Z.GUL: Zero-shot Generalization to Unseen Languages
using Multi-source Ensembling of Language Adapters

Anonymous ACL submission

Abstract

Our goal is to achieve high zero shot perfor-
mance on low-resource languages (LRLs) that
are unseen by the multilingual pre-trained lan-
guage models like mBERT and XLM-R. A re-
cent approach for handling LRLs is to use lan-
guage adapters (LAs), but they are also unavail-
able for unseen languages. All existing works
that study LAs for unseen languages train on
only a single source language (English), and
most use only the English adapter at test time.
We believe that to achieve best zero-shot perfor-
mance, we must make use of multiple (related)
source languages/adapters at both training and
test time. In response, we propose an archi-
tecture that performs both training-time and
test-time ensembling of LAs. It also incorpo-
rates the typological properties of languages
(encoded in existing language vectors) for fur-
ther improvements. Extensive experiments and
analysis over four language families demon-
strate substantial improvements over standard
fine tuning and other recent baselines on se-
quence labelling tasks.

1 Introduction

Our focus is zero-shot performance on unseen lan-
guages — those low-resource languages (LRLs) that
are not seen by multilingual pre-trained language
models (LMs) like mBERT (Devlin et al., 2019)
and XLM-R (Conneau et al., 2020) during train-
ing. A common approach is standard fine tuning
(SFT): finetune the LM on task-specific training
data from high-resource source languages, and ap-
ply the model zero-shot on unseen languages.

A more recent line of work to handle LRLs uses
adapters (Houlsby et al., 2019; Rebuffi et al., 2017)
— small modules that are inserted in every layer
of transformer. In this approach, each Language
Adapter (LA) is first pretrained monolingually us-
ing Masked Language Modeling. During task-
specific fine-tuning, the source training language’s
LA is kept frozen and a separate trainable task

adapter (TA) is stacked on top of LA. At inference
time, the source language’s LA is replaced by target
language’s LA to obtain zero-shot performance.

However this approach only works if an LA of
target language has been pretrained, which is gen-
erally not the case for unseen languages. As a
solution, all existing works simply train on En-
glish training data and most use just the English
adapter at inference time (He et al., 2021; Pfeif-
fer et al., 2020c). We posit that this is less than
ideal; for better performance, we should combine
multiple source languages (ideally, related to target
language) and their LAs, both at train and test time.

We propose ZGUL, Zero-shot Generalization
to Unseen Languages, which explores this hypoth-
esis. It has three main components. First, it fuses
LAs from source languages at train time by adapt-
ing AdapterFusion (Pfeiffer et al., 2021), which
was originally developed for fusing multiple task
adapters. This allows ZGUL to locally decide the
relevance of each LA for each position in each layer.
Second, ZGUL leverages syntactic and phonologi-
cal properties of languages as additional informa-
tion for computing (global) LA attention scores.
For this, we make use of the URIEL database
(Littell et al., 2017) of language features. Finally,
ZGUL also implements the entropy-minimization
based test-time tuning of adapter weights (Wang
et al., 2021). This combination of train and test-
time ensembling of pretrained LAs leads to a strong
performance on our task.

We experiment with four language families -
Slavic, Germanic, African and Indic on POS tag-
ging and NER tasks. In each family, we train on
3-4 languages: English and 2-3 related languages
for which task-specific training data and LAs are
available. We find that training on multiple sources
outperforms just training on English. Moreover,
within multi-source training, ZGUL obtains sub-
stantial improvements compared to strong base-
lines like SFT and CPG (Ustiin et al., 2020), on

languages unseen in mBERT/XLM-R, in purely
zero-shot setting (and also few-shot setting). Fur-
ther ablations show the importance of each com-
ponent in ZGUL. We release our code and trained
models! for further research.

We summarize our contributions as follows:

* We propose a strong method (ZGUL) to com-
bine the existing LAs during training itself.
To our knowledge, we are the first to attempt
this in context of language adapters.

* ZGUL further incorporates test-time tuning of
LA weights.

* ZGUL outperforms strong baselines, in-
cluding SFT, for multi-source training for
zero-shot transfer on LRLs unseen in
mBERT/XLMR.

* ZGUL also achieves competitive results in
the few-shot setting, where a small amount of
unseen language training data is available.

* We find strong correlation between learned at-
tention scores to adapters and the relatedness
between high & low resource languages.

2 Related Work

Single-source Adapter Tuning: We build on Pfeif-
fer et al. (2020c), who introduce two phases of
adapter training. 1. Pretraining LA for each lan-
guage L;: inserting an LA in each layer of trans-
former model M (denoted by £; o M) and training
on unlabeled data for language £; using the MLM
objective. 2. Training TA for a task 7: stacking
LA for source language L. with TA for task T}
(denoted by 7; o L. o M), in which 7T; and the
task-specific prediction head are the only trainable
parameters. Ly, is replaced with L;4; in inference,
i.e. Tj o Lyg o M is used. This paradigm uses only
one LA for a given input sentence. Also, it works
only if L4 is available. For unseen languages,
only English adapter has been used at test time (He
et al., 2021; Pfeiffer et al., 2020c).

Adapter Combination: Pfeiffer et al. (2021) in-
troduce AdapterFusion, a technique that combines
multiple pretrained TAs 771, ... 7, to solve a new
target task 7), 1. It learns the attention weights
of 71, ...T, while being fine-tuned on the data for
Th+1. Vu et al. (2022) adapt this technique for
fusing domains and testing on out-of-domain data.
This technique has not been applied in the context

"https://anonymous.4open.science/r/ZGUL

of LAs so far. The recent release of 50 LAs in
AdapterHub? enables studying this for LAs.
Recently, Wang et al. (2021) propose EMEA
(Entropy Minimized Ensembling of Adapters) for
efficiently combining multiple LAs at inference
time. EMEA computes the entropy of the predic-
tion at test time and differentiates it w.r.t. the LA
attention scores (initialized uniformly) and updates
those using Gradient Descent. In essence, EMEA
adjusts the attention weights so as to give higher
importance to the LA that increases the confidence
score of the prediction at test time. However, train-
ing is still done using English as a single source.

Generation of LA using Shared Parameters:
Ustiin et al. (2020) apply Conditional Parameter
Generation (CPG) (Platanios et al., 2018) for train-
ing on multiple source languages. They provide
a typological language vector as input to a CPG
module (called CPGAdapter) that generates an LA.
The CPGAdapter is shared across all source lan-
guages, and trained from scratch for a given task.
Since an LA is a function of input language’s vec-
tor, this method can generalize directly to unseen
languages. However, CPG is data intensive, since
it learns the CPGAdapter parameters from scratch.
We note that CPG comes under a broader cate-
gory of hypernetworks that generate weights for a
larger main network (Ha et al., 2016), which have
also been recently explored successfully for mixing
tasks (Karimi Mahabadi et al., 2021). We compare
against CPG in our experiments.

Pretraining-based approaches: Other works have
studied pre-training solutions to deal with LRLs.
Ansell et al. (2021) propose MAD-G, which pre-
trains CPG on 95 languages’ Wikipedias, using
Masked Language Modeling (MLM). They further
fine-tune it on task data (by inserting a TA) and
test on LRLs in zero-shot setting. A recent work
by Pfeiffer et al. (2022) incrementally pretrains
on unlabeled data of new languages by inserting
language-specific modules in order to incorporate
new languages. Our paper takes a complementary
view, and eschews pre-training completely, and
instead, focuses on fine-tuning using task-specific
training data of multiple source languages.

3 Model for Ensembling of Adapters

Our goal is to effectively combine a set of source
language adapters both at train and test time for

Zhttps://adapterhub.ml/explore/text_lang/

https://anonymous.4open.science/r/ZGUL
https://adapterhub.ml/explore/text_lang/

zero-shot generalization to unseen languages. In
this paper we focus on those unseen languages
whose scripts are seen by the pre-trained language
model. Our approach can be divided in two high
level parts: ensembling at train time, and ensem-
bling at inference time.

3.1 Ensembling during Training

During training time, we make use of attention
mechanism inspired from combination of task
adapters explored in Pfeiffer et al. (2021). Whereas
they create an ensemble of task adapters, our focus
is on combining language adapters. Additionally,
we note that there is useful information available in
typological language vectors (Littell et al., 2017),
which we wish to exploit. We achieve this ob-
jective by designing two sub-components in our
architecture and later combining them (for each
layer), which we describe next (see Figure 1).

Token Based Attention (F'usion): This sub-
network computes the attention weights for source
LAs using the output of the previous transformer
layer (which, in turn, depends on the input tokens)
as its query, and using the language adapter outputs
both as the key as well as the value. Mathemati-
cally, the output of transformer layer [— 1 passed
through the feed forward of layer [becomes the
query @', and the individual adapter outputs follow-
ing this become keys (and values) K ! (and V1), the
attention weights of individual adapters are com-
puted using dot product between WéQl and W,f:K t
followed by softmax.

oy = Softmaz(W,Q")" (Wi K"))
The output of fusion is given by:
o = ap(W, V')

where Wy, W), and W, are the learnable parame-
ters.

Language vector based Attention (Lang2vec):
This sub-network computes the attention weights
for source adapters using the input language (of
the token) as the query, language vectors of the
source languages as the keys, and the language
adapter outputs as the value. Mathematically, given
the language vector LV;,, as the query, and the
source language vectors LVy, LV5, .- - LV, as the
keys, we perform Bahdanau Attention over them,
to get the attention weights over the LA outputs.

Here the language vectors are obtained by pass-
ing the language features L F> (each entry being 0
or 1) through a 1-layer MLP (shared across layers)
as:

LVipp = MLP(LFjp,)

Attention scores are given by:
1 _ SN
ap = (LVinp)” Wi(LVi:r),

Where W£ is a learnable matrix for each layer [
(not shared across 12 layers).
The output of Lang2vec module is given by:

olL = ozlL(WvVl)

We note that in F'usion, attention scores are learnt
differently across tokens, layers and examples in a
given language. However, in Lang2V ec, attention
scores will be same for a given language across all
tokens in a layer, but they will be different across
the 12 layers due to learnable matrix Wé

Combining the two ensembling modules: We
pass the input sentence through both the networks,
and receive the outputs oy and or,, corresponding
to the token based and language vector based at-
tention, respectively. We concatenate these two
vectors and pass through a fully connected layer.
The output of this linear layer, denoted as 094,

goes as input to task adapter to get the final output
0]

Ofinal'
094 = LmearLayeT(l)(O%) ® Og))
I l
Ogci)nal = TA(I)(O%ELX)

This process is repeated for each layer [in the trans-
former architecture. We note that the LAs are kept
frozen throughout the training process, while only
the TA and other parameters described in F'usion
and Lang2V ec modules being trainable.

3.2 Ensembling during inference

Wang et al. (2021) proposed inference time Entropy
Minimization (EM) algorithm to adjust the adapter
weights (initializing from uniform weights). In
our case, since we have learnt the weights during
training itself, we seek to further leverage the EM
algorithm in our framework. Since we have two
different networks in our model — token based at-
tention and language vector based attention, we

*We use 103-dimensional syntactic features available on
https://github.com/antonisa/lang2vec

https://github.com/antonisa/lang2vec

Linear Layer

Fusion ‘ Concat ‘

output GF”) [‘ ‘

“Token-based
Attention

Lang2Vec
output o)
Lang2Vec Scnréé\

Fusion Scurs;\
® ' '
_b'[
| softmax | M *(iQ
I _—
[— 0 LVinp}‘i

Value [—v{ Query

/” LangVec Attention

J

L1 | Lv2 | Lva

.
[
N

\
Feed Forward

T Transformer
layer |

T Input xl) ———————— —

Figure 1: Fusion Network (left) and Lang2Vec Network
(right) outputs are concatenated and sent to a Linear
layer followed by a TA in every layer [of the transformer

propose a two-step EM algorithm. We calculate
entropy during inference and alternately update the
adapter weights for both the networks.

Unlike EMEA which ties all the attention
weights for a given layer, we maintain separate
tokenwise learnable attention weights in each layer.
This gives greater representational flexibility to
our model. Further, while EMEA initializes the
attention weights uniformly, we initialize them
with the ones obtained using a forward pass from
ZGUL tained in a multi-source fashion. This helps
our model start from an informed weight combi-
nation for the language adapters; EMEA has no
such knowledge of a good starting point since it is
trained on a single source. The detailed algorithm
is described in Algo 11. The hyperparameters [r
and 7" are tuned on the dev set for each target lan-
guage with grid search details (ref. Appendix A).

4 Experiments

In our experiments, we set out to answer the fol-
lowing questions. (1) How does ZGUL perform
in a zero-shot setting compared to the other base-
lines on unseen languages? What is the incremen-
tal contribution of ZGUL components for perfor-
mance on LRLs? (2) Are LA attention weights
learnt by ZGUL interpretable, i.e., whether geneti-
cally/syntactically more similar source languages
get higher attention scores? (3) How does ZGUL’s
performance vary in the few-shot setting, where a

few training examples of the target language are
shown to the model for fine-tuning, compared to
other baselines, especially SFT-M? (4) Do ZGUL’s
benefits carry over to larger pre-trained models
such as XLM-Roberta? We next describe our
datasets, evaluation metrcis, methodology followed
by our experimental findings.

4.1 Datasets, Tasks and Baselines

Datasets and Tasks: We experiment with 15 lan-
guages that are unseen for mBERT, from four lan-
guage familities: Slavic, Germanic, African and
Indic. We choose either of two sequence labeling
tasks: named entity recognition (NER) or part-of-
speech (POS) Tagging, based on available test sets
for unseen languages. For Slavic and Germanic,
we use POS tagging dataset UDPOS. For African
and Indic, we use NER datasets MasakhaNER and
PAN-X respectively. PAN-X and UDPOS datasets
have been obtained from XTREME Repository
(Hu et al., 2020) while MasakhaNER is obtained
from Adelani et al. (2021).*. We choose training
languages from each family that have pre-trained
adapters available > We justify our language group-
ing using the phylogenetic trees (Cole and Siebert-
Cole, 2022a,b) for Indo-European and African
languages (we combined Niger-Congo and Afro-
Asiatic families following Adelani et al. (2021)).
The details of training and test languages, as well
as corresponding task for each family are described
in Table 1.

Baselines: We experiment with two sets of base-
lines. In the first set, the baselines make use of
only English as the source language during training.
The baselines here include finetuning the mBERT
model (SFT), using English adapter in training and
inference (Adapter-En), replacing English adapter
with one related LA at inference time (Adapter-
Related), and EMEA: ensembling multiple LAs
at inference time via entropy minimization (Wang
et al., 2021). In the second set, we compare with
algorithms that make use of multiple source lan-
guages (belonging to a family), in addition to En-
glish. We compare against CPG and standard fine
tuning (SFT-M), trained on all source languages.
Evaluation Metric: We report the micro-F1 score
evaluated on each token using seqeval toolkit
(Nakayama, 2018), which is consistent with the
one used in previous research (Wang et al., 2021)

*https://github.com/masakhane-io/masakhane-ner
SWe do not have a pre-trained LA for Urdu; we instead
use the LA for Arabic, which shares the same script as Urdu.

https://github.com/masakhane-io/masakhane-ner

Algorithm 1 EM algorithm during Inference

Input: Our model’s scores al= (a%,aOL), test data x, learning rate 7, update steps 1"

Output: Prediction g
1: function EMEA++()

2: fort < OtoT — 1do

3: Bt « Softmazx(at)

4: H(z,a) + Entropy(TA o Lyguvg(h, ') o M)
5: g% = VQH(Q?,Q%)

6: ol « Update(ats,)

7. gz = VQH(m7 ai)

8: af « Update(ay,, g1,)

9: ot = (i att)

10: end for

11: ol « Softmaz(a®)

12: § « Predict(TA o Lygvg(h,a™) o M))
13: end function

> Normalize the LA scores

> Compute Entropy

> Compute Token Attention gradient

> Update Token Attention weights

> Compute LangVec Attention gradient
> Update LangVec Attention weights

> Final Normalize
> Compute Prediction

Family Train set* Test set Task
Germanic | German(De), Islandic(Is) Faroese(Fo), Gotham(Got), POS
Swiss German(Gsw)
Slavic Russian(Ru), Czech(Cs) Pomak(Qpm), Upper Sorbian(Hsb) POS
0Old East Slavic(Orv), Old Church Slavonic(Cu)
African Ambharic(Amh) Hausa(Hau), Igbo(Ibo), Kinyarwanda(Kin) NER
Swahili(Swa), Wolof(Wol) | Luganda(Lug), Luo(Luo), Nigerian Pidgin(Pcm)
Indic Hindi(Hi), Bengali(Bn) Assamese(As), Bhojpuri(Bh) NER
Urdu(Ur)

Table 1: Language families and their corresponding train, test languages, and tasks. * English (En) was added to

train set in each case.

and is available as a standard evaluation script in
the Google Research’s xtreme repo.®

4.2 Results: Zero Shot Transfer

Table 2 presents our experimental findings for Ger-
manic and Slavic group of languages, and Table 3
for African and Indic families. For most unseen
LRLs, we observe ZGUL’s consistent gains com-
pared to other baselines. For the task of POS, we
observe a respectable gain of 2.5 points in ZGUL’s
average performance on Germanic, and a marginal
improvement of 0.7 points for Slavic family in the
average scores, over closest baselines in each case.
For the task of NER, we observe a decent gain of
2.8 pts for the Indic family, and a marginal gain of
0.8 pts for the African family, over the closest base-
lines. We observe that for POS, our competitive
baseline is CPG, while for NER it’s SFT-M. This
is not surprising since CPG needs a lot of training
data to optimize Ustiin et al. (2020) due to a large
number of parameters in the model, and our NER
datasets are much smaller in size compared to those

®https://github.com/google-
research/xtreme/blob/master/third_party/run_tag.py

for POR (ref. Appendix). We also note that base-
lines which train on a single source perform much
worse in each case, highlighting the importance of
multi-source training for our task, the gain being
particular impressive for Indic family (24 pts).

Last three rows in Tables 2,3 present the findings
of our ablation studies, where examine the effect
different kinds of attention mechanisms in ZGUL
, as well as the impact of entropy minimization
during inference (ref. Section 3). We see that each
component of ZGUL has a positive impact on its
performance for each of the language family, as
far as average scores are concerned, experimental
higlighting the importance of each of the compo-
nents in our architecture. For individual languages
as well, we see an improvement in performance
due to each component, except for a few cases (As-
samese and Luo), where EM marginally hurts the
performance.

Overall, we see that ZGULDbeats all the base-
lines for each of the language families, with the
gain ranging from 0.7 pts to 2.8 pts in average
scores, and ZGUL or one of its variants obtain the
best scores in 11 out of 15 languages, compared to

https://github.com/google-research/xtreme/blob/master/third_party/run_tag.py
https://github.com/google-research/xtreme/blob/master/third_party/run_tag.py

Germanic Slavic

Fo Got Gsw ‘ Avg H Qpm Hsb Orv Cu | Avg
SFT 724 132 55.1 | 46.9 | 40 64.8 56.5 28 47.3
Adapter-En 71.6 156 57.1 | 48.1 || 41.8 632 543 29.5 |49
Adapter-Rel 72.8 152 57 48.3 || 39.3 60.2 57 32.2 | 49.8
EMEA 74 148 553 | 48 42.1 63.1 564 32 50.5
SFT-M 773 168 61.8 | 52.0 || 46.8 75.6 63.7 347|552
CPG 77 16 63.6 | 52.2 || 469 767 641 35.6 | 55.8
ZGUL 77.1 20.8 65.6 | 545 || 504 77 63.6 349 | 56.5
ZGUL w/oEM 768 158 63 519 || 494 764 633 33.6| 557
ZGUL w/o L 769 17.8 613 | 52 48.8 76.5 63.2 35.6 | 56
ZGUL w/o F 769 18.7 624 | 527 || 495 76.5 63 35.2 | 56.1

Table 2: F1 of POS Tagging Results for Germanic and Slavic language families

African Indic

Hau Ibo Kin Lug Luo Pcm ‘ Avg H As Bh | Avg
SFT 432 47.1 49.1 475 29 64.4 | 46.7 || 32.1 35.7 | 33.9
Adapter-En 413 512 46 498 29.2 645 | 47 33 44.8 | 389
Adapter-Rel 39.1 49.1 463 487 29.7 65.1 | 463 || 424 46.9 | 44.7
EMEA 42 529 502 50.6 30.7 655 |48.7 || 41.6 47.6 | 44.6
SFT-M 513 557 579 56.0 360 650 |53.7| 70.8 614 | 66.1
CPG 49 51.1 55.1 54 342 65.7 | 51.5 || 62 63.3 | 62.7
ZGUL 564 56.5 562 55 372 65.7 | 545 | 71 66.7 | 68.9
ZGUL w/oEM 557 559 551 546 37,5 65.7 | 54.1 | 714 63.1 | 67.3
ZGUL w/o L 49 547 573 535 355 655|526 | 58.8 622 60.5
ZGUL w/o F 53.1 541 5777 557 36.6 656|538 | 672 61.7 | 64.5

Table 3: F1 of NER Results for African and Indic language families

SFT-M and CPG, which win in 4 and 2 languages,
respectively (two of these being a tie).

4.3 Interpreting Attention Scores

Language Family | Lang2Vec ‘ Fusion

Indic 0.98 -0.19
African 0.92 04
Germanic 0.52 0.43

Slavic 0.96 0.92

Table 4: Correlation between adapter weights given by
ZGUL and actual syntactic-genetic (averaged) similarity
of source-target pairs for both Lang2vec and fusion

Table 4 presents the correlation’ between the
adapter weights that ZGUL assigns to different
language adapters and the actual relatedness of the

"We have used the Pearson Product-Moment Correlation
to determine the correlation.

languages measured as the average of similarity
measured using genetic and syntactic features of
the languages.®. Table 2b presents the pairwise sim-
ilarity of languages computed using above method.

We note that our model is fed only the syn-
tactic features and not given the genetic features
while training. Despite this, we see that there is a
very high correlation between language based atten-
tion weights, and language similarity as computed
above. This leads us to believe that the language
based attention weights computed by our model
have grounding in language/linguistic similarity.
On the other hand, we see the correlation between
fusion based attention weights and language sim-
ilarity is quite low. We hypothesize that this is
because while language based attention explicitly
uses the knowledge of the language, the fusion
based attention weights make use of token level

8refer to Section D for details

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

0.6- 0.6
W/0 EM W/0 EM
05- — WithEM | g5 — WithEM
a
04- r 0.4
—-_———e—————
0.2- 02
0.1- 01
0.0-
0.0
en hi bn ar en amh swa wol
0.6 0.6
W/O EM W/O EM

05 — WthEM g5 — Vith EM

TS

0.4 04
03 /\ o
0.2 02

0.1 01

0.0 0.0
en is de en n [

(a) L2V based adapter weights(on y axis) of each of the lan-
guage families. Shown both weights, with and w/o EM. In-
dic (Top Left), African(Top Right), Germanic(Bottom Left),
Slavic(Bottom Right)

Ger Ara Hin Ben

Tgt/Src Eng Amh Swa Wol Rus Cze Isl

Bho 021 018 0.11 029 026 023 026 015 0.47 0.41
Hau 027 024 022 027 02 014 024 023

Ibo 019 012 0.41 03 014 014 019 016 015

Kin 011 01 048 021 01 014 0.14 0.13

Lug 0.11 o.:|_1| 057 0.25/011 016 0.16 011 015

Luo 018 017 023 0.25 015 016 02 017 018

Ass 014 0.14 0.1-022 023 02 022 014 035
Qpm 033 019 016 023 048 044 028 03 019 028 0.22

Hsb 026 021 02 019/051 046 027 028 016 0.27 0.23
Orv 026 021 02 019/051 038 027 028 016 0.27 0.23
Chu 026 021 02 019/051 038 0.27 028 016 0.27 0.23
Fao 034 015 0413 0.19 0.28 0.3- 042 013 019 0.22
Got 026/ 014 016 019 026 027 035 034 015 021 0.21
Gsw 038 017 042 017 028 03 038 051 013 0.24 0.25

(b) Average of syntactic and genetic similarity of languages.
See Figure 5 for more details

0.6 0.6
W/0 EM W/O EM

0.5- — WithEM 0.5- — With EM
0.4- 0.4-
0.3- '//\ 0.3- /_\
0.2- 0.2-
0.1- 0.1-
0.0 0.0

en hi bn ar en hi bn ar

Assamese Bhojpuri

(c) L2V based adapter weights(on y axis) expanded language-
wise for the indic family

Figure 2: Demonstrating the relation between language
similarity and adapter weights

information, which may or may not capture the
language specific information explicitly. To further

analyze the impact of the correlation between lan-
guage based weights and the language similarity,
we plotted the curves 2a depicting average weights
assigned to each training language. The ‘with EM’
curve depicts the variation for ZUGL model, while
w/o EM curve depicts the variation for the model
which does not use EM during inference. We see
that the weight assignment for w/o EM is more
extreme, which is moderated by doing inference
with EM. The shaded region shows the standard de-
viation around the mean across language families.

In figure 2c, the language-wise division of the
results are shown for the indic family. These results
are consistent with the fact that Assamese is closer
to Bengali than Hindi, while Bhojpuri is closer to
Hindi than Bengali. This can be re-verified from
Fig 2b.

4.4 Few-Shot Performance

In this experiment, we take the trained ZGUL and
other multi-source models, i.e., CPG, SFT-M, and
further fine-tune them for a few labeled examples
from the training set of the target language. We
implement this for all those languages in our set,
whose training and dev sets are available (12 out
of 15). We use development set for tuning hyper-
parameters (details in Appendix A). We sample
training bins of sizes 10, 30, 70 and 100 examples.

We observe in Figure 3 that ZGUL is able to
scale quite well for all the language families, main-
taining its dominance over the baselines in each
case. The relative ordering of baselines, i.e. CPG
outperforming SFT-M for Slavic and Germanic
(POS), and SFT-M outperforming CPG for African
and Indic (NER), is also maintained. As expected,
we see that there is an initial quick jump in per-
formance for all the three models with addition of
first few examples for fine-tuning, after which the
slope decreases in most cases (Slavic family being
an exception). The plateau is not reached in the
learning curve for either of the language families,
showing that adding more examples of the test lan-
guage would likely result in improvement of all
the models, albeit at a smaller pace. We present
the few-shot curves for each of the 12 languages
in Appendix C. We observe that the curves are
more or less parallel for most languages, with ini-
tial zero-shot gap maintained even after additional
fine tuning.

= CPG = ZGUL = SFT-M

= CPG =ZGUL = SFT-M
85

75

65

55

0 25 50 15 100 0 25 50 75 100

Germanic Slavic

= CPG = ZGUL = SFT-M

= CPG =ZGUL = SFT-M

0 25 50 75 100 0 25 50 75 100
African Indic

Figure 3: Few-shot F1 scores averaged over languages in a family for various few-shot bins

4.5 Robustness with XLLM-Roberta

We wanted to examine whethter our findings re-
lated to ZGUL’s superior performance over the ex-
isting baselines carry over to other language mod-
els. Specifically, we trained ZGUL and other multi-
source baselines on XLM-R Base model available
on Adapterhub (Pfeiffer et al., 2020a) for Germanic
and Indic language families.We had all the adapters
for languages in these two families, except for Ben-
gali (Indic) which we eliminated during training.
The test set of languages was kept the same for the
original set of experiments in each case. Table 5
presents our findings. ZGUL beats both the base-
lines on both the language families, with a gain
of 1.6 pts on the Indic family, and a gain of 0.9
pts on the Germanic family, compared to its clos-
est competitor. This clearly confirms the finding
that ZGUL’s gains are not restricted to a specific
choice of language model. Surprisingly, the overall
performance of XLLM-R based language adapters
is worse compared to those trained using m-Bert
(Table 2, 3), an examining the causes for this is a
direction for future research.

Indic Germanic
Model As Bh | Avg | Fo Got Gsw | Avg
SFT-M 60.4 60.5 | 60.5 | 78 154 549 | 494
CPG 55.7 603 | 58 781 183 57.6 | 51.3
ZGUL 593 649 | 62.1 | 77.8 21.7 57.1 | 52.2

Table 5: F1 of NER Results for Indic (trained on
En,Hi,Ur) and POS for Germanic models (trained on
En, Is, De) with XLM-R-Base Adapters

4.6 Qualitative Analysis

We also performed some qualitative analysis of
where does the actual gain of ZUGL come from?
To do this, for both POS and NER tasks, we exam-
ined label-wise performance of our model, vis-a-

vis the baselines. For POS, we see that ZUGL does
quite well on "'NOUN’ which has a huge support,
resulting in overall better performance for ZUGL.
ZUGL does somewhat worse on labels such as
"CONYJ’. Similarly, for NER, ZUGL is able to do
well on labels such as ‘LOC’ and ‘PER’, resulting
in overall improved performance over its competi-
tors. We refer to the Appendix E for further details.
Carefully examining the reasons behind improved
performance on certain labels (while worse perfor-
mance on others) is a direction for future work.

5 Conclusion and Future Work

We present ZGUL, a novel method of combining
the existing pretrained language adapters for train-
ing over multiple languages. This is performed by
fusing the language adapters at train time to com-
pute one attention score, along with language vec-
tors to compute a second attention score, which are
combined for effective training. Entropy minimiza-
tion is carried out at test time to further improve the
attention scores over the language adapters. Our
model obtains strong performance for languages
unseen by pre-trained language models. Addition-
ally, ZGUL also obtains benefits in the few shot-
setting, when a small amount of training data may
be available for the target language. Additional
experiments confirm correlation between learned
attention scores and phylogenetic relatedness be-
tween languages. Directions for future work in-
clude experimenting with additional language fam-
ilies, testing on tasks beyond those experimented
in this work, and analyzing what happens if model
is trained on languages which are quite different
from those used during testing.

6 Limitations

We present the trainable parameters of ZGUL and
other baselines in table 7. We are able to reduce the
parameters by more than 75% compared to SFT-M.
This makes our training cheaper in terms of gra-
dient calculations and parameter updates. On the
other hand, we do incur the overhead during infer-
ence since adapters need to be added in each layer.
In addition,the entropy minimization step increases
no. of forward passes (i.e. no. of update steps T) at
the cost of performance (similar trade-off observed
by (Wang et al., 2021)). Moreover, a crucial ben-
efit with ZGUL is that it uses the pre-trained LAs
which are reusable modules needing pre-training
only once per language. Also, our work involves no
pre-training on the unlabeled data of low resource
languages (E.g. Wikipedia of those languages). So,
we present a much cheaper alternative for improv-
ing low resource performance compared to other
approaches requiring explicit pre-training over mul-
tiple languages. (Ansell et al., 2021; Pfeiffer et al.,
2022).

References

David Ifeoluwa Adelani, Jade Abbott, Graham Neu-
big, Daniel D’souza, Julia Kreutzer, Constantine Lig-
nos, Chester Palen-Michel, Happy Buzaaba, Shruti
Rijhwani, Sebastian Ruder, Stephen Mayhew, Is-
rael Abebe Azime, Shamsuddeen H. Muhammad,
Chris Chinenye Emezue, Joyce Nakatumba-Nabende,
Perez Ogayo, Aremu Anuoluwapo, Catherine Gitau,
Derguene Mbaye, Jesujoba Alabi, Seid Muhie Yi-
mam, Tajuddeen Rabiu Gwadabe, Ignatius Ezeani,
Rubungo Andre Niyongabo, Jonathan Mukiibi, Ver-
rah Otiende, Iroro Orife, Davis David, Samba Ngom,
Tosin Adewumi, Paul Rayson, Mofetoluwa Adeyemi,
Gerald Muriuki, Emmanuel Anebi, Chiamaka Chuk-
wuneke, Nkiruka Odu, Eric Peter Wairagala, Samuel
Oyerinde, Clemencia Siro, Tobius Saul Bateesa,
Temilola Oloyede, Yvonne Wambui, Victor Akin-
ode, Deborah Nabagereka, Maurice Katusiime, Ayo-
dele Awokoya, Mouhamadane MBOUP, Dibora Ge-
breyohannes, Henok Tilaye, Kelechi Nwaike, De-
gaga Wolde, Abdoulaye Faye, Blessing Sibanda, Ore-
vaoghene Ahia, Bonaventure F. P. Dossou, Kelechi
Ogueji, Thierno Ibrahima DIOP, Abdoulaye Diallo,
Adewale Akinfaderin, Tendai Marengereke, and Sa-
lomey Osei. 2021. MasakhaNER: Named entity
recognition for African languages. Transactions
of the Association for Computational Linguistics,
9:1116-1131.

Alan Ansell, Edoardo Maria Ponti, Jonas Pfeiffer, Se-
bastian Ruder, Goran Glavas, Ivan Vuli¢, and Anna
Korhonen. 2021. MAD-G: Multilingual adapter gen-
eration for efficient cross-lingual transfer. In Find-

ings of the Association for Computational Linguis-
tics: EMNLP 2021, pages 4762—4781, Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Theodor Cole and Erika Siebert-Cole. 2022a. Family
tree of languages — part i: Indo-european (2022).

Theodor Cole and Erika Siebert-Cole. 2022b. Family
tree of languages — part iii: African, dravidian, uralic,
caucasian, afro-asiatic.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzman, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440-
8451.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171—
4186.

David Ha, Andrew Dai, and Quoc V Le. 2016. Hyper-
networks. arXiv preprint arXiv:1609.09106.

Ruidan He, Linlin Liu, Hai Ye, Qingyu Tan, Bosheng
Ding, Liying Cheng, Jia-Wei Low, Lidong Bing,
and Luo Si. 2021. On the effectiveness of adapter-
based tuning for pretrained language model adapta-
tion. arXiv preprint arXiv:2106.03164.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790-2799. PMLR.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-
ham Neubig, Orhan Firat, and Melvin Johnson.
2020. Xtreme: A massively multilingual multi-task
benchmark for evaluating cross-lingual generalisa-
tion. In International Conference on Machine Learn-
ing, pages 4411-4421. PMLR.

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa
Dehghani, and James Henderson. 2021. Parameter-
efficient multi-task fine-tuning for transformers via
shared hypernetworks. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 565-576, Online. Association
for Computational Linguistics.

Patrick Littell, David R. Mortensen, Ke Lin, Katherine
Kairis, Carlisle Turner, and Lori Levin. 2017. URIEL

https://doi.org/10.1162/tacl_a_00416
https://doi.org/10.1162/tacl_a_00416
https://doi.org/10.1162/tacl_a_00416
https://doi.org/10.18653/v1/2021.findings-emnlp.410
https://doi.org/10.18653/v1/2021.findings-emnlp.410
https://doi.org/10.18653/v1/2021.findings-emnlp.410
https://doi.org/10.13140/RG.2.2.12975.76964/1
https://doi.org/10.13140/RG.2.2.12975.76964/1
https://doi.org/10.13140/RG.2.2.12975.76964/1
https://doi.org/10.13140/RG.2.2.29752.98563/1
https://doi.org/10.13140/RG.2.2.29752.98563/1
https://doi.org/10.13140/RG.2.2.29752.98563/1
https://doi.org/10.13140/RG.2.2.29752.98563/1
https://doi.org/10.13140/RG.2.2.29752.98563/1
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2021.acl-long.47
https://aclanthology.org/E17-2002
https://aclanthology.org/E17-2002

and lang2vec: Representing languages as typological,
geographical, and phylogenetic vectors. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 2, Short Papers, pages 8—14, Valencia, Spain.
Association for Computational Linguistics.

Hiroki Nakayama. 2018. seqeval: A python framework
for sequence labeling evaluation. Software available
from https://github. com/chakki-works/seqeval.

Jonas Pfeiffer, Naman Goyal, Xi Victoria Lin, Xian Li,

James Cross, Sebastian Riedel, and Mikel Artetxe.
2022. Lifting the curse of multilinguality by pre-
training modular transformers. In Proceedings of the
2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, NAACL 2022, Seattle,
WA, United States, July 10-15, 2022, pages 3479—

Ahmet Ustiin, Arianna Bisazza, Gosse Bouma, and Gert-

jan van Noord. 2020. UDapter: Language adaptation
for truly Universal Dependency parsing. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
2302-2315, Online. Association for Computational
Linguistics.

Thuy-Trang Vu, Shahram Khadivi, Dinh Phung, and

Gholamreza Haffari. 2022. Domain generalisation
of NMT: Fusing adapters with leave-one-domain-out
training. In Findings of the Association for Computa-
tional Linguistics: ACL 2022, pages 582-588.

Xinyi Wang, Yulia Tsvetkov, Sebastian Ruder, and Gra-

ham Neubig. 2021. Efficient test time adapter en-
sembling for low-resource language varieties. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 730-737.

3495. Association for Computational Linguistics.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Riicklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
Adapterfusion: Non-destructive task composition for
transfer learning. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
487-503.

Jonas Pfeiffer, Andreas Riicklé, Clifton Poth, Aishwarya
Kamath, Ivan Vulié, Sebastian Ruder, Kyunghyun
Cho, and Iryna Gurevych. 2020a. Adapterhub: A
framework for adapting transformers. In Proceedings
of the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP 2020): Systems
Demonstrations, pages 46—54, Online. Association
for Computational Linguistics.

Jonas Pfeiffer, Andreas Riicklé, Clifton Poth, Aishwarya
Kamath, Ivan Vulié, Sebastian Ruder, Kyunghyun
Cho, and Iryna Gurevych. 2020b. AdapterHub: A
framework for adapting transformers. In Proceedings
of the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
Online. Association for Computational Linguistics.

Jonas Pfeiffer, Ivan Vulié, Iryna Gurevych, and Se-
bastian Ruder. 2020c. MAD-X: An Adapter-Based
Framework for Multi-Task Cross-Lingual Transfer.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7654-7673, Online. Association for Computa-
tional Linguistics.

Emmanouil Antonios Platanios, Mrinmaya Sachan, Gra-
ham Neubig, and Tom Mitchell. 2018. Contextual
parameter generation for universal neural machine
translation. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 425-435, Brussels, Belgium. Association
for Computational Linguistics.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea
Vedaldi. 2017. Learning multiple visual domains
with residual adapters. Advances in neural informa-
tion processing systems, 30.

10

https://aclanthology.org/E17-2002
https://aclanthology.org/E17-2002
https://aclanthology.org/E17-2002
https://doi.org/10.18653/v1/2022.naacl-main.255
https://doi.org/10.18653/v1/2022.naacl-main.255
https://doi.org/10.18653/v1/2022.naacl-main.255
https://www.aclweb.org/anthology/2020.emnlp-demos.7
https://www.aclweb.org/anthology/2020.emnlp-demos.7
https://www.aclweb.org/anthology/2020.emnlp-demos.7
https://doi.org/10.18653/v1/2020.emnlp-demos.7
https://doi.org/10.18653/v1/2020.emnlp-demos.7
https://doi.org/10.18653/v1/2020.emnlp-demos.7
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/D18-1039
https://doi.org/10.18653/v1/D18-1039
https://doi.org/10.18653/v1/D18-1039
https://doi.org/10.18653/v1/D18-1039
https://doi.org/10.18653/v1/D18-1039
https://doi.org/10.18653/v1/2020.emnlp-main.180
https://doi.org/10.18653/v1/2020.emnlp-main.180
https://doi.org/10.18653/v1/2020.emnlp-main.180

A Hyperparameter and Implementation Details

We use AdapterHub ° (Pfeiffer et al., 2020b) for all our experiments and analysis. We mention the
hyperparameter grid for SFT and adapter-based (CPG and ZGUL) models in table 6. For all experiments,
we report the average of 3 training runs of the models (with 3 different random seeds). We tune the
Adapter Reduction Factor (RF) in the range of 2,3 and 4 but generally fine 3 or 4 the best for both CPG
and ZGUL for all datasets.

Hyperparameter SFT Adapter Based
Learning Rate {2e-5, 3e-5, 5e-5} {5e-5, le-4}
No. of epochs 10 10
Reduction Factor NIL {2,3,4}
Batch Size {16, 32} {16, 32}
EM Steps NIL {1, 5, 10}
EM LR NIL | {0.05,0.1,0.5, 1.0, 5.0}
Few-shot LR {1e-5, 5e-5, le-4} {1e-5, 5e-5, le-4}
Few-shot epochs {1,5, 10} {1, 5,10}
Few-shot Batch Size {1,4,8} {1,4,8}

Table 6: Hyperparameter grids for ours models

A.1 Trainable Parameters

We present the trainable parameters for each model in table 7

Model | #params
SFT-M 177276690
CPG w RF=4 251778898
CPG w RF=3 252959314
ZGUL w RF=4 39491053
ZGUL w RF=3 40671469

Table 7: Trainable Parameters of all models

B Class-wise F1 scores

Table 8 and Table 9 show the classwise F1 scores for each of the tasks. The scores are averaged over all
languages in each task.

We have used the seqeval'? framework for evaluating all the models, which is consistent with the
previous works and used by XTREME!!. Seqeval removes the ‘B’ and ‘I’ prefixes of the labels, hence the
Table 9 has only 3 classes.

*https://github.com/adapter-hub
"https://github.com/chakki-works/seqeval
https://github.com/google-research/xtreme

11

https://github.com/adapter-hub
https://github.com/chakki-works/seqeval
https://github.com/google-research/xtreme

Class ZGUL | CPG | SFT-M | Support
PART 29 26 26 831
CONJ 64 65 64 9000
ADJ 44 44 44 8768
ADP 79 77 75 9960
ADV 28 28 28 5830
VERB 51 51 50 14385
DET 40 41 37 3027
INTJ 10 3 14 211
NOUN 59 57 58 18957
PRON 41 41 40 7068
PROPN 55 53 53 4506
NUM 58 57 57 1508
PUNCT 62 61 62 7670
AUX 42 41 40 2800
SYM 12 13 12 33
X 4 4 2 228
Micro-F1 56 54 54 94782

Table 8: Classwise F1-scores for POS task. Averaged over all languages

Class ZGUL | SFT-M | CPG | Support
DATE 21 22 22 623
LOC 55 53 50 1643
ORG 53 53 48 1034
PER 67 64 64 1483
Micro-F1 57 55 53 4783

12

Table 9: Classwise F1-scores for NER task. Averaged over all languages

C Language-wise Few Shot Performance

795
785

7758

= CPG = ZGUL = SFT-M

A
2\

765
0 25 50 75 10
Fo
= CPG = ZGUL = SFT-M

70

G0

50

40

30

0 2% 50 75 10
Cu
= CPG = 7GUL = SFT-M

72

70

68

66

64

62

60

58

56

54

52

50

25 50 7

lbo

0

0

80

60

40

20

70

85

80

= CPG = ZGUL = SFT-M

(=}

25

o
[=}

75
Got

= CPG = ZGUL = SFT-M

0 25 50 5
As
= CPG = 7GUL = SFT-M

100

87

85

83

81

79

1

7%

80

7

70

65

60

55

65

63

61

59

57

9%

53

= CPG = ZGUL = SFT-M

[=}

10 20

Hsb

= CPG = ZGUL = SFT-M

N

[=1

2 50

Bh

% 10

= CPG = ZGUL = SFT-M

\

[=}

2 50

Lua

% 1

=

Figure 4: Caption

D Quantifying similarity between source and target languages

We use the phlogenetic and syntactic distances between source and target languages for reference.

Phttps://github.com/antonisa/lang2vec

w
=

0

0

65

60

55

50

[=1

80

55

50

45

40
39

= CPG = ZGUL = SFT-M

i

[=1

25 50

orv

75 1

=

0

= CPG = ZGUL = SFT-M

25 50 75 100
Hau

= CPG = ZGUL = SFT-M

[l 25 50 75 100
Luo

12

https://github.com/antonisa/lang2vec

Target/Source Eng Amh Swa Wol Rus Cze Isl Ger Ara Hin Ben
Hau
Ibo
Kin
Lug
Luo
Ass
Qpm
Hshb
Orv
Chu
Fao
Got
Gsw

(a) Genetic

Target/Source Eng Amh Swa Wol Rus Cze Isl Ger Ara Hin Ben

Bho 0.32 0.39 0.37 032 0.38

Hau 0.41 0,28| u.49| 0.46

Ibo 028 029 0.39 0.32

Kin 029 0.28

Lug 0.33 0.32| 0.23

Luo 0.33 041 034

Ass 031 026 03 0.29 0.33 0.38
Qpm 0.45 0.41| 0.46 0.39 041 031
Hsh 04 0.38 043 034 04 042 033 042 033
Orv 04 0.38 0.43 0.34 04 042 033 042 033
Chu 04 0.38 043 034 04 042 033 042 033
Fao 039 03 026 038 036 046 043 041 026 025 0.31
Got 033 029 033 038 033 039 042 04 03 029 03
Gsw 037 034 024 035 o.aﬂﬂ 033 044 027 035 0.37

(b) Syntactic

Figure 5: Various similarity metrics between source and target languages (higher the more similar). This is used to
validate the assignment of the target languages to corresponding families as well as for depicting correlation with
the LA attention scores learnt by the Lang2Vec component.

D.1 Target language assignment

We justify assigning the unseen target language to a family using nearest neighour based on phylogenetic
similarity (shown in fig. 5a). E.g. Hausa is genetically most similar to Amheric, so it’s been assigned to
the African family. On the other hand, Luo has equal genetic similarity with all source languages, so we
refer to the syntactic similarity (fig. 5b), for tie-break, in which it’s most similar to Wolof (also English, in
this case, which is common in every family), and hence it’s been assigned to the African family.

D.2 Consistency with the learnt attention scores

We also make use of these similarity metrics to validate the attention scores being learnt in the Lang2Vec
modules (explained in detail in section 4.3). E.g. for Bhojpuri, highest attention score goes to Hindi
LA while for Assamese, it does for Bengali. Indeed, we observe that Bhojpuri is closest to Hindi while
Assamese being closest to Bengali, based upon the average of both genetic and syntactic similarities (fig.
2b). Detailed correlation between the attention scores and similarity have been discussed in section 4.3

14

E Examples

Model Labels
Sentence | Daas Buech laufft besser als jede vo sine Krimi
Gold Labels | DET NOUN VERB ADV CONJ PRON ADP DET NOUN PUNCT
ZGUL DET NOUN VERB ADV CONJ PRON ADP DET NOUN PUNCT
CPG DET PROPN VERB ADV ADP DET ADP DET NOUN PUNCT

Table 10: Example from the gsw language

Model Labels
Sentence BeChb IHb MUJIyeT u B 3aUMb JaeThb IIpaBeHbIN
Gold Labels | DET NOUN VERB CONJ ADP NOUN VERB ADJ
ZGUL DET PUNCT VERB PART ADP NOUN VERB ADJ
CPG DET PUNCT VERB CONJ ADP NOUN VERB AD]J

Table 11: Example from the orv language

Model Labels
Sentence Jami’an tsaron Lebanon sun ... Jakadancin Amurka da ke birnin Beirut
Gold Lables 0] 0] LOC o ... (0] LOC O O (0] LOC O
ZGUL 0] 0] LOC o .. (0] LOC O O O LOC O
SFT-M 0] 0] LOC o ... PER PER O O (0] LOC O
Table 12: Example from the hau langauge
Model Labels
Sentence | Doho ... pachoka David Maraga chiwo ... jii 11 matiyo e .
Gold Labels (0] ... O PER PER 0] ... O (0] (0] 0] 0]
ZGUL 0] ... (0] PER PER 0] ... O DATE DATE O 0]
SFT-M (0] ... O PER PER 0] ... O (0] (0] 0] 0]

Table 13: Example from the luo language

15

713 F Fusion based adapter weights distribution graphs

0.45
0.40
0.35
0.30
0.25
0.20
0.15

0.10

Indic African
0.61
0.51
0.5
0.4 0.4
0.3 0.3
0.21
0.21
0.11
eh i's de én ru Es
Germanic Slavic

Figure 6: Fusion based adapter weights (on y axis) of each of the language families. Shown both weights with and
w/o EM

714 G Training and Test datasets’ details

Lan
Code a guage Code Language
Amh Amharic Hsb Upper Sorbian
Ar Arabic PP
Ibo Igbo
As Assamese .
) Is Icelandic
Be Belorussian . .
. Kin Kinyarwanda
Bg Bulgarian
. Lug Ganda
Bh Bhojpuri
. Luo Luo
Bn Bengali .
Mr Marathi
Cs Czech No Norwegian
Cu Old Church Slavonic .
) Orv Old East Slavik
Da Danish
Qpm Pomak
De German .
. Ru Russian
En English ..
Swa Swabhili
Fo Faroese .
. Ta Tamil
Got Gothic ..
. Uk Ukrainian
Gsw Swiss German
Ur Urdu
Hau Hausa Wol Wolof
Hi Hindi

Table 14: Languages and their codes

16

Family ‘ Train set ‘ Train set size

Indic {En,Hi,Bn,Ur} 55026
Germanic {En,Is,De} 222792
Slavic {En,Ru,Cs} 179043
African {En,Amh,Swa,Wol } 19788

Table 15: Training size

Test Language | Size Test Language | Size
Fo 1208 As 100
Got 1031 Bh 102
Gsw 100 Hau 570
Qpm 635 Ibo 642
Hsb 626 Kin 611
Orv 4204 Lug 419
Cu 1141 Luo 189

Table 16: Testing size

Family Train set ‘ LA set ‘ Test set
Indic En,Hi,Bn,Ur {En,Hi,Bn,Ar} {As,Bh}
Germanic {En,Is,De} {En,Is,De} {Fo,Got,Gsw }
Slavic {En,Ru,Cs} {En,Ru,Cs} Qpm,Hsb,Orv,Cu

African {En,Amh,Swa,Wol} | {En,Amh,Swa,Wol} | {Hau,Ibo,Kin,Lug,L.uo,Pcm}

Table 17: Language families and their corresponding train, LA and test sets

17

