,;
g has a linear output. p,o are one-layer networks. By default, r, g are also one-layer networks.
However, when comparing against deep (stacked) RNNs, we increase the number of layers of r and ¢
to up to three (cf. Suppl. B).

We use the loss defined in Eq. 5. GateLORD is fully differentiable except for the Heaviside step
function © in Eq. 5. A simple approach to deal with discrete variables is to approximate the
gradients by a differentiable estimator [25-27]. We employ the straight-through estimator [27], which
substitutes the gradients of the step function © by the derivative of the linear function (see Fig. 1c).

We use GateLORD as a memory module of a more general architecture illustrated in Fig. 1d. The
network input is preprocessed by a feed-forward network fp.e (). Similarly, its output is postpro-
cessed by an MLP f,s () (i.e. a readout layer) before computing the loss. The latent state hg of
GateLORD could be initialized by 0. However, improvements can be achieved if the latent state is
instead initialized by a context network fi,;¢, a shallow MLP that sets hg based on the first input
[30, 31].

In the Supplementary Material we ablate various components of GateLORD, such as the gate activation
function A (Suppl. C.1), the gate stochasticity (Suppl. C.2), the context network finiz (Suppl. C.3),
the multiplicative output branch o (Suppl. C.4), and compare against L;/Ly-variants (Suppl. C.5).

5 Related Work

Loss-based regularization of latent updates: For latent state regularization, Krueger and Memi-
sevic [32] have proposed using an auxiliary loss term that punishes the change in Ly-norms of the
latent state, which results in piecewise constant norms but not dynamics of the hidden states.

Temporal latent state regularization: To structure latent state updates, the Clockwork RNN [33]
partitions the hidden neurons of an RNN into separate modules, where each module operates at its
own predefined frequency. Along similar lines, Phased LSTMs [34] use gates that open periodically.
The update frequency does not depend on the world state, but only on a predefined time scale.

Binarized update gates: Closely related to our ReTanh, Skip RNNs [35] use a binary gate to
determine latent state update decisions. Similarly, Gumbel-Gate LSTMs [36] replace sigmoid
input and forget gates with stochastic, binary gates, approximated by a Gumbel-Softmax estimator
[26]. Selective-Activation RNNs (SA-RNNs) [37] modify a GRU by masking the latent state
with deterministic, binary gate and also incentivize sparsity. However, for GRUs the network output
corresponds to the networks’ latent state, thus, a piecewise constant latent state will result in piecewise
constant outputs. All of these models were designed for classification or language processing tasks —
none were applied on regression problems in a POMDP setup we consider here.

Attention-based latent state updates: Sparse latent state updates can also be achieved using at-
tention [38—40]. Neural Turing Machines [38] use an attention mechanism to update an external
memory block. Thereby, the attention mechanism can focus and only modify a particular locations
within the memory. Recurrent Independent Mechanisms (RIMs) [41] use a set of recurrent cells that
only sparsely interact with the environment and one another through competition and a bottleneck of
attention. Recent extensions explore the update of the cells and the attention parameters at different
time scales [42]. For RIMs the sparsity of the latent state changes is predefined via a hyperparameter
that sets the number of active cells. In contrast, our L loss implements a soft constraint.

Transformers: Transformers [40] omit memory altogether, processing a complete sequence for
every output at once using key-based attention. While this avoids problems arising from maintaining
a latent state, their self-attention mechanism comes with high computational costs. Transformers
have shown breakthrough success in natural language processing. However, it remains challenging to
train them for planning or reinforcement learning applications in partially-observable domains [43].
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Figure 2: Simulations used to test GateLORD. (a) and (b) are continuous 2D-control tasks: (a) requires
triggering the control of a robot by getting a remote control; (b) needs memorization of the sheep’s
position to capture it later. (c) is the Fetch Pick&Place environment [46] modified to become partially
observable and (d) shows a problem (DoorKey-8x8) of the Mini-Gridworld suite [47].

6 Experiments

Our experiments offer answers to the following questions: (a) Does GateLORD generalize better
to out-of-distribution inputs in partially observable domains than other commonly used RNNs? (b)
Is GateLORD suitable for control problems that require (long-term) memorization of information?
(c) Are the developing latent states in GateLORD easily interpretable by humans? Accordingly, we
demonstrate both GateLORD’s ability to generalize from a 1-step prediction regime to autoregressive
N-step prediction (Sec. 6.1) and its prediction robustness when facing action rollouts from different
policies (Sec. 6.2). We then reveal precise memorization abilities (Sec. 6.3) and show that GateLORD
is more sample efficient in various decision-making problems requiring memory (Sec. 6.4). Finally,
we examine exemplary latent state codes demonstrating their explainability (Sec. 6.5).

In our experiments we compare GateLORD to LSTMs [5], GRUs [6], and Elman RNNs [44]. We use
the architecture shown in Fig. 1d for all networks, only replacing the core fy. We examine the RNNs
both as a model for model-predictive control (MPC) as well as a memory module in a reinforcement
learning (RL) setup. When used for prediction, the networks received the input &; = (o, a;)
with observations o; € O and actions a; € A at time ¢ and were trained to predict the change in
observation, i.e. y; = Aoy (detailed in Suppl. B.1). During testing the next observational inputs
were generated autoregressively as 0,11 = o; + y;. In the RL setting, the networks received as an
input x; = o, the observation o; € O and were trained as an actor-critic architecture to produce both
policy and value estimations (detailed in Suppl. B.6). The networks were trained using Adam [45],
with learning rates and layer numbers determined via grid search for each network type individually
(cf. Suppl. B).

We evaluate GateLORD in a variety of partially observable scenarios. In the Billiard Ball scenario a
single ball, simulated in a realistic physics simulator, is shot on a pool table with low friction from a
random position in a random direction with randomly selected velocity. The time series contain only
the positions of the ball. This is the only considered scenario without actions.

Robot Remote Control is a continuous control problem where an agent moves according to the
two-dimensional actions a; (Fig. 2a). Once the agent reaches a fixed position (terminal), a robot in
another room is also controlled by the actions. The observable state o; is composed of the agent’s
position and the robot’s position. Thus, whether the robot is controlled or not is not observable
directly. When planning, the goal is to move the robot to a particular goal position (orange square).

Shepherd is a challenging continuous control problem that requires long-term memorization (Fig. 2b).
Here, the agent’s actions a; are the two movement directions and a grasp action controlling whether
to pick up or drop the cage. The sheep starts at the top of the scene moving downwards with a
fixed randomly generated velocity. The sheep is then occluded by the wall, which masks its position
from the observation. If the agent reaches the lever, the gate inside the wall opens, and the sheep
appears again at the same horizontal position at the open gate. The goal is to get the sheep to enter
the previously placed cage. The challenge is to memorize the sheep’s horizontal position exactly
over a potentially long time to place the cage properly and to then activate the lever during mental
simulation. The seven-dimensional observation o, is composed of the height of the occluder and the
positions of all entities.
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Figure 3: Billiard Ball results: prediction errors when trained using teacher forcing (a), or using
scheduled sampling (b). GateLORD’s prediction error (c) and mean number of gate openings (latent
state updates) (d) for different values of \. Shaded areas show + one standard deviation.

Fetch Pick&Place (OpenAl Gym v1, [46]) is a benchmark RL task where a robotic manipulator has
to move a randomly placed box (Fig. 2¢). In our modified setting the observable state o; is composed
of the gripper- and object position and the relative positions of object and fingers with respect to the
gripper. The four-dimensional actions a; control the gripper position and the opening of the fingers.

MiniGrid [47] is a gridworld suite with a variety of partially observable RL problems. At every time
t, the agent (red triangle in Fig. 2d) receives an image-like, restricted, ego-centric view (grey area)
as its observation o; (7 X 7 x 3-dimensional). It can either move forward, turn left, turn right, or
interact with objects via its one-hot-encoded actions a;. The problems vary largely in their difficulty,
typically contain only sparse rewards, and often involve memorization, e.g., remembering that the
agent picked up a key. Suppl. B.7 details all examined MiniGrid environments.

6.1 Learning autoregressive predictions

First, we consider the problem of autoregressive /N-step prediction in the Billiard Ball scenario.
Here, during testing the networks receive the first two ball positions as input and predict a sequence
of 50 ball positions. We first train the RNNs using teacher forcing, whereby the real inputs are fed to
the networks. Figure 3a shows the prediction error for autoregressive predictions. Only GateLORD
with latent state regularization (A = 0.001) is able to achieve reasonable predictions in this setup.
The other RNNs seem to learn to continuously update their estimates of the ball’s velocity based
on the real inputs. Because GateLORD punishes continuous latent state updates, learning leads to
updates of the estimated velocity only when required, i.e. upon collisions, improving its prediction
robustness.

The problems of RNNs learning autoregressive prediction are well known [48, 49]. A simple
countermeasure is scheduled sampling [48], where each input is stochastically determined to be either
the last network’s output or the real input. The probability of using the network output increases over
time. While the prediction accuracy of all RNNs improves when trained using scheduled sampling,
GateLORD (A = 0.001) still achieves the lowest mean prediction error (see Fig. 3b).

How does the regularization affect GateLORD? Figure 3c shows the prediction error for GateLORD
for different settings of A. While a small regularization (A = 0.001) leads to the highest accuracy in
this scenario, similar predictions are obtained for different strengths (A € [0, 0.01]). Overly strong
regularization (A = 0.1) degrades performance. Figure 3d shows the average gate openings per
sequence. As indented, A directly affects how often GateLORD’s latent state is updated: a higher
value results in fewer gate openings and, thus, fewer latent state changes. Note that even for A = 0
GateLORD learns to use fewer gates over time. We describe this effect in more detail in Suppl. D.1.

6.2 Generalization across policies

Particularly when priorities change or an agent switches behavior, different spurious temporal
correlations can occur in the resulting sensorimotor timeseries data. Consequently, models are needed
that generalize across those correlations. We use the networks trained as predictive models for the
Robot Remote Control scenario to investigate this aspect.

“We omit all velocities and the rotation of the object to make the scenario partially observable.
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Figure 4: Robot Remote Control results: prediction error on the test set (a) and on the generalization
set (b). Success rate for MPC (c). Shaded areas show standard deviation (a & b) or standard error
(c). Exemplary generalization sequence (d) showing the agent’s positions (top), the robot’s positions
(middle) with GateLORD’s predictions shown as dots, and GateLORD’s latent states (bottom).

In Robot Remote Control the training data is generated by performing rollouts with 50 time steps of
a policy that produces random but linearly magnitude-increasing actions. The actions’ magnitude
in the training data is positively correlated with time, which is a spurious correlation that does not
alter the underlying transition function of the environment in any way. We train the networks to
predict the sequence of observations given the initial observation and a sequence of actions. Thereby,
we test the networks using data generated by the same policy (test set) and generated by a policy
that samples uniformly random actions (generalization set). Additionally, we use the trained RNNs
for model-predictive control (MPC) using iCEM [50], a random shooting method that iteratively
optimizes its actions to move the robot to the given goal position.

As shown in Fig. 4a, GateLORD (A = 0.001) outperforms all other RNNs on the test set. When tested
on the generalization data, the prediction errors of the GRU and LSTM networks even increase over
the course of training. Only GateLORD is able to maintain a low prediction error. Figure 4c shows
the MPC performance. GateLORD yields the highest success rate.

Note that the lack of generalization is not primarily caused by the choice of hyperparameters: even
when the learning rate of the other RNNs was optimized for the generalization set, GateLORD still
outperformed them (additional experiment in Suppl. D.3). Instead, GateLORD’s better performance
is likely because it mostly encodes unobservable information within its latent state h;. This is shown
exemplarily in Fig. 4d (bottom row) and analyzed further in Suppl. D.5. The latent state remains
constant and only one dimension changes once the agent controls the robot’s position (middle row)
through its actions. Because the other RNNs also encode observable information, e.g. actions, within
their latent state, they are more negatively affected by distributional shifts and spurious dependencies.

GateLORD’s improved generalization across temporal dependencies also holds for more compli-
cated environments. In an additional experiment in Suppl. D.7 we show similar effects for the
Fetch Pick&Place environment when trained on reach-grasp-and-transport sequences and tested to
generalize across timings of the grasp.

6.3 Long-term memorization

We hypothesized that GateLORD’s latent state update strategy fosters the exact memorization of
unobservable information, which we examine in the Shepherd task. We test the RNNs’ when
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Figure 5: Shepherd results: prediction error for 100-step predictions (a) and 1-step prediction errors
of the sheep’s x—position at the time step of reappearance (b). Success rate for capturing the sheep
using MPC (c). Shaded areas show standard deviation (a-b) or standard error (c).
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Figure 6: MiniGrid results: success rate in solving various tasks when GateLORD replaces an LSTM
(vanilla) in a PPO architecture. Shaded areas depict the standard deviation.

predicting sequences of 100 observations given the first two observations and a sequence of actions.
Again, we use the trained models for MPC using iCEM [50], aiming at catching the sheep by first
placing a cage and then pulling a lever. This is particularly challenging to plan because the sheep’s
horizontal position needs to be memorized before it is occluded for quite some time (> 30 steps) in
order to accurately predict and thus place the cage at the sheep’s future position.

Figure 5a shows the prediction errors during training. GateLORD (A = 0.0001) continuously achieves
a lower prediction error than the other networks. Apparently, it is able to accurately memorize the
sheep’s future position while occluded. To investigate the memorization we consider the situation
occurring during planning: the sequence of (past) observations is fed into the network and the
prediction error of the sheep’s horizontal position at the time of reappearance is evaluated (Fig. 5b).
Only GateLORD reliably learns to predict where the sheep will appear when the lever is activated.
GRU and Elman RNNs do not noticeably improve in predicting the sheep’s position. LSTMs take
much longer to improve their predictions and do not reliably reach GateLORD’s level of accuracy.
This is also reflected in the success rate when the networks are used for MPC (Fig. 5¢). Only
GateLORD manages to solve this challenging task with a mean success rate over 50%.

6.4 Sample efficiency in reinforcement learning

Now that we have outlined some of GateLORD’s strengths in isolation, we want to analyze whether
GateLORD can improve existing RL-frameworks when it is used as a memory module for POMDPs.
To do so, we consider various problems that require memory in the MiniGrid suite [47]. Previous
work [41, 42, 51] used Proximal Policy Optimization (PPO) [52] to solve the MiniGrid problems. We
took an existing architecture based on [51] (denoted as vanilla, detailed in Suppl. B.6) and replaced
the internal LSTM module with GateLORD (A = 0.01). Note, that we left the other hyperparameters
unmodified.

As shown in Fig. 6 the architecture containing GateLORD achieves the same success rate or higher
than the vanilla baseline in all considered tasks. Additionally, GateL.ORD is more sample efficient, i.e.,
it is able to reach a high success rate (Fig. 6) or high reward level faster (Suppl. D.9). The difference
in sample efficiency tends to be more pronounced for problems that require more training time. It
seems that the inductive bias of sparsely changing latent states enables GateLORD to quicker learn to
encode task-relevant information, such as the pick-up of a key, within its latent states. Additional
experiments in Suppl. D.10 show that this can also translates to improved zero-shot policy transfer,
when the system is tested on a larger environment than it was trained on.

6.5 Explainability of the latent states

Lastly, we analyze the latent representations of GateLORD, starting with Billiard Ball. Figure 7a
shows one exemplary ball trajectory in white and the prediction in red. Inputs for which at least one
gate opened are outlined in black. Figure 7b shows the corresponding latent states h; relative to
the initial latent state hy. GateLORD updates two dimensions of its latent states around the points
of collisions to account for the changes in z- and y-velocity of the ball. For A = 0.01 we find on
average only two latent state dimensions change per sequence (see Suppl Suppl. D.1), which hints at
a tendency to encode z- and y-velocity using separate latent dimensions. In contrast, the exemplary
latent states of the GRU and LSTM networks shown in Fig. 7b are not as easily interpretable.
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Figure 7: Example sequences and latent states: (a) Billiard Ball trajectory for GateLORD (A = 0.01)
with real positions (white), provided inputs (blue), and predicted positions (red, saturation increasing
with time). The inputs for which at least one gate opened are outlined in black. (b) The latent states
for the trajectory for GateLORD, GRU, and LSTM (cell states). (c) Fetch Pick&Place sequence with
real (solid) and predicted (dotted) positions of gripper (top) and object (middle) and GateLORD’s
latent states (bottom). Latent states are shown relative to initialization, i.e. h; — hy.

For Robot Remote Control, GateLORD (A = 0.001) updates only its latent state once it controls the
robot (exemplary shown in Fig. 4d). Thus, the latent state clearly encodes control over the robot.
We use the Fetch Pick&Place scenario as a higher-dimensional problem to investigate latent state
explainability when training on grasping sequences (detailed in Suppl. B.5). Here, GateLORD updates
the latent state typically when the object is grasped (exemplary shown in Fig. 7¢). This hints at an
encoding of ‘object transportation’ using one dimension. Other RNNs do not achieve such a clear
representation, neither in Robot Remote Control nor in Fetch Pick&Place (see Suppl. D.5 and D.7).

7 Discussion

We have introduced a novel RNN architecture (GateLORD), which implements an inductive bias to
develop sparsely changing latent states. The bias is realized by a gating mechanism, which minimizes
the Ly norm of latent updates. In several empirical evaluations, we quantified and analyzed the
performance of GateLORD on various prediction and control tasks, which naturally contain piecewise
constant, unobservable states. The results support our hypothesis that networks with piecewise
constant latent states can generalize better to distributional shifts of the inputs, ignore spurious time
dependencies, and enable precise memorization. This translates into improved performance for both
model-predictive control (MPC) and reinforcement learning (RL). Moreover, we demonstrated that
the latent space becomes interpretable, which is important for explainability reasons.

Our approach introduces an additional hyperparameter, which controls the trade-off between the
task at hand and latent space constancy. When chosen in favor of explainability, it can reduce the
in-distribution performance while improving its generalization abilities. When the underlying system
has continuously changing latent states, our regularization is counterproductive. As demonstrated by
an additional experiment in Suppl. D.8, the unregularized network performs well in such cases.

Our sparsity-biased gating mechanism segments sequences into chunks of constant latent activation.
These segments tend to encode unobservable, behavior-relevant states of the environment, such as if
an object is currently ‘under control’. Hierarchical planning and control methods require suitable,
temporally-extended encodings, such as options [53, 54]. Thus, a promising direction for future work
is to exploit the discrete hidden dynamics of GateLORD for hierarchical, event-predictive planning.
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