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Abstract

Our goal is to achieve high zero shot perfor-001
mance on low-resource languages (LRLs) that002
are unseen by the multilingual pre-trained lan-003
guage models like mBERT and XLM-R. A re-004
cent approach for handling LRLs is to use lan-005
guage adapters (LAs), but they are also unavail-006
able for unseen languages. All existing works007
that study LAs for unseen languages train on008
only a single source language (English), and009
most use only the English adapter at test time.010
We believe that to achieve best zero-shot perfor-011
mance, we must make use of multiple (related)012
source languages/adapters at both training and013
test time. In response, we propose an archi-014
tecture that performs both training-time and015
test-time ensembling of LAs. It also incorpo-016
rates the typological properties of languages017
(encoded in existing language vectors) for fur-018
ther improvements. Extensive experiments and019
analysis over four language families demon-020
strate substantial improvements over standard021
fine tuning and other recent baselines on se-022
quence labelling tasks.023

1 Introduction024

Our focus is zero-shot performance on unseen lan-025

guages – those low-resource languages (LRLs) that026

are not seen by multilingual pre-trained language027

models (LMs) like mBERT (Devlin et al., 2019)028

and XLM-R (Conneau et al., 2020) during train-029

ing. A common approach is standard fine tuning030

(SFT): finetune the LM on task-specific training031

data from high-resource source languages, and ap-032

ply the model zero-shot on unseen languages.033

A more recent line of work to handle LRLs uses034

adapters (Houlsby et al., 2019; Rebuffi et al., 2017)035

– small modules that are inserted in every layer036

of transformer. In this approach, each Language037

Adapter (LA) is first pretrained monolingually us-038

ing Masked Language Modeling. During task-039

specific fine-tuning, the source training language’s040

LA is kept frozen and a separate trainable task041

adapter (TA) is stacked on top of LA. At inference 042

time, the source language’s LA is replaced by target 043

language’s LA to obtain zero-shot performance. 044

However this approach only works if an LA of 045

target language has been pretrained, which is gen- 046

erally not the case for unseen languages. As a 047

solution, all existing works simply train on En- 048

glish training data and most use just the English 049

adapter at inference time (He et al., 2021; Pfeif- 050

fer et al., 2020c). We posit that this is less than 051

ideal; for better performance, we should combine 052

multiple source languages (ideally, related to target 053

language) and their LAs, both at train and test time. 054

We propose ZGUL, Zero-shot Generalization 055

to Unseen Languages, which explores this hypoth- 056

esis. It has three main components. First, it fuses 057

LAs from source languages at train time by adapt- 058

ing AdapterFusion (Pfeiffer et al., 2021), which 059

was originally developed for fusing multiple task 060

adapters. This allows ZGUL to locally decide the 061

relevance of each LA for each position in each layer. 062

Second, ZGUL leverages syntactic and phonologi- 063

cal properties of languages as additional informa- 064

tion for computing (global) LA attention scores. 065

For this, we make use of the URIEL database 066

(Littell et al., 2017) of language features. Finally, 067

ZGUL also implements the entropy-minimization 068

based test-time tuning of adapter weights (Wang 069

et al., 2021). This combination of train and test- 070

time ensembling of pretrained LAs leads to a strong 071

performance on our task. 072

We experiment with four language families - 073

Slavic, Germanic, African and Indic on POS tag- 074

ging and NER tasks. In each family, we train on 075

3-4 languages: English and 2-3 related languages 076

for which task-specific training data and LAs are 077

available. We find that training on multiple sources 078

outperforms just training on English. Moreover, 079

within multi-source training, ZGUL obtains sub- 080

stantial improvements compared to strong base- 081

lines like SFT and CPG (Üstün et al., 2020), on 082

1



languages unseen in mBERT/XLM-R, in purely083

zero-shot setting (and also few-shot setting). Fur-084

ther ablations show the importance of each com-085

ponent in ZGUL. We release our code and trained086

models1 for further research.087

We summarize our contributions as follows:088

• We propose a strong method (ZGUL) to com-089

bine the existing LAs during training itself.090

To our knowledge, we are the first to attempt091

this in context of language adapters.092

• ZGUL further incorporates test-time tuning of093

LA weights.094

• ZGUL outperforms strong baselines, in-095

cluding SFT, for multi-source training for096

zero-shot transfer on LRLs unseen in097

mBERT/XLMR.098

• ZGUL also achieves competitive results in099

the few-shot setting, where a small amount of100

unseen language training data is available.101

• We find strong correlation between learned at-102

tention scores to adapters and the relatedness103

between high & low resource languages.104

2 Related Work105

Single-source Adapter Tuning: We build on Pfeif-106

fer et al. (2020c), who introduce two phases of107

adapter training. 1. Pretraining LA for each lan-108

guage Li: inserting an LA in each layer of trans-109

former model M (denoted by Li ◦M) and training110

on unlabeled data for language Li using the MLM111

objective. 2. Training TA for a task Tj : stacking112

LA for source language Lsrc with TA for task Tj113

(denoted by Tj ◦ Lsrc ◦M), in which Tj and the114

task-specific prediction head are the only trainable115

parameters. Lsrc is replaced with Ltgt in inference,116

i.e. Tj ◦Ltgt ◦M is used. This paradigm uses only117

one LA for a given input sentence. Also, it works118

only if Ltgt is available. For unseen languages,119

only English adapter has been used at test time (He120

et al., 2021; Pfeiffer et al., 2020c).121

Adapter Combination: Pfeiffer et al. (2021) in-122

troduce AdapterFusion, a technique that combines123

multiple pretrained TAs T1, ...Tn to solve a new124

target task Tn+1. It learns the attention weights125

of T1, ...Tn while being fine-tuned on the data for126

Tn+1. Vu et al. (2022) adapt this technique for127

fusing domains and testing on out-of-domain data.128

This technique has not been applied in the context129

1https://anonymous.4open.science/r/ZGUL

of LAs so far. The recent release of 50 LAs in 130

AdapterHub2 enables studying this for LAs. 131

Recently, Wang et al. (2021) propose EMEA 132

(Entropy Minimized Ensembling of Adapters) for 133

efficiently combining multiple LAs at inference 134

time. EMEA computes the entropy of the predic- 135

tion at test time and differentiates it w.r.t. the LA 136

attention scores (initialized uniformly) and updates 137

those using Gradient Descent. In essence, EMEA 138

adjusts the attention weights so as to give higher 139

importance to the LA that increases the confidence 140

score of the prediction at test time. However, train- 141

ing is still done using English as a single source. 142

Generation of LA using Shared Parameters: 143

Üstün et al. (2020) apply Conditional Parameter 144

Generation (CPG) (Platanios et al., 2018) for train- 145

ing on multiple source languages. They provide 146

a typological language vector as input to a CPG 147

module (called CPGAdapter) that generates an LA. 148

The CPGAdapter is shared across all source lan- 149

guages, and trained from scratch for a given task. 150

Since an LA is a function of input language’s vec- 151

tor, this method can generalize directly to unseen 152

languages. However, CPG is data intensive, since 153

it learns the CPGAdapter parameters from scratch. 154

We note that CPG comes under a broader cate- 155

gory of hypernetworks that generate weights for a 156

larger main network (Ha et al., 2016), which have 157

also been recently explored successfully for mixing 158

tasks (Karimi Mahabadi et al., 2021). We compare 159

against CPG in our experiments. 160

Pretraining-based approaches: Other works have 161

studied pre-training solutions to deal with LRLs. 162

Ansell et al. (2021) propose MAD-G, which pre- 163

trains CPG on 95 languages’ Wikipedias, using 164

Masked Language Modeling (MLM). They further 165

fine-tune it on task data (by inserting a TA) and 166

test on LRLs in zero-shot setting. A recent work 167

by Pfeiffer et al. (2022) incrementally pretrains 168

on unlabeled data of new languages by inserting 169

language-specific modules in order to incorporate 170

new languages. Our paper takes a complementary 171

view, and eschews pre-training completely, and 172

instead, focuses on fine-tuning using task-specific 173

training data of multiple source languages. 174

3 Model for Ensembling of Adapters 175

Our goal is to effectively combine a set of source 176

language adapters both at train and test time for 177

2https://adapterhub.ml/explore/text_lang/
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zero-shot generalization to unseen languages. In178

this paper we focus on those unseen languages179

whose scripts are seen by the pre-trained language180

model. Our approach can be divided in two high181

level parts: ensembling at train time, and ensem-182

bling at inference time.183

3.1 Ensembling during Training184

During training time, we make use of attention185

mechanism inspired from combination of task186

adapters explored in Pfeiffer et al. (2021). Whereas187

they create an ensemble of task adapters, our focus188

is on combining language adapters. Additionally,189

we note that there is useful information available in190

typological language vectors (Littell et al., 2017),191

which we wish to exploit. We achieve this ob-192

jective by designing two sub-components in our193

architecture and later combining them (for each194

layer), which we describe next (see Figure 1).195

Token Based Attention (Fusion): This sub-
network computes the attention weights for source
LAs using the output of the previous transformer
layer (which, in turn, depends on the input tokens)
as its query, and using the language adapter outputs
both as the key as well as the value. Mathemati-
cally, the output of transformer layer l − 1 passed
through the feed forward of layer l becomes the
query Ql, and the individual adapter outputs follow-
ing this become keys (and values) K l (and V l), the
attention weights of individual adapters are com-
puted using dot product between W l

qQ
l and W l

kK
l

followed by softmax.

αl
F = Softmax((W l

qQ
l)T (W l

kK
l))

The output of fusion is given by:

olF = αl
F (W

l
vV

l)

where Wq,Wk and Wv are the learnable parame-196

ters.197

Language vector based Attention (Lang2vec):198

This sub-network computes the attention weights199

for source adapters using the input language (of200

the token) as the query, language vectors of the201

source languages as the keys, and the language202

adapter outputs as the value. Mathematically, given203

the language vector LVinp as the query, and the204

source language vectors LV1, LV2, · · ·LVr as the205

keys, we perform Bahdanau Attention over them,206

to get the attention weights over the LA outputs.207

Here the language vectors are obtained by pass-
ing the language features LF 3 (each entry being 0
or 1) through a 1-layer MLP (shared across layers)
as:

LVinp = MLP (LFinp)

Attention scores are given by:

αl
L = (LVinp)

TW l
L(LV1:r),

Where W l
L is a learnable matrix for each layer l 208

(not shared across 12 layers). 209

The output of Lang2vec module is given by:

olL = αl
L(WvV

l)

We note that in Fusion, attention scores are learnt 210

differently across tokens, layers and examples in a 211

given language. However, in Lang2V ec, attention 212

scores will be same for a given language across all 213

tokens in a layer, but they will be different across 214

the 12 layers due to learnable matrix W l
L. 215

Combining the two ensembling modules: We 216

pass the input sentence through both the networks, 217

and receive the outputs oF and oL, corresponding 218

to the token based and language vector based at- 219

tention, respectively. We concatenate these two 220

vectors and pass through a fully connected layer. 221

The output of this linear layer, denoted as o
(l)
LA, 222

goes as input to task adapter to get the final output 223

o
(l)
final. 224

o
(l)
LA = LinearLayer(l)(o

(l)
F ⊕ o

(l)
L ) 225

o
(l)
final = TA(l)(o

(l)
LA) 226

This process is repeated for each layer l in the trans- 227

former architecture. We note that the LAs are kept 228

frozen throughout the training process, while only 229

the TA and other parameters described in Fusion 230

and Lang2V ec modules being trainable. 231

3.2 Ensembling during inference 232

Wang et al. (2021) proposed inference time Entropy 233

Minimization (EM) algorithm to adjust the adapter 234

weights (initializing from uniform weights). In 235

our case, since we have learnt the weights during 236

training itself, we seek to further leverage the EM 237

algorithm in our framework. Since we have two 238

different networks in our model – token based at- 239

tention and language vector based attention, we 240

3We use 103-dimensional syntactic features available on
https://github.com/antonisa/lang2vec

3

https://github.com/antonisa/lang2vec


Figure 1: Fusion Network (left) and Lang2Vec Network
(right) outputs are concatenated and sent to a Linear
layer followed by a TA in every layer l of the transformer

propose a two-step EM algorithm. We calculate241

entropy during inference and alternately update the242

adapter weights for both the networks.243

Unlike EMEA which ties all the attention244

weights for a given layer, we maintain separate245

tokenwise learnable attention weights in each layer.246

This gives greater representational flexibility to247

our model. Further, while EMEA initializes the248

attention weights uniformly, we initialize them249

with the ones obtained using a forward pass from250

ZGUL tained in a multi-source fashion. This helps251

our model start from an informed weight combi-252

nation for the language adapters; EMEA has no253

such knowledge of a good starting point since it is254

trained on a single source. The detailed algorithm255

is described in Algo 11. The hyperparameters lr256

and T are tuned on the dev set for each target lan-257

guage with grid search details (ref. Appendix A).258

4 Experiments259

In our experiments, we set out to answer the fol-260

lowing questions. (1) How does ZGUL perform261

in a zero-shot setting compared to the other base-262

lines on unseen languages? What is the incremen-263

tal contribution of ZGUL components for perfor-264

mance on LRLs? (2) Are LA attention weights265

learnt by ZGUL interpretable, i.e., whether geneti-266

cally/syntactically more similar source languages267

get higher attention scores? (3) How does ZGUL’s268

performance vary in the few-shot setting, where a269

few training examples of the target language are 270

shown to the model for fine-tuning, compared to 271

other baselines, especially SFT-M? (4) Do ZGUL’s 272

benefits carry over to larger pre-trained models 273

such as XLM-Roberta? We next describe our 274

datasets, evaluation metrcis, methodology followed 275

by our experimental findings. 276

4.1 Datasets, Tasks and Baselines 277

Datasets and Tasks: We experiment with 15 lan- 278

guages that are unseen for mBERT, from four lan- 279

guage familities: Slavic, Germanic, African and 280

Indic. We choose either of two sequence labeling 281

tasks: named entity recognition (NER) or part-of- 282

speech (POS) Tagging, based on available test sets 283

for unseen languages. For Slavic and Germanic, 284

we use POS tagging dataset UDPOS. For African 285

and Indic, we use NER datasets MasakhaNER and 286

PAN-X respectively. PAN-X and UDPOS datasets 287

have been obtained from XTREME Repository 288

(Hu et al., 2020) while MasakhaNER is obtained 289

from Adelani et al. (2021).4. We choose training 290

languages from each family that have pre-trained 291

adapters available 5 We justify our language group- 292

ing using the phylogenetic trees (Cole and Siebert- 293

Cole, 2022a,b) for Indo-European and African 294

languages (we combined Niger-Congo and Afro- 295

Asiatic families following Adelani et al. (2021)). 296

The details of training and test languages, as well 297

as corresponding task for each family are described 298

in Table 1. 299

Baselines: We experiment with two sets of base- 300

lines. In the first set, the baselines make use of 301

only English as the source language during training. 302

The baselines here include finetuning the mBERT 303

model (SFT), using English adapter in training and 304

inference (Adapter-En), replacing English adapter 305

with one related LA at inference time (Adapter- 306

Related), and EMEA: ensembling multiple LAs 307

at inference time via entropy minimization (Wang 308

et al., 2021). In the second set, we compare with 309

algorithms that make use of multiple source lan- 310

guages (belonging to a family), in addition to En- 311

glish. We compare against CPG and standard fine 312

tuning (SFT-M), trained on all source languages. 313

Evaluation Metric: We report the micro-F1 score 314

evaluated on each token using seqeval toolkit 315

(Nakayama, 2018), which is consistent with the 316

one used in previous research (Wang et al., 2021) 317

4https://github.com/masakhane-io/masakhane-ner
5We do not have a pre-trained LA for Urdu; we instead

use the LA for Arabic, which shares the same script as Urdu.
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Algorithm 1 EM algorithm during Inference
Input: Our model’s scores α0= (α0

F ,α0
L), test data x, learning rate lr, update steps T

Output: Prediction ŷ
1: function EMEA++()
2: for t← 0 to T − 1 do
3: βt ←− Softmax(αt) ▷ Normalize the LA scores
4: H(x, α)←− Entropy(TA ◦ Lwavg(h, β

t) ◦M) ▷ Compute Entropy
5: gtF = ▽αH(x, αt

F ) ▷ Compute Token Attention gradient
6: αt+1

F ←− Update(αt
F , g

t
F ) ▷ Update Token Attention weights

7: gtL = ▽αH(x, αt
L) ▷ Compute LangVec Attention gradient

8: αt+1
L ←− Update(αt

L, g
t
L) ▷ Update LangVec Attention weights

9: αt+1 = (αt+1
F , αt+1

L )
10: end for
11: αT ←− Softmax(αT ) ▷ Final Normalize
12: ŷ ←− Predict(TA ◦ Lwavg(h, α

T ) ◦M)) ▷ Compute Prediction
13: end function

Family Train set∗ Test set Task
Germanic German(De), Islandic(Is) Faroese(Fo), Gotham(Got), POS

Swiss German(Gsw)
Slavic Russian(Ru), Czech(Cs) Pomak(Qpm), Upper Sorbian(Hsb) POS

Old East Slavic(Orv), Old Church Slavonic(Cu)
African Amharic(Amh) Hausa(Hau), Igbo(Ibo), Kinyarwanda(Kin) NER

Swahili(Swa), Wolof(Wol) Luganda(Lug), Luo(Luo), Nigerian Pidgin(Pcm)
Indic Hindi(Hi), Bengali(Bn) Assamese(As), Bhojpuri(Bh) NER

Urdu(Ur)

Table 1: Language families and their corresponding train, test languages, and tasks. * English (En) was added to
train set in each case.

and is available as a standard evaluation script in318

the Google Research’s xtreme repo.6319

4.2 Results: Zero Shot Transfer320

Table 2 presents our experimental findings for Ger-321

manic and Slavic group of languages, and Table 3322

for African and Indic families. For most unseen323

LRLs, we observe ZGUL’s consistent gains com-324

pared to other baselines. For the task of POS, we325

observe a respectable gain of 2.5 points in ZGUL’s326

average performance on Germanic, and a marginal327

improvement of 0.7 points for Slavic family in the328

average scores, over closest baselines in each case.329

For the task of NER, we observe a decent gain of330

2.8 pts for the Indic family, and a marginal gain of331

0.8 pts for the African family, over the closest base-332

lines. We observe that for POS, our competitive333

baseline is CPG, while for NER it’s SFT-M. This334

is not surprising since CPG needs a lot of training335

data to optimize Üstün et al. (2020) due to a large336

number of parameters in the model, and our NER337

datasets are much smaller in size compared to those338

6https://github.com/google-
research/xtreme/blob/master/third_party/run_tag.py

for POR (ref. Appendix). We also note that base- 339

lines which train on a single source perform much 340

worse in each case, highlighting the importance of 341

multi-source training for our task, the gain being 342

particular impressive for Indic family (24 pts). 343

Last three rows in Tables 2,3 present the findings 344

of our ablation studies, where examine the effect 345

different kinds of attention mechanisms in ZGUL 346

, as well as the impact of entropy minimization 347

during inference (ref. Section 3). We see that each 348

component of ZGUL has a positive impact on its 349

performance for each of the language family, as 350

far as average scores are concerned, experimental 351

higlighting the importance of each of the compo- 352

nents in our architecture. For individual languages 353

as well, we see an improvement in performance 354

due to each component, except for a few cases (As- 355

samese and Luo), where EM marginally hurts the 356

performance. 357

Overall, we see that ZGULbeats all the base- 358

lines for each of the language families, with the 359

gain ranging from 0.7 pts to 2.8 pts in average 360

scores, and ZGUL or one of its variants obtain the 361

best scores in 11 out of 15 languages, compared to 362
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Germanic Slavic

Fo Got Gsw Avg Qpm Hsb Orv Cu Avg

SFT 72.4 13.2 55.1 46.9 40 64.8 56.5 28 47.3
Adapter-En 71.6 15.6 57.1 48.1 41.8 63.2 54.3 29.5 49
Adapter-Rel 72.8 15.2 57 48.3 39.3 60.2 57 32.2 49.8
EMEA 74 14.8 55.3 48 42.1 63.1 56.4 32 50.5
SFT-M 77.3 16.8 61.8 52.0 46.8 75.6 63.7 34.7 55.2
CPG 77 16 63.6 52.2 46.9 76.7 64.1 35.6 55.8
ZGUL 77.1 20.8 65.6 54.5 50.4 77 63.6 34.9 56.5
ZGUL w/o EM 76.8 15.8 63 51.9 49.4 76.4 63.3 33.6 55.7
ZGUL w/o L 76.9 17.8 61.3 52 48.8 76.5 63.2 35.6 56
ZGUL w/o F 76.9 18.7 62.4 52.7 49.5 76.5 63 35.2 56.1

Table 2: F1 of POS Tagging Results for Germanic and Slavic language families

African Indic

Hau Ibo Kin Lug Luo Pcm Avg As Bh Avg

SFT 43.2 47.1 49.1 47.5 29 64.4 46.7 32.1 35.7 33.9
Adapter-En 41.3 51.2 46 49.8 29.2 64.5 47 33 44.8 38.9
Adapter-Rel 39.1 49.1 46.3 48.7 29.7 65.1 46.3 42.4 46.9 44.7
EMEA 42 52.9 50.2 50.6 30.7 65.5 48.7 41.6 47.6 44.6
SFT-M 51.3 55.7 57.9 56.0 36.0 65.0 53.7 70.8 61.4 66.1
CPG 49 51.1 55.1 54 34.2 65.7 51.5 62 63.3 62.7
ZGUL 56.4 56.5 56.2 55 37.2 65.7 54.5 71 66.7 68.9
ZGUL w/o EM 55.7 55.9 55.1 54.6 37.5 65.7 54.1 71.4 63.1 67.3
ZGUL w/o L 49 54.7 57.3 53.5 35.5 65.5 52.6 58.8 62.2 60.5
ZGUL w/o F 53.1 54.1 57.7 55.7 36.6 65.6 53.8 67.2 61.7 64.5

Table 3: F1 of NER Results for African and Indic language families

SFT-M and CPG, which win in 4 and 2 languages,363

respectively (two of these being a tie).364

4.3 Interpreting Attention Scores365

Language Family Lang2Vec Fusion
Indic 0.98 -0.19

African 0.92 0.4
Germanic 0.52 0.43

Slavic 0.96 0.92

Table 4: Correlation between adapter weights given by
ZGUL and actual syntactic-genetic (averaged) similarity
of source-target pairs for both Lang2vec and fusion

Table 4 presents the correlation7 between the366

adapter weights that ZGUL assigns to different367

language adapters and the actual relatedness of the368

7We have used the Pearson Product-Moment Correlation
to determine the correlation.

languages measured as the average of similarity 369

measured using genetic and syntactic features of 370

the languages.8. Table 2b presents the pairwise sim- 371

ilarity of languages computed using above method. 372

We note that our model is fed only the syn- 373

tactic features and not given the genetic features 374

while training. Despite this, we see that there is a 375

very high correlation between language based atten- 376

tion weights, and language similarity as computed 377

above. This leads us to believe that the language 378

based attention weights computed by our model 379

have grounding in language/linguistic similarity. 380

On the other hand, we see the correlation between 381

fusion based attention weights and language sim- 382

ilarity is quite low. We hypothesize that this is 383

because while language based attention explicitly 384

uses the knowledge of the language, the fusion 385

based attention weights make use of token level 386

8refer to Section D for details
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(a) L2V based adapter weights(on y axis) of each of the lan-
guage families. Shown both weights, with and w/o EM. In-
dic (Top Left), African(Top Right), Germanic(Bottom Left),
Slavic(Bottom Right)

(b) Average of syntactic and genetic similarity of languages.
See Figure 5 for more details

Assamese Bhojpuri
(c) L2V based adapter weights(on y axis) expanded language-
wise for the indic family

Figure 2: Demonstrating the relation between language
similarity and adapter weights

information, which may or may not capture the387

language specific information explicitly. To further388

analyze the impact of the correlation between lan- 389

guage based weights and the language similarity, 390

we plotted the curves 2a depicting average weights 391

assigned to each training language. The ‘with EM’ 392

curve depicts the variation for ZUGL model, while 393

w/o EM curve depicts the variation for the model 394

which does not use EM during inference. We see 395

that the weight assignment for w/o EM is more 396

extreme, which is moderated by doing inference 397

with EM. The shaded region shows the standard de- 398

viation around the mean across language families. 399

In figure 2c, the language-wise division of the 400

results are shown for the indic family. These results 401

are consistent with the fact that Assamese is closer 402

to Bengali than Hindi, while Bhojpuri is closer to 403

Hindi than Bengali. This can be re-verified from 404

Fig 2b. 405

4.4 Few-Shot Performance 406

In this experiment, we take the trained ZGUL and 407

other multi-source models, i.e., CPG, SFT-M, and 408

further fine-tune them for a few labeled examples 409

from the training set of the target language. We 410

implement this for all those languages in our set, 411

whose training and dev sets are available (12 out 412

of 15). We use development set for tuning hyper- 413

parameters (details in Appendix A). We sample 414

training bins of sizes 10, 30, 70 and 100 examples. 415

We observe in Figure 3 that ZGUL is able to 416

scale quite well for all the language families, main- 417

taining its dominance over the baselines in each 418

case. The relative ordering of baselines, i.e. CPG 419

outperforming SFT-M for Slavic and Germanic 420

(POS), and SFT-M outperforming CPG for African 421

and Indic (NER), is also maintained. As expected, 422

we see that there is an initial quick jump in per- 423

formance for all the three models with addition of 424

first few examples for fine-tuning, after which the 425

slope decreases in most cases (Slavic family being 426

an exception). The plateau is not reached in the 427

learning curve for either of the language families, 428

showing that adding more examples of the test lan- 429

guage would likely result in improvement of all 430

the models, albeit at a smaller pace. We present 431

the few-shot curves for each of the 12 languages 432

in Appendix C. We observe that the curves are 433

more or less parallel for most languages, with ini- 434

tial zero-shot gap maintained even after additional 435

fine tuning. 436
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Figure 3: Few-shot F1 scores averaged over languages in a family for various few-shot bins

4.5 Robustness with XLM-Roberta437

We wanted to examine whethter our findings re-438

lated to ZGUL’s superior performance over the ex-439

isting baselines carry over to other language mod-440

els. Specifically, we trained ZGUL and other multi-441

source baselines on XLM-R Base model available442

on Adapterhub (Pfeiffer et al., 2020a) for Germanic443

and Indic language families.We had all the adapters444

for languages in these two families, except for Ben-445

gali (Indic) which we eliminated during training.446

The test set of languages was kept the same for the447

original set of experiments in each case. Table 5448

presents our findings. ZGUL beats both the base-449

lines on both the language families, with a gain450

of 1.6 pts on the Indic family, and a gain of 0.9451

pts on the Germanic family, compared to its clos-452

est competitor. This clearly confirms the finding453

that ZGUL’s gains are not restricted to a specific454

choice of language model. Surprisingly, the overall455

performance of XLM-R based language adapters456

is worse compared to those trained using m-Bert457

(Table 2, 3), an examining the causes for this is a458

direction for future research.459

Indic Germanic

Model As Bh Avg Fo Got Gsw Avg

SFT-M 60.4 60.5 60.5 78 15.4 54.9 49.4
CPG 55.7 60.3 58 78.1 18.3 57.6 51.3
ZGUL 59.3 64.9 62.1 77.8 21.7 57.1 52.2

Table 5: F1 of NER Results for Indic (trained on
En,Hi,Ur) and POS for Germanic models (trained on
En, Is, De) with XLM-R-Base Adapters

4.6 Qualitative Analysis460

We also performed some qualitative analysis of461

where does the actual gain of ZUGL come from?462

To do this, for both POS and NER tasks, we exam-463

ined label-wise performance of our model, vis-a-464

vis the baselines. For POS, we see that ZUGL does 465

quite well on ’NOUN’ which has a huge support, 466

resulting in overall better performance for ZUGL. 467

ZUGL does somewhat worse on labels such as 468

’CONJ’. Similarly, for NER, ZUGL is able to do 469

well on labels such as ‘LOC’ and ‘PER’, resulting 470

in overall improved performance over its competi- 471

tors. We refer to the Appendix E for further details. 472

Carefully examining the reasons behind improved 473

performance on certain labels (while worse perfor- 474

mance on others) is a direction for future work. 475

5 Conclusion and Future Work 476

We present ZGUL, a novel method of combining 477

the existing pretrained language adapters for train- 478

ing over multiple languages. This is performed by 479

fusing the language adapters at train time to com- 480

pute one attention score, along with language vec- 481

tors to compute a second attention score, which are 482

combined for effective training. Entropy minimiza- 483

tion is carried out at test time to further improve the 484

attention scores over the language adapters. Our 485

model obtains strong performance for languages 486

unseen by pre-trained language models. Addition- 487

ally, ZGUL also obtains benefits in the few shot- 488

setting, when a small amount of training data may 489

be available for the target language. Additional 490

experiments confirm correlation between learned 491

attention scores and phylogenetic relatedness be- 492

tween languages. Directions for future work in- 493

clude experimenting with additional language fam- 494

ilies, testing on tasks beyond those experimented 495

in this work, and analyzing what happens if model 496

is trained on languages which are quite different 497

from those used during testing. 498
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6 Limitations499

We present the trainable parameters of ZGUL and500

other baselines in table 7. We are able to reduce the501

parameters by more than 75% compared to SFT-M.502

This makes our training cheaper in terms of gra-503

dient calculations and parameter updates. On the504

other hand, we do incur the overhead during infer-505

ence since adapters need to be added in each layer.506

In addition,the entropy minimization step increases507

no. of forward passes (i.e. no. of update steps T) at508

the cost of performance (similar trade-off observed509

by (Wang et al., 2021)). Moreover, a crucial ben-510

efit with ZGUL is that it uses the pre-trained LAs511

which are reusable modules needing pre-training512

only once per language. Also, our work involves no513

pre-training on the unlabeled data of low resource514

languages (E.g. Wikipedia of those languages). So,515

we present a much cheaper alternative for improv-516

ing low resource performance compared to other517

approaches requiring explicit pre-training over mul-518

tiple languages. (Ansell et al., 2021; Pfeiffer et al.,519

2022).520
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A Hyperparameter and Implementation Details 683

We use AdapterHub 9 (Pfeiffer et al., 2020b) for all our experiments and analysis. We mention the 684

hyperparameter grid for SFT and adapter-based (CPG and ZGUL) models in table 6. For all experiments, 685

we report the average of 3 training runs of the models (with 3 different random seeds). We tune the 686

Adapter Reduction Factor (RF) in the range of 2,3 and 4 but generally fine 3 or 4 the best for both CPG 687

and ZGUL for all datasets. 688

Hyperparameter SFT Adapter Based
Learning Rate {2e-5, 3e-5, 5e-5} {5e-5, 1e-4}
No. of epochs 10 10
Reduction Factor NIL {2, 3, 4}
Batch Size {16, 32} {16, 32}
EM Steps NIL {1, 5, 10}
EM LR NIL {0.05, 0.1, 0.5, 1.0, 5.0}
Few-shot LR {1e-5, 5e-5, 1e-4} {1e-5, 5e-5, 1e-4}
Few-shot epochs {1, 5, 10} {1, 5, 10}
Few-shot Batch Size {1, 4, 8} {1, 4, 8}

Table 6: Hyperparameter grids for ours models

A.1 Trainable Parameters 689

We present the trainable parameters for each model in table 7 690

Model # params
SFT-M 177276690
CPG w RF=4 251778898
CPG w RF=3 252959314
ZGUL w RF=4 39491053
ZGUL w RF=3 40671469

Table 7: Trainable Parameters of all models

B Class-wise F1 scores 691

Table 8 and Table 9 show the classwise F1 scores for each of the tasks. The scores are averaged over all 692

languages in each task. 693

We have used the seqeval10 framework for evaluating all the models, which is consistent with the 694

previous works and used by XTREME11. Seqeval removes the ‘B’ and ‘I’ prefixes of the labels, hence the 695

Table 9 has only 3 classes. 696

9https://github.com/adapter-hub
10https://github.com/chakki-works/seqeval
11https://github.com/google-research/xtreme

11
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https://github.com/chakki-works/seqeval
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Class ZGUL CPG SFT-M Support
PART 29 26 26 831
CONJ 64 65 64 9000
ADJ 44 44 44 8768
ADP 79 77 75 9960
ADV 28 28 28 5830

VERB 51 51 50 14385
DET 40 41 37 3027
INTJ 10 3 14 211

NOUN 59 57 58 18957
PRON 41 41 40 7068

PROPN 55 53 53 4506
NUM 58 57 57 1508

PUNCT 62 61 62 7670
AUX 42 41 40 2800
SYM 12 13 12 33

X 4 4 2 228
Micro-F1 56 54 54 94782

Table 8: Classwise F1-scores for POS task. Averaged over all languages

Class ZGUL SFT-M CPG Support
DATE 21 22 22 623
LOC 55 53 50 1643
ORG 53 53 48 1034
PER 67 64 64 1483

Micro-F1 57 55 53 4783

Table 9: Classwise F1-scores for NER task. Averaged over all languages
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C Language-wise Few Shot Performance 697

Figure 4: Caption

D Quantifying similarity between source and target languages 698

We use the phlogenetic and syntactic distances between source and target languages for reference.12 699

12https://github.com/antonisa/lang2vec

13
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(a) Genetic

(b) Syntactic

Figure 5: Various similarity metrics between source and target languages (higher the more similar). This is used to
validate the assignment of the target languages to corresponding families as well as for depicting correlation with
the LA attention scores learnt by the Lang2Vec component.

D.1 Target language assignment700

We justify assigning the unseen target language to a family using nearest neighour based on phylogenetic701

similarity (shown in fig. 5a). E.g. Hausa is genetically most similar to Amheric, so it’s been assigned to702

the African family. On the other hand, Luo has equal genetic similarity with all source languages, so we703

refer to the syntactic similarity (fig. 5b), for tie-break, in which it’s most similar to Wolof (also English, in704

this case, which is common in every family), and hence it’s been assigned to the African family.705

D.2 Consistency with the learnt attention scores706

We also make use of these similarity metrics to validate the attention scores being learnt in the Lang2Vec707

modules (explained in detail in section 4.3). E.g. for Bhojpuri, highest attention score goes to Hindi708

LA while for Assamese, it does for Bengali. Indeed, we observe that Bhojpuri is closest to Hindi while709

Assamese being closest to Bengali, based upon the average of both genetic and syntactic similarities (fig.710

2b). Detailed correlation between the attention scores and similarity have been discussed in section 4.3711
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E Examples 712

Model Labels
Sentence Daas Buech laufft besser als jede vo sine Krimi .

Gold Labels DET NOUN VERB ADV CONJ PRON ADP DET NOUN PUNCT
ZGUL DET NOUN VERB ADV CONJ PRON ADP DET NOUN PUNCT
CPG DET PROPN VERB ADV ADP DET ADP DET NOUN PUNCT

Table 10: Example from the gsw language

Model Labels
Sentence весь днь милует и в заимъ даеть праведныи

Gold Labels DET NOUN VERB CONJ ADP NOUN VERB ADJ
ZGUL DET PUNCT VERB PART ADP NOUN VERB ADJ
CPG DET PUNCT VERB CONJ ADP NOUN VERB ADJ

Table 11: Example from the orv language

Model Labels
Sentence Jami’an tsaron Lebanon sun . . . Jakadancin Amurka da ke birnin Beirut .

Gold Lables O O LOC O . . . O LOC O O O LOC O
ZGUL O O LOC O . . . O LOC O O O LOC O
SFT-M O O LOC O . . . PER PER O O O LOC O

Table 12: Example from the hau langauge

Model Labels
Sentence Doho . . . pachoka David Maraga chiwo . . . jii 11 matiyo e . . . .

Gold Labels O . . . O PER PER O . . . O O O O . . . O
ZGUL O . . . O PER PER O . . . O DATE DATE O . . . O
SFT-M O . . . O PER PER O . . . O O O O . . . O

Table 13: Example from the luo language
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F Fusion based adapter weights distribution graphs713

Indic African

Germanic Slavic

Figure 6: Fusion based adapter weights (on y axis) of each of the language families. Shown both weights with and
w/o EM

G Training and Test datasets’ details714

Code Language
Amh Amharic
Ar Arabic
As Assamese
Be Belorussian
Bg Bulgarian
Bh Bhojpuri
Bn Bengali
Cs Czech
Cu Old Church Slavonic
Da Danish
De German
En English
Fo Faroese
Got Gothic
Gsw Swiss German
Hau Hausa
Hi Hindi

Code Language
Hsb Upper Sorbian
Ibo Igbo
Is Icelandic
Kin Kinyarwanda
Lug Ganda
Luo Luo
Mr Marathi
No Norwegian
Orv Old East Slavik
Qpm Pomak
Ru Russian
Swa Swahili
Ta Tamil
Uk Ukrainian
Ur Urdu
Wol Wolof

Table 14: Languages and their codes
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Family Train set Train set size
Indic {En,Hi,Bn,Ur} 55026
Germanic {En,Is,De} 222792
Slavic {En,Ru,Cs} 179043
African {En,Amh,Swa,Wol} 19788

Table 15: Training size

Test Language Size
Fo 1208
Got 1031
Gsw 100
Qpm 635
Hsb 626
Orv 4204
Cu 1141

Test Language Size
As 100
Bh 102
Hau 570
Ibo 642
Kin 611
Lug 419
Luo 189

Table 16: Testing size

Family Train set LA set Test set
Indic En,Hi,Bn,Ur {En,Hi,Bn,Ar} {As,Bh}
Germanic {En,Is,De} {En,Is,De} {Fo,Got,Gsw}
Slavic {En,Ru,Cs} {En,Ru,Cs} Qpm,Hsb,Orv,Cu
African {En,Amh,Swa,Wol} {En,Amh,Swa,Wol} {Hau,Ibo,Kin,Lug,Luo,Pcm}

Table 17: Language families and their corresponding train, LA and test sets
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