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ABSTRACT

Graph neural networks (GNNs) and their variants have demonstrated superior
performance in learning graph representations by aggregating features based on
graph or hypergraph structures. However, it has become evident that most exist-
ing graph-based GNNs are susceptible to over-smoothing and are non-robust to
perturbations. For representation learning tasks, hypergraphs usually have more
expressive power than graphs through their ability to encode higher-order data cor-
relations. In this paper, we propose Feature-Augmented Hypergraph Neural Net-
works (FAHGNN) focusing on hypergraph structures. In FAHGNN, we explore
the influence of node features for the expressive power of GNNs and augment
feature representations by introducing common features and personal features to
model information. Specifically, for a node, the common features contain the
shared information with other nodes in hyperedges, while the personal features
represent its special information. In this way, the introduced feature types possess
different distinguishing powers. Considering the different properties of these two
kinds of features, we design different propagation strategies for information aggre-
gation on hypergraphs. Furthermore, during the propagation process, we further
augment features by randomly dropping node features. We leverage consistency
regularization across different data augmentations of the two feature types to op-
timize the prediction consistency for the model. Extensive experiments on several
benchmarks show that FAHGNN significantly outperforms other state-of-the-art
methods for node classification tasks. Our theoretical study and experimental re-
sults further support the effectiveness of FAHGNN for mitigating issues of over-
smoothing and enhancing robustness of the model.

1 INTRODUCTION

Graphs are ubiquitous across the real world, such as social networks, biological networks, and e-
commerce networks. Graph neural networks (GNNs) have shown superiority in using both the graph
structure and node features to produce a vectorial representation, which can be used for various
prediction tasks on graph data. In this work, we focus on semi-supervised node classification (Kipf
& Welling (2017); Zhu et al. (2003)). Most popular GNNs (Kipf & Welling (2017); Velickovic et al.
(2018); Hamilton et al. (2017); Li et al. (2018b)) learn expressive node representations by designing
effective feature propagation strategies based on a graph structure.

Considering that the relationship among entities could go beyond pairwise connections in real-world
problems, it is desirable to capture complicated relations among objects for graph representations.
The hypergraph, which can encode higher-order correlations of multiple entities by hyperedges, has
gained recent attention. A series of GNNs based on hypergraphs (Feng et al. (2019); Jiang et al.
(2019); Bai et al. (2021); Yadati et al. (2019)) have been proposed using different neighborhood-
aggregation schemes in order to achieve greater modelling expressiveness.

However, recent studies have pointed out that neighborhood-information propagation procedures
suffer from over-smoothing (Li et al. (2018a); Wu et al. (2019)). For example, standard graph
convolutional networks (GCNs) stack layers of learned first-order spectral filters, and as the depth
grows, the features of nodes become indistinguishable (Li et al. (2018a); Oono & Suzuki (2020)).
This issue hinders existing GNNs from learning an effective node representation from deep layers.
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Given that they also follow a message passing scheme, GNNs on hypergraphs are also susceptible
to these issues, but this has been largely unexplored thus far.

For structural data in which structure information supplements node features, GNNs’ distinguishing
power can be evaluated: two vertices represented by the same feature are considered the same with
respect to subsequent feature-based prediction tasks. Under the assumption of homophily of graph
data (McPherson et al. (2001)), the vertices closed in the feature domain tend to be connected. A
hypergraph captures the similarities of nodes into a hyperedge, i.e., the nodes in a hyperedge have
similar information with each other and are distinguished from others outside the hyperedge. For
each node, we refer to this information shared with other nodes as its common feature. As a single
object, each node naturally has its own personality different from other nodes even in a hyperedge.
We therefore also introduce personal features to represent the special information about each node.
For example, in a social network, some students are connected into a group (as a hyperedge) because
of their common interest in basketball (the attribute to construct hyperedges), while they also each
have their own special interests such as music, dance, and so on. Here, the feature indicated by
basketball (a hyperedge) is the common feature of these students and the features presented by
music and dance are their personal features. Using these definitions, these two feature types possess
different distinguishing powers before the propagation procedure.

Whilst augmenting the original features with common features and personal features can provide
new perspectives, a key question is how these new feature types perform during propagation strate-
gies for node representations. We study the performance of these two kinds of features with in-
creasing depth of GNNs and exploit their advantages to achieve powerful expressiveness, mitigate
over-smoothing and obtain a robust model.

In this work, we present Feature-Augmented Hypergraph Neural Networks (FAHGNN), a
hypergraph-based semi-supervised learning framework. We consider enhancing the expressive of
node representations by augmenting node features. Augmenting original features into common
and personal features can naturally enhance expressive power as common information makes nodes
indistinguishable while personal information make nodes distinguishable. In other words, our pro-
posed FAHGNN can leverage more expressive information from these two feature type, compared to
existing GNN methods that just use original features. Compared to most GNNs utilizing a determin-
istic message-passing scheme, we augment data by randomly dropping some nodes’ features. Thus,
in the propagation process, the node features are insensitive to deterministic neighborhoods. More-
over, this allows feature propagation without nonlinear transformation. Thus, multi-layer feature
propagation can benefit from higher-order features without increasing the risk of over-smoothing
for FAHGNN.

Targeting specific neighborhood-aggregation, we develop a novel spectral convolution operation
on the common features to exploit higher-order hyperedge correlations for representation learning,
while the personal information is propagated by convolutions based on the hypergraph Laplacian.
With these updated features, we employ a simple Multilayer Perception (MLP) to predict unlabeled
nodes. Leveraging the idea that a classifier should output the same class distribution for an unlabeled
example even after it has been augmented, we utilize consistency regularization to enhance similar
predictions on multiple augmentations with the two feature types. We theoretically validate the effect
of the common feature and personal feature on over-smoothing and illustrate that data augmentation
with dropping features and consistency regularization can enforce the consistency of classification
confidence between each node and its multi-hop neighborhoods. Experimental results demonstrate
FAHGNN can achieve better classification accuracy on four benchmark datasets and our proposed
methods can mitigate the issues of over-smoothing and can be more robust.

2 RELATED WORKS

Graph Neural Networks. GNNs (Scarselli et al. (2009); Kipf & Welling (2017)) have emerged
by extending neural techniques to learning tasks on graph-structured data. Using both structural
information and original features, representations of nodes are computed by repeatedly aggregating
information of neighborhoods using some deterministic propagation rules. According to spectral
graph theory, spectral-based GNNs (Henaff et al. (2015); Defferrard et al. (2016); Yuan et al. (2019);
Kipf & Welling (2017); Velickovic et al. (2018)) developed graph convolution in the Fourier domain.
Standard GCNs adopt first-order spectral filtering based on the Laplacian matrix with the layer-
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wise propagation rule H(l+1) = σ
(
ÂH(l)W(l)

)
, where Â is the symmetric normalized adjacency

matrix with added self-connections, H(l) is the hidden node representation in lth layer, W(l) is the
weight matrix to be learned in the training process and σ(·) denotes the nonlinear activation function,
i.e., the ReLU function. To address the scalability problem of spectral approaches, spatial-based
GNNs (Atwood & Towsley (2016); Niepert et al. (2016); Hamilton et al. (2017); Monti et al. (2017))
work with convolutions directly on the graph, operating on groups of spatially close neighbors.
Meanwhile, sampling-based techniques have been developed (Hamilton et al. (2017); Chen et al.
(2018); Huang et al. (2018)) for fast graph representation learning.

In regard to studies for deep GNNs, it has been observed that the best performance of GCNs (Kipf
& Welling (2017)) is achieved with 2 layers and one encounters severe performance degradation
when the depth grows too large. Li et al. (2018a) reported that the failure of deep GCNs is due
to the node features becoming indistinguishable with increasing depth, i.e., over-smoothing. Oono
& Suzuki (2020) explained over-smoothing as convergence to Laplacian sub-eigenspaces when the
depth increases to infinity. Based on the explanations in Oono & Suzuki (2020), Rong et al. (2020)
proposed DropEdge to impede over-smoothing. A recent method (Feng et al. (2020)) proposed
GRAND with augmented graph data and employed regularization to the augmentations for node
classification on graphs. It mitigated the over-smoothing and showed the robustness of model on
graph learning. However, few works have studied the challenges of over-smoothing on hypergraphs.

Hypergraph Learning. For certain applications, a simple graph has limitations for representing
the higher-order connections of multiple vertices. Hypergraph learning addresses this problem.
In a hypergraph, the complex relationships are encoded by hyperedges that can connect two or
more vertices. Hypergraphs have been widely used (Zhou et al. (2006); Gao et al. (2012); Sun
et al. (2008); Li & Milenkovic (2017)) due to their great influence on modeling high-order corre-
lations. Motivated by the success of hypergraph applications for nonstructural data, some works
have aimed to fully explore the complicated correlations among structural data by a hypergraph.
Such works (Feng et al. (2019); Bai et al. (2021); Yadati et al. (2019)) have designed neighbor-
hood aggregation strategies based on hypergraphs and have shown superiority in higher-order data
representation for graph learning. Following a similar message passing scheme, hypergraph-based
GNNs also suffer from the over-smoothing issue. In this work, we consider graph data under the ho-
mophily assumption (McPherson et al. (2001)), and thus structural information corresponds to fea-
tures (edges/hyperedges connect nodes with similar features). Therefore, hyperedges present struc-
tural information, as well as similar (additional) information in features (explicitly by hyperedge
features or implicitly by hyperedge generating methods). Though the advantages of hypergraphs for
modelling high-order data correlations have been demonstrated in proof of concept studies for ex-
isting GNNs, it is still very challenging to fully explore and exploit the information in hypergraphs.

3 FEATURE-AUGMENTED HYPERGRAPH NEURAL NETWORKS

We present Feature-Augmented Hypergraph Neural Networks (FAHGNN) for semi-supervised
learning based on hypergraphs, as illustrated in Figure 1. Inspired by inherent properties of hy-
pergraphs, we model the original features of the input hypergraph by both common features and
personal features, thus obtaining greater expressiveness. In the information propagation procedure,
we further augment features by DropFeature (drop node and hyperedge features). Leveraging the
idea that a classifier should output the same class distribution for an unlabeled example even after it
has been augmented, we use consistency regularization to predict outputs.

3.1 HYPERGRAPH FORMALISM

Given an input hypergraph G = (V,E) with vertex set V and hyperedge set E, each hyperedge
is defined as a subset of vertices. For each node vi ∈ V , we define the personal features as its
personal information presenting the differences with other nodes, while the common features are its
public information sharing with some nodes in hyperedges. Note that, most times, the hyperedge
feature represents the public information of nodes in a hyperedge, but a node may be involved in
several hyperedges. Therefore, a node’s common feature may be obtained from multiple hyperedge
features. For some hypergraphs, we can directly obtain the common features and personal features
by division of the original node features, which is discussed later in the experiments. Here, we
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Figure 1: The Framework of FAHGNN. 1. Augment features from the source by introducing com-
mon features (hyperedge features) and personal features (node features). 2. Different information
propagation and aggregation strategies for the two feature types with further feature augmentation.
3. 2-Layer MLP for prediction with supervised and consistency regularized loss.

present a general case. We denote the node feature matrix X ∈ RN×d and the hyperedge feature
matrix XE ∈ RM×d

′

. For node vi ∈ V , its personal features are denoted as xpi ∈ Rd×1 while its

common features are defined as xci ∈ Rd
′
×1.

For hypergraph G, the correlations of vertices and hyperedges can be represented in a |V | × |E|

incidence matrix H with entries h(v, e) =

{
1, if v ∈ e
0, if v /∈ e. Let w(e) be the weight corresponding

to the hyperedge e. The degrees of v and e can be defined as d(v) =
∑
e∈E w(e)h(v, e) and

d(e) =
∑
v∈V h(v, e), respectively. We define the matrix Θ = D

−1/2
v HWD−1e H>D

−1/2
v , and

then the standard hypergraph Laplacian ∆ (Zhou et al. (2006)) can be defined as ∆ = I − Θ.
Here, W is a diagonal matrix representing the weights of hyperedges. The diagonal matrices Dv and
De denote the vertex and hyperedge degrees, respectively. Note that the hypergraph Laplacian is
positive semidefinite. In spectral-based GNNs on hypergraphs (Feng et al. (2019)), the convolution
operation is the first-order filter based on hypergraph Laplacian by matrix Θ. Analogous to the
adjacency relationship of nodes, we define the following hyperedge correlations by matrix ΘE =

D
−1/2
e H>D−1v HD

−1/2
e . We demonstrate that it is positive semidefinite in Appendix B.

3.2 AUGMENTATION FOR PREDICTION

Given a hypergraphGwith node feature matrix X and hyperedge feature matrix XE, we adopt a data
augmentation method to augment features in the information propagation process. For generated
augmentations X and XE associated with originals X and XE, we combine them into a classification
model for unseen node prediction.

In information propagation, we design different propagation rules for the two feature types and
address oversmoothing by a series of approaches including a dropping strategy, mixing higher-order
features, and propagation without nonlinear transformation. Also, we use both supervised loss and
consistency regularized loss for better prediction.

Information Propagation. For two input features, we first adopt DropFeature. By randomly drop-
ping out entire feature vectors of some nodes and hyperedges, we get perturbed feature matrices X̃

and X̃E. We randomly sample a binary mask εi ∼ Bernoulli(1 − δ) for each node or hyperedge,
and obtain the perturbed node feature matrix X̃i = εi · Xi. Then, we scale using the factor of
1

1−δ to guarantee the perturbed feature matrix is in expectation equal to X. Similarly, we obtain the
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perturbed hyperedge feature matrix. Note that sampling is only performed during training. During
inference, we directly set X̃ and X̃E as the input feature matrices. There are other ways to generate
perturbed feature matrices, such as a direct dropout strategy (Srivastava et al. (2014)). However, this
strategy ignores the structural information that may lead to a noisy feature matrix. By comparison,
dropping entire feature vectors of nodes allows generating more stochastic data augmentations by
completely ignoring some nodes’ features, and thus helps increase the model’s robustness.

Then, we design different propagation rules for these two perturbed features X̃ and X̃E to obtain
data augmentations. The spectral convolution on node feature is described as Feng et al. (2019):

X
(k+1)

= ΘX
(k)
. (1)

The convolution operation on hyperedges is defined by

X
(k+1)

E = ΘEX
(k)

E . (2)

Where X
(k)

is the node representation in kth layer with X
(0)

= X̃, and X
(k)

E is the hyperedge

feature in kth layer with X
(0)

E = X̃E. Note that this information propagation is without non-linear
transformation.

Here, instead of just using the features in the final layer, we mix k-order propagation features to

obtain augmented node features X =
∑K
k=0

1
K+1X

k
, and XE =

∑K
′

k=0
1

K′+1
X
k

E. In this way, the
mixed-order propagation features incorporate more shallow layer information to reduce the risk of
over-smoothing.

In this way, the feature of each node or hyperedge is not a single deterministic vector. Each node’s
or hyperedge’s features is augmented by random mixes of information from its neighbors. Under
the homophily assumption, for each node or hyperedge, the augmentations are approximate repre-
sentations.

Prediction with augmentations. Assume generating a total of S augmentations including SN

augmented node feature matrices and SE hyperedge feature augmentations. The node feature aug-
mentation can be directly used as personal features Xp for prediction, while we need to obtain the
node representation from public information of multiple hyperedges. Taking an average of aug-
mented features of hyperedges which contain node i, we obtain the common feature representation
of it xci = HiXE, where Hi denotes the ith row vector of H. The whole common feature matrix is
obtained by X = HXE. Then we apply a two-layer MLP to get the corresponding outputs:

Z(s) = fMLP

(
X

(s)
,W
)
, 1 ≤ s ≤ S, (3)

where Z(s) ∈ [0, 1]N×C is the prediction probabilities on X
(s)

and W are the model parameters.

3.3 SEMI-SUPERVISED CLASSIFICATION WITH REGULARIZATION

Considering a classifier should output the same class distribution (Berthelot et al. (2019)) for an
unlabeled sample even it has been augmented, it is natural to design a consistency regularized loss
(Deng et al. (2019); Feng et al. (2021; 2020)) for semi-supervised learning.

Assume there are l labeled nodes with labels Yi ∈ {0, 1}N×C (C is the number of class) among
N nodes, the supervised loss for each epoch is defined as the average cross-entropy loss over S
augmentations:

Lsup = − 1

S

S∑
s=1

l−1∑
i=0

Y>i log Z
(s)
i . (4)

With S outputs corresponding to S augmentations, we propose to optimize the prediction con-
sistency among the multiple outputs for unlabeled data. Considering scenario of two augmenta-

tions, we minimize the distance between two outputs min
∑N−1
i=0

∥∥∥Z(1)
i − Z

(2)
i

∥∥∥2
2
. For a situation
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with multiple augmentations, we average all distributions to achieve the label distribution centre
Zi = 1

S

∑S
s=1 Z

(s)
i . Then, based on the average distributions, the probability of node i on class j

is computed Z
′
ij = Z

1
T

ij /
∑C−1
c=0 Z

1
T

ic , (0 ≤ j ≤ C − 1), where 0 < T ≤ 1 is used to control the
categorical distribution (Berthelot et al. (2019)). Thus, the consistency regularization can be defined
as:

Lcon =
1

S

S∑
s=1

N−1∑
i=0

∥∥∥Z′i − Z
(s)
i

∥∥∥2
2
. (5)

In each epoch, we define the loss function by combining the supervised classification loss and the
consistency regularization loss: L = Lsup + λLcon, where λ is a hyper-parameter.

Complexity. The complexity of information propagation is O(SNK1d(N + |E|) + SEK2d
′
(M +

|E′ |)), where SN and SE denote the number of node and hyperedge feature augmentations, re-
spectively; K1 and K2 denote the propagation layers of node and hyperedge, respectively; d and d

′

are the dimension of node feature and hyperedge feature, respectively; N and M are the number of
nodes and hyperedges and |E| and |E′ | denote connecting counts of nodes and hyperedges. Employ-
ing a two-layer MLP, the complexity of node personal feature prediction isO

(
SNNdh(d+ C)

)
and

the complexity of node common feature prediction is O
(
SEMdh(d

′
+ C)

)
where dh denotes the

hidden size and C is the number of classes.

3.4 THEORETICAL ANALYSIS

We theoretically analyse: i) the different performances of personal information and common infor-
mation in the propagation process while increasing the depth of GNNs and ii) the positive effects of
data augmentation and consistency regularization on mitigating over-smoothing.

It has been explained that the node features converge to a subspace (Oono & Suzuki (2020)), thus
meaning in that node representations become indistinguishable (known as over-smoothing) as the
network depth increases. Based on this concept, we provide several relevant definitions that will
facilitate our later presentations.

Definition 1 (subspace). LetM :=
{
EC | C ∈ RM×C

}
be an M-dimensional subspace in RN×C ,

where E ∈ RN×M is orthogonal with E>E = IM , and M ≤ N .

Definition 2 (ε-smoothing). We say that ε-smoothing of node features happens for a GCN, if all its
hidden vectors H l beyond a certain layer L have a distance no larger than ε(ε > 0) with respect to
a subspaceM that is independent to the input features, namely,

dM

(
H(l)

)
< ε,∀l ≥ L, (6)

where dM(·) computes the distance between the input matrix and the subspaceM.

With these preparations, we introduce a theorem for the propagation of common feature and personal
feature. As common feature matrix Xc ∈ RN×C indicates the similarity of nodes in the feature
domain, and personal feature matrix Xp ∈ RN×C

′

describes the differences of node features. We
can therefore conclude:

Proposition 1. According to the properties of common features and personal features, the dimension
of the common feature subspace is smaller than that of personal features subspace, i.e., dim(Xc) ≤
dim(Xp).

Lemma 1. Assume there are two matrix A ∈ RF×C and B ∈ RF×C with dim(A) ≤ dim(B).
When they multiply with a matrix C ∈ RC×D which is reversible, the dimension of matrix subspace
of AC is also no larger than BC, i.e., dim(AC) ≤ dim(BC).

Theorem 1. In the propagation process of GCNs on hypergraphs, the hidden vector of personal
features converges to subspaceM more slowly than common feature when increasing the network
depth, before a certain layer L. In other words, personal features can reduce the convergence speed
of over-smoothing compared to common features.
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We give a detailed proof of Theorem 1 in Appendix B.2. Next, we discuss the positive effects
achieved through data augmentation and consistency regularization. We consider the simple case
that the MLP applied in the model has a single output layer, and it is a binary classification task,
thus, the output of personal node feature Z = sigmoid(ΘX̃W ). For each node i, the corre-
sponding conditional distribution is zyii (1− zi)1−yi , where zi ∈ Z and yi ∈ {0, 1}. We as-
sume the augmentations with S = 2, then, the consistency regularization loss is simplified to

Lcon = 1
2

∑N−1
i=0

(
z
(1)
i − z

(2)
i

)2
, in which z(1)i and z(2)i are two outputs of augmentations. Based

on these representations, we have the theorems as follows.

Theorem 2. In expectation, the consistency loss Lcon is approximate to a regularization term:
Eε (Lcon ) ≈ Rc(W ) =

∑N−1
i=0 z2i (1− zi)2 Varε

(
ΘX̃W

)
.

We now further discuss the regularization effect of data augmentation with respect to the supervised
loss. Note that the supervised classification loss Lsup in FAHGNN refers to the perturbed classi-
fication loss with DropFeature, while the general supervised loss is Lorg =

∑l−1
i=0−yi log (zi) −

(1− yi) log (1− zi). We have the following theorem about the perturbed supervised loss and origi-
nal loss:

Theorem 3. In expectation, optimizing the perturbed classification loss Lsup is equiv-
alent to optimizing Lorg with an extra regularization term R(W ) ≈ Rq(W ) =
1
2

∑l−1
i=0 zi (1− zi) Varε

(
ΘiX̃W

)
.

Employing DropFeature as the perturbation method, we provide the full details of Theorem 2 and 3
in the supplementary material B.3 and B.4, respectively.

4 EXPERIMENTS

We compare our proposed FAHGNN with state-of-the-art graph-based GNNs and hypergraph-based
GNNs methods.

Datasets. We conduct experiments on four benchmark datasets with graph-structure and
hypergraph-structure. (1) Cora, Citeseer and Pubmed (Sen et al. (2008)) are three citation datasets
with original graph structure. (2) A modified version of the 20-newsgroup dataset (Zhou et al.
(2006)) with binary occurrence values for 100 words is used for text categorization. Although
without pre-defined data structure, a hypergraph (Zhou et al. (2006); Bai et al. (2021)) is usually
constructed according to attributes, i.e., words. The details of all datasets are listed in the supple-
mental materials A.1. The experimental setting for graph and hypergraph construction, common and
personal feature selection, and parameters setting can be found in the supplemental materials A.2.

4.1 THE RESULTS

Table 1 shows the classification results of our proposed method and other state-of-the-art methods
on four datasets. While three citation datasets are graph-structured data, the relationship among
objects of 20-newsgroup can be naturally described by a hypergraph. The final performance of our
proposed FAHGNN is measured by average classification accuracy over 10 runs.

From the results, we can observe that FAHGNN can significantly outperform other methods on
all datsets. Note that FAHGNN drop means directly adopting dropout for feature matrix in infor-
mation propagation process. We can see that FAHGNN consistently achieves better results than
FAHGNN dropout. Specifically, for graph-structure datasets, hypergraph-based GNNs methods
(i.e., HGNN, Hyper-Conv) can only achieve gains of approximate 0.1% and 1.2% in comparison
to GCN. Using common or personal features, FAHGNN common and FAHGNN personal achieve
significant improvements (3% and 4.3%, respectively). Together with these two feature types and
consistency regularized loss, FAHGNN achieves 86.1% accuracy. Recent regularization methods
including Dropedge and GRAND show advantages by mitigating the smoothing problem compared
to other graph-based GNNs methods, however, the complicated data correlations among data cannot
be well explored. It can be seen from the results of 20-newsgroup that hypergraph-based meth-
ods can generally achieve better performance than graph-based methods. Particularly, our proposed
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Table 1: Classification accuracy (%) on four datasets

Methods Cora Citeseer pubmed 20-newsgroup
GCN 81.5 70.3 79.0 64.4
GAT 83.0±0.7 72.5±0.7 79.0±0.3 58.7 ±2.7
MixHop 81.9±0.4 71.4±0.8 80.8±0.6 -
GraphSAGE 78.9±0.8 67.4±0.7 77.8±0.6 58.3 ±2.9
FastGCN 81.4±0.5 68.8±0.9 77.6±0.5 62.2±1.3
Dropedge 82.8 72.3 79.6 61.1
GRAND 85.4±0.5 75.4±0.5 82.7±0.6 71.5±0.2

HGNN 81.6 71.6 80.1 74.08
Hyper-Conv 82.7±0.3 71.2±0.4 78.4±0.3 69.1
HyperGCN 80.2±0.8 68.9±0.5 78.2±0.4 -

FAHGNN 86.1±0.3 75.7±0.1 83.0±0.4 79.9±1.0
FAHGNN dropout 85.3 ±0.4 74.8 ±0.1 82.5 ±0.4 78.6 ±2.4

FAHGNN common 84.5±0.3 76.0±2.2 79.8±1.8 75.6±0.4
FAHGNN personal 85.8±0.3 75.5±0.2 83.3±0.7 75.3± 0.8

Figure 2: The performance of HGNN with different features when stacking layer

FAHGNN gains significant improvements over GCN and HGNN, 10% and 2%, respectively. From
these results, we can see that using common features or personal features can yield better classi-
fication accuracy than using the original features. By augmenting features, FAHGNN consistently
achieves superior performance on semi-supervised classification. We show the results of an ablation
study to examine the contributions of different components of FAHGNN in Appendix A.3.

4.2 THE EFFECT OF FEATURES ON DEEP GNNS

We evaluate the effect of features on deep GNNs and demonstrate the influence of features on over-
smoothing. Figure 2 shows the classification accuracy of HGNN with different input features on the
20-newsgroup dataset. The accuracy is observed to decrease when the depth of HGNN increases
from 2. We can see that these three features achieve comparable results when the number of layers
is small. However, with personal features as input features, HGNN can achieve the best training and
testing accuracy when the depth is larger than 4. With common features, HGNN achieves lowest
accuracy with 6 layer networks. For 20-newsgroup, the personal features of nodes represent more
personal information by dropping common attributes, while common features represent more public
information by dropping personal attributes. Personal features can reduce the convergence speed of
over-smoothing compared to common features. Common features usually show better performance
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Figure 3: Over-Smoothing and robustness analysis on Cora.

in shallow layers, while personal feature get advantages in deep layers, therefore, augmenting orig-
inal features into common and personal feature can help mitigate the oversmoothing problem.

4.3 OVERSMOOTHING AND ROBUSTNESS ANALYSIS

GNNs face the over-smoothing issue for feature propagation steps or increasing layers. We study
the performance of our proposed method for mitigating oversmoothing. Figure 3 (a) shows classifi-
cation accuracy with respect to different propagation layers on Cora. In the GRAND and FAHGNN,
the layer is controlled by the propagation steps, while for GCN and HGNN, it is adjusted by stack-
ing different layers. The plots suggest that as the number of layers increases, the performance of
GCN and HGNN decreases dramatically, independent of data structures, due to the over-smoothing
issue. However, FAHGNN related methods including (FAHGNN common and FAHGNN personal)
can benefit from stacking more propagation steps. This indicates that FAHGNN can relieve
over-smoothing. From the inner subgraph of the picture, we observe that the performance of
FAHGNN personal with personal features as input features overtakes that of FAHGNN common
by increasing the depth of FAHGNN model, although FAHGNN common achieves higher accuracy
with shallow layers. The different performance of common information and personal information
as stacking layers indicates their inherent different distinguishing powers. Fully utilizing the ad-
vantages of FAHGNN personal in deep layers and the advantages of FAHGNN common in shallow
layers enables FAHGNN to achieve improvements for representation learning.

We further validate that FAHGNN is more robust facing adversarial attack by adding feature aug-
mentation and regularization. The details of attacking can found in A.3. Figure 3 (b) illustrates
the classification accuracies of different methods with respect to different numbers of attack nodes
on the Cora dataset. We observe that FAHGNN achieves superior performance compared to GCN,
HGNN and GRAND across all perturbation cases on both datasets. Especially, there is only a 3%
drop in classification accuracy for FAHGNN with 200 attack nodes, while there are drops over 7%
for other three methods. This study suggests that FAHGNN is more robust facing adversarial attack
by adding feature augmentation and regularization.

5 CONCLUSION

We present Feature-augmented Hypergraph Neural Networks, a novel and more powerful GNN
model on hypergraphs. Leveraging the expressive power of the hypergraph’s original input features,
we augment features into common and personal features. In this way, the hypergraph can represent
richer information about nodes. We further augment features during the information propagation
process by adopting a data augmentation method to mitigate the problem that the node representa-
tion highly depends on its special neighbourhoods. Fully using these augmentations, a consistency
regularization is used to achieve better representation learning. Experimental results show that com-
mon features and personal features have different sensitivities to propagation layers. The strong
performance of HFAHGNN on node classification demonstrates its advantages in terms of robust-
ness and alleviating over-smoothing.
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A DETAILS OF EXPERIMENTS

A.1 DATASETS DETAILS

Table 2 summarizes the statistics of the four benchmark datasets including Cora, Citeseer, Pubmed
and 20-newsgroup. We use exactly the same experimental settings on the three citation datasets for
semi-supervised learning Kipf & Welling (2017). For 20-newsgroup, 20 samples per category are
used for training with another 500 samples for validation purposes and 1000 samples for perfor-
mance evaluation.

A.2 EXPERIMENT SETTINGS

In the experiments, we need to construct hypergraphs for citation networks, and a graph and a
hypergraph for 20-newsgroup. In addition, common features and personal features are needed to be
augment from the original features.
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Table 2: Dataset Statistics

Dataset Type Nodes Edges Classes Features
Cora graph network 2708 5,429 7 1,433
Citeseer graph network 3,327 4,732 6 3,703
Pubmed graph network 19717 44338 3 500
20-newsgroup hypergraph network 16242 - 4 100

Graph and hypergraph construction. For three citation networks with simple graph structures, we
just need to construct hypergraphs. Viewing each document as a hypernode, we generate a hyper-
edge for each hypernode with its 1-hop neighbors in a simple graph and k-nn neighbors with k = 1.
Consequently, the generated hyperedges contain structural information and similar information in
the feature domain. For 20-newsgroup dataset, the feature of each article is one-hot (according to the
article contains the word or not). To generate a graph, each article is viewed as a vertex, we connect
two vertices if there is at least one shared word. Note that we do not necessarily distinguish how
many words they share. However, it is quite likely that multiple articles share the same word, thus
naturally forming a hypergraph structure. Hence, using each word as attribute to connect multiple
articles containing it to generate a hyperedge. As a result, the hyperedge features are word features
just including a 1 element.

Common features and personal features. According to the definition of common feature and per-
sonal feature mentioned before, in a hypergraph, the common features can be explicitly represented
by hyperedge features, or implicitly illustrated by different hyperedge generating stategies, while
the personal feature is inherent. On citation datasets, we construct a hyperedge for each node which
is viewed as a central node. Thus, all nodes in the hyperedge are similar to the central node, and
the central node feature can be considered as a hyperedge feature, i.e., the common feature for all
nodes in this hyperedge. Note that a node usually is involved in several hyperedges, and its common
features are obtained by a linear combination (in Section 3.2). The personal feature for each vertiex
is the original node feature.

Different from citation networks, we design a hyperedge according to attributes (words) for the
modified 20-newsgroup dataset. Consequently, hyperedge features are naturally presented by word
features. Because node features and hyperedge features are all based on attributes, we separate the
node features into common features and personal features for each vertex based on the degrees of
hyperedges. Generally, the hyperedges (words) with larger degree capture its public profile while the
hyperedges with smaller degrees present its personal profile. Therefore, for each node xi, we obtain
its common features by dropping the elements corresponding to words with smaller degrees, i.e.,
xij = 0 if d(Hj) is the minimum degree for xij > 0 and sum(xi) ≥ m. In addition, the personal
features are achieved by dropping the elements corresponding to words with larger degrees. In other
words, we get the personal features by setting xij = 0 if d(Hj) is the maximum degree for xij > 0
and sum(xi) ≥ m. Here, m is a parameter. It is easy to see that if a node’s features just have
several elements, dropping even one element will lead to a large information loss. Figure 4 shos
the accuracy of HGNN (Feng et al. (2019)) with different values of m. The blue line shows HGNN
accuracy with the original feature. Using more complex dropping element strategies, one can get
more suitable common and personal features.

Hyperparameter Details

FAHGNN introduces several additional hyperparameters including propagation step K, data aug-
mentation SE , and DropFeature probability δ in data augmentation for the common feature and
corresponding parameters K

′
, SN , and δ

′
for the personal features. At each training epoch, we

sharpen temperature T to calculate consistency regularization loss and controlling the coefficient λ
to balance Lsup and Lcon. We perform hyperparameter search for each dataset, such as K and K

′

from 2 to 10, SE and SN from 2 to 10. We usually set the drop rate for the node feature as 0.5,
and drop rate for the hyperedge feature as 0.7. For other hyperparameters used in our experiments
includes learning rate, early stopping patience, hidden layer size, dropout rates of input layer and
hidden layer, we adopt the similar setting as Feng et al. (2020).
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Figure 4: Dropping feature element according to the number of words.

Table 3: Classification accuracy (%) on four datasets

Methods Cora Citeseer pubmed 20-newsgroup
FAHGNN 86.1±0.3 75.7±0.1 83.0±0.4 79.9±1.0
FAHGNN/CR 84.3 ±0.2 73.5 ±0.3 81.9 ±0.3 77.9 ±0.6
FAHGNN/Drop 83.8 ±0.4 74.4 ±0.3 81.6 ±0.3 77.6 ±1.9

A.3 ADDITIONAL EXPERIMENTS

Ablation Study In Table 1, we show the results of an ablation study to examine the contributions
of different components of FAHGNN. First, all variants with some components removed show clear
performance drops when compared to the full model, suggesting that each of the designed compo-
nents contributes to the success of FAHGNN. Note that FAHGNN/CR denotes without consistency
regularization, FAHGNN/CR denotes without DropFeature in propagation process, i.e., SN = 1,
SE = 1.

Attack setting

The vulnerability of exsiting GNNs models to graph attacks has been demonstrated (Zhu et al.
(2019); Zügner et al. (2018)). As existing research mainly focuses on simple graphs, a study on
hypergraphs is improtant. We analyse the robustness of FAHGNN by generating perturbed graphs
and hypergraphs with a random attack method.

We randomly choose 10, 50, 100, 150, 200 test nodes as target nodes. Then, we constrain the attack
by setting the perturbation. A limited number of perturbations are performed on the target nodes
(similar to Zhang et al. (2019)) by ∆ = dv0 + 2, where v0 is the target node and dv0 is the degree of
v0. The random attack contains delete and add edges. Specifically, (dv0 + 2)/2 edges between v0
and its neighbors are randomly removed and (dv0 + 2)/2 nodes that have different labels than the
target node are chosen to add edges. Note that in a hypergraph, for each target node, we just remove
and add this node in random (dv0 + 2)/2 hyperedges.

Oversmoothing and Robustness analysis on Pubmed Figure 5 illustrates the classification accu-
racies of different methods with respect to different numbers of attack nodes on the 20-newsgroup
dataset. We see that FAHGNN can mitigate oversmoothing on 20-newsgroup, and the robustness of

14



Under review as a conference paper at ICLR 2022

FAHGNN is also clear. Note that 20-newsgroup just has 100 hyperedges, thus, attacking nodes on
the hypergraph will lead to a huge perturbation compared to directly perturbing a simple graph.

Figure 5: Over-Smoothing and robustness analysis on Pubmed.

B PROOF

B.1 PROOF OF POSITIVE SEMIDEFINITE

Proof Based on the defination of positive semidifinite of a matrix, we can get that HTH is positive
semidefinite according to X>(H>H)X = (HX)>(HX) = ‖HX‖2 ≥ 0. Therefore, ∆E =

D
−1/2
e H>D−1v HD

−1/2
e is also positive semidefinite.

B.2 PROOF OF THEOREM 1

Proof. According to Proposition 1, we obtain dim(Xc) ≤ dim(Xp). In GCNs, Â is a re-
versible matrix, then dim(ÂXc) ≤ dim(ÂXp). As for hypergraph-based GNNs, it is also valid
dim(ΘXc) ≤ dim(ΘXp). Therefore, stacking many network layers will lead to

dim
(
Hc(l)

)
≤ dim

(
Hp(l)

)
,∀l < L (7)

before a certain layer Lmakes dM
(
H(l)

)
< ε. Here, Hc(l) and Hp(l) are the hidden common infor-

mation representations and personal infromation representations in lth layer, respectively. Therefore,
the propagation on common features more easily tends to subspaceM.

B.3 THE DETAILS OF THEOREM 2

Employing DropFeature as the perturbation method, the variance term Varε

(
ΘX̃W

)
=

δ
1−δ

∑n−1
j=0 (XjW )

2
(Θ)

2 here, δ is the drop rate. We can obtain the corresponding regularization
term as:

RcDF (W ) =
δ

1− δ

n−1∑
j=0

[
(XjW )

2
n−1∑
i=0

(Θij)
2
z2i (1− zi)2

]
(8)

Note that z2i (1− zi)2 (or zi (1− zi)) indicate the classification uncertainty for the node i, and it
reaches a maximum at zi = 0.5 and minimum at zi = 0 or 1. The term

∑n−1
i=0 (Θij)

2
z2i (1− zi)2

can be viewed as the weighted average classification uncertainty over n neighborhoods of the node
j with the weights Θ2

ij . Here, it is required that the node’s neighborhoods have lower classification
uncertainty scores. Hence, Xj · W 2 is an indicator of the classification confidence for the node
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j. During optimization which aims to achieve a higher classification confidence for a node, the
information propagation with the consistency regularization loss can enforce the consistency of the
classification confidence between each node and its multi-hop neighborhoods.

Proof The expectation is:

1

2

n−1∑
i=0

E
[(
z̃
(1)
i − z̃

(2)
i

)2]
=

1

2

n−1∑
i=0

E
[((

z̃
(1)
i − zi

)
−
(
z̃
(2)
i − zi

))2]
(9)

For the term z̃i − zi, we appproximate it with its first-order Taylor expansion around

1

2

n−1∑
i=0

E
[(
z̃
(1)
i − z̃

(2)
i

)2]
≈ 1

2

n−1∑
i=0

z2i (1− zi)2 E
[(

Ai

(
X̃(1) − X̃(2)

)
·W

)2]

=

n−1∑
i=0

z2i (1− zi)2 Varε

(
AiX̃ ·W

) (10)

B.4 THE DETAIL OF THEOREM 3

With DropFeature as augmentation method, the regularization term can be expressed as:

RqDF (W ) =
1

2

δ

1− δ

n−1∑
j=0

[
(XjW )

2
m−1∑
i=0

(Θij)
2
zi (1− zi)

]
(11)

The expectation of Lsup

1

2

n−1∑
i=0

E
[(
z̃
(1)
i − z̃

(2)
i

)2]
=

1

2

n−1∑
i=0

E
[((

z̃
(1)
i − zi

)
−
(
z̃
(2)
i − zi

))2]
(12)

Lorg =

m−1∑
i=0

[
−yiAiX ·W +A

(
Ai,X

)]
(13)

where A
(
Ai,X

)
= − log

(
exp(−AiX·W)

1+exp(−AiX·W)

)
. Then the expectation of perturbed classification

loss can be rewritten as:

Eε (Lsup ) = Lorg +R(W) (14)

where R(W) =
∑m−1
i=0 Eε

[
A
(
Ai, X̃

)
−A

(
Ai,X

)]
acts as a regularization term of W. To

demonstrate that, we can take a second-order Taylor expansion of A
(
Ai, X̃

)
around AiX ·W

Eε
[
A
(
Ai, X̃

)
−A

(
Ai,X

)]
≈ 1

2
A′′
(
Ai,X

)
Varε

(
AiX̃ ·W

)
(15)

We can easily check that A′′
(
Ai,X

)
= zi (1− zi). Applying this quadratic approximation to

R(W), we get the quadratic approximation form ofR(W):

R(W) ≈ Rq(W) =
1

2

m−1∑
i=0

zi (1− zi) Varε

(
AiX̃ ·W

)
(16)
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