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ABSTRACT

Transformer has become ubiquitous in natural language processing (e.g., machine
translation, question answering); however, it requires enormous amount of com-
putations to achieve high performance, which makes it not suitable for real-world
mobile applications since mobile phones are tightly constrained by the hardware
resources and battery. In this paper, we investigate the mobile setting (under 500M
Mult-Adds) for NLP tasks to facilitate the deployment on the edge devices. We
present Long-Short Range Attention (LSRA), where some heads specialize in the
local context modeling (by convolution) while the others capture the long-distance
relationship (by attention). Based on this primitive, we design Mobile Transformer
(MBT) that is tailored for the mobile NLP application. Our MBT demonstrates
consistent improvement over the transformer on three well-established language
tasks: IWSLT 2014 German-English, WMT 2014 English-German and WMT
2014 English-French. It outperforms the transformer by 0.9 BLEU under 500M
Mult-Adds and 1.2 BLEU under 100M Mult-Adds on WMT’14 English-German.
On WMT’14 English-French, our MBT reduces the computation of the transformer
by 2.5× with negligible BLEU degradation. Without the costly architecture search
that requires more than 250 GPU years, our MBT achieves 0.5 higher BLEU than
the AutoML-based Evolved Transformer under the mobile setting.

1 INTRODUCTION

Transformer (Vaswani et al., 2017) has prevailed among various areas of natural language processing
due to its high training efficiency and superior capability in capturing long-distance dependencies.
Building on top of them, modern state-of-the-art models, such as BERT (Devlin et al., 2019), are
able to learn powerful language representations from unlabeled text and even surpass the human
performance on the challenging question answering task.

However, the good performance come at high computational cost. For example, a single transformer
deep model executes more than 10G Mult-Adds in order to translate a sentence of only 30 words.
Such extremely high computational resources requirement is beyond the capabilities of many edge
devices such as smartphones and IoTs. Therefore, it is of great importance to design efficient and fast
transformer architecture specialized for real-time NLP applications on the edge. Automatic neural
architecture search (Zoph & Le, 2017; So et al., 2019) is a choice for high accuracy model design,
but the massive searching cost raises much concern (Figure 1b).

In this paper, we mainly focus on the efficient inference scenario for mobile devices where the total
number of Mult-Adds is constrained to be lower than 500M. A straightforward way to reduce the
computation of the transformer is to directly shrink the embedding size. Although it can effectively
reduce both model size and computation, it also weakens the model capacity capturing the long and
short distance relationship at the same time. To this end, we systematically studied the computation
breakdown of the transformer and observe that the computation is dominated by the feed forward
network (FFN), not the attention. We discovered that the prevailing bottleneck-structured transformer
block is not efficient. We then present a novel Long-Short Range Attention (LSRA) primitive. LSRA
trades off the computation in FFN for wider attention layers. It stretches the bottleneck to introduce
more dependency capturing capability for the attention layer, and then shrink the embedding size to
reduce the total computation amount while maintaining the same performance. Instead of having
one module for “general” information, LSRA dedicates specialized heads to model long and short

1



Under review as a conference paper at ICLR 2020

MBT
(Ours)

Transformer
Base

Transformer
Big

BERT
Large

GPT-2

101

102

103

M
od

el
 P

ar
am

et
er

s (
M

)

Mobile Constraints

(a) Model sizes of modern NLP models.

MBT (Ours)

Searching for the
Evolved Transformer

US car including fuel
(avg. 1 lifetime)

American life
(avg. 1 year)

Human life
(avg. 1 year)

32

626,155

126,000

36,156

11,023

19,567x

(b) The design cost measured in pounds of CO2 emission.

Figure 1: Left: the size of recent NLP models grows rapidly and exceeds the mobile constraints by
a large extend. Right: the search cost of AutoML-based NLP models is considerable, which emits
carbon dioxide nearly five times the lifetime emissions of the average car.

distance contexts. Inspired by Wu et al. (2019b), LSRA introduces convolution in a parallel branch to
extract local dependencies so that the attention branch can focus on long-distance context modeling.
By stacking this primitive, we build Mobile Transformer (MBT) for mobile NLP applications.

Extensive experiments demonstrate that our MBT model offers significant improvement over the
transformer on machine translation tasks. On IWSLT 2014 German-English, it outperforms the
transformer by 1.5 BLEU under 100M Mult-Adds; on WMT 2014 English-German, it surpasses the
transformer by 0.7 BLEU under 500M Mult-Adds and 1.2 BLEU under 100M Mult-Adds; on WMT
2014 English-French, it also achieves consistent improvements over the transformer: 1.1 BLEU under
500M Mult-Adds and 1.3 BLEU under 100M Mult-Adds.

Guided by our design insights, our manually-designed MBT also achieves 0.4 higher BLEU than
the AutoML-based Evolved Transformer (So et al., 2019) which requires more than 250 GPU years
to search, emitting as much carbon as five cars in their lifetimes (see Figure 1b). It indicates that
AutoML is not panacea: careful analysis and design insights (i.e., removing bottleneck, specialized
heads) can effectively prune the search space and improve the sample efficiency.

The contribution of this paper has four aspects:

1. We systematically analyze the commonly used computation bottleneck structure in modern neural
networks and argue that the bottleneck design is not optimal for 1-D attention.

2. We propose a specialized multi-branch feature extractor, Long-Short Range Attention (LSRA), as
the basic building block of our transformer, where convolution helps capture the local context and
attention concentrates on global context feature.

3. We build Mobile Transformer (MBT) based on our LSRA. Under mobile computation resource
constraints (500M Mult-Adds), MBT demonstrates coherent improvement on three widely used
machine translation datasets.

4. Even compared to AutoML-searched Evolved Transformer, MBT offers 0.4 more BLEU score on
WMT En-De dataset, saving the design cost by 20000× in CO2 emission. It alerts us to rethink
the practicality of AutoML in terms of design cost.

2 RELATED WORK

RNNs and CNNs. Recurrent neural networks (RNNs) have prevailed various sequence modeling
tasks for a long time (Sutskever et al., 2014; Luong et al., 2015; Bahdanau et al., 2015; Wu et al.,
2016). However, RNNs cannot be run parallelly across the sequence due to its temporal dependency.
Recently, some work has demonstrated that RNN is not an essential component to achieve the state-
of-the-art performance. For instance, researchers have proposed highly-efficient convolution-based
models (Kalchbrenner et al., 2016; Gehring et al., 2017; Kaiser et al., 2018; Wu et al., 2019b).
Convolution is an ideal primitive to model the local context information; however, it lacks the ability
to capture the long-distance relationship, which is critical in many sequence modeling tasks.
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Transformers. As an alternative, attention is able to capture global-context information by pairwise
correlation. Transformer (Vaswani et al., 2017) has demonstrated that it is possible to stack the
self-attentions to achieve the state-of-the-art performance. Recently, there have been a lot of variants
to the transformer (Ahmed et al., 2017; Ott et al., 2018; Chen et al., 2018; Paulus et al., 2018; Shaw
et al., 2018; Sukhbaatar et al., 2019a;b). Among them, Ott et al. (2018) proposed to scale up the
batch size; Shaw et al. (2018) leverages the relative position representations; Ahmed et al. (2017)
introduces the weighted multi-head attention; Sukhbaatar et al. (2019a) applies adaptive masks for
long-range information on character-level language modeling with very long sequences. All these
attempts are orthogonal to our work, as we focus on improving the neural network architecture itself,
and not the general techniques used for improving overall performance.

Automated Model Design. Due to the vast architecture design space, there has been an increasing
trend of automating the compact model design using the neural architecture search (NAS) (Zoph &
Le, 2017; Zoph et al., 2018; Pham et al., 2018) and integrating the hardware resource constraints
into the optimization loop, such as MnasNet (Tan et al., 2018), ProxylessNAS (Cai et al., 2019) and
FBNet (Wu et al., 2019a). In the NLP community, the evolved transformer (So et al., 2019) adopts the
neural architecture search (Zoph & Le, 2017) for basic blocks and finds a better #parameter-BLEU
trade-off for the transformer. However, all these AutoML-based model design requires significant
amount of GPU hours to find the ‘best’ model, which is not affordable for most researchers.

Model Acceleration. Apart from designing efficient models directly, another approach to achieve
the efficient inference is to compress and accelerate the existing large models. For instance, some have
proposed to prune the separate neurons (Han et al., 2015; 2016) or the entire channels (He et al., 2017;
Liu et al., 2017; He et al., 2018); others have proposed to quantize the network (Courbariaux et al.,
2016; Zhu et al., 2017; Krishnamoorthi, 2018; Wang et al., 2019) to accelerate the model inference.
Recently, AutoML has also been used to automate the model compression and acceleration (Yang
et al., 2018; He et al., 2018; Wang et al., 2019; Liu et al., 2019). All these techniques are effective for
arbitrary models and are therefore orthogonal to our approach, while we aim to explore how to make
use to the domain knowledge of natural language processing.

3 IS BOTTLENECK EFFECTIVE FOR 1-D ATTENTION?

Attention mechanism has been widely used in various applications, including 1-D (language pro-
cessing (Vaswani et al., 2017)), 2-D (image recognition) and 3-D (video recognition (Wang et al.,
2018)). It computes pairwise dot-product between all the input elements to model both short-term
and long-term relationships. Despite its effectiveness, the operation introduces massive computation.
Assume the number of elements (e.g., length of tokens in language processing, number of pixels
in image, etc.) fed to attention layer is N , and the dimension of features (i.e., channels) is d, the
computation needed for the dot-product is N2d. For images and videos, N is usually very large. For
example, the intermediate feature map in a video network (Wang et al., 2018) has 16 frames, each with
112×112 resolution, leading to N = 2× 105. The computation of convolution and fully-connected
layers grows linearly w.r.t. N , while the computation of attention layers grows quadratically w.r.t. N .
The computation of attention module will soon overwhelm with a large N .

To address the dilemma, a common practice is to first reduce the number of channels d using a
linear projection layer before applying attention, and increase the dimension afterwards (as shown
in Figure 2a). In the original design of transformer (Vaswani et al., 2017), the channel dimension
in the attention module is 4 times smaller than that in the FFN layer. Similarly, in non-local video
network (Wang et al., 2018), the channel number is first reduced by half before applying non-local
attention module. This practice saves the computation by 16 or 4 times. Nevertheless, it also decreases
the feature modeling ability of attention layers with a smaller feature dimension. The situation could
be even worse for language processing, as attention is the major module for feature modeling (unlike
images and videos where convolutions conduct the major modeling).

For tasks like translation, the length of the input sequence N tends to be small, which is around 20-30
in common cases. A transformer block consists of an attention (or two for decoder), followed by a
feed-forward network (FFN). For the attention layer, the Mult-Adds would be O(4Nd2 +N2d); for
FFN, the Mult-Adds is O(2× 4Nd2). Given a small N , it is doubtful if the bottleneck design is a
good trade-off between computation and accuracy on 1D attention. To verify the idea, we first profile
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Figure 2: Flattening the bottleneck of transformer blocks increases the proportion of the attention
versus the FFN, which is good for further optimization for attention.

IWSLT De-En WMT En-De WMT En-Fr

Embedding #Mult-Adds BLEU Embedding #Mult-Adds Attn BLEU BLEU

Vaswani et al. (2017) 512-1024 959M 34.4 512-2048 1.3G 44% 27.3 38.1
So et al. (2019) – – – 512-2048 1.3G 44% 27.7 40.0
Our Reimplementation 512-1024 959M 34.5 512-2048 1.3G 44% 27.7 39.9

Transformer (Flattened) 512-512 460M 34.5 720-720 1.5G 75% 27.8 41.0

Table 1: Bottleneck design is not optimal for 1-D attention. The ‘flattened’ version of Transformer
does not harm the BLEU score, but makes the attention take the major computation for further
optimization.

the computation makeup in the transformer in Figure 2b. Surprisingly, for the original transformer
(denoted as ‘base’ in the figure), FFN layer actually consumes much of the computation especially
on WMT En-De task. This is not desirable since FFN itself cannot perform any context modeling.
In conclusion, due to the small N , bottleneck design cannot significantly reduce the computation in
1D attention, while the limited benefit is further compromised by the FFN layer; it also harms the
capacity of attention layer due to smaller dimension, which is the major context modeling unit in the
transformer.

Therefore, we argue that the bottleneck design is not optimal for 1-D attention. We instead design a
‘flattened’ version of transform block that does not reduce and increase the channel dimension. With
the new design, the attention part now takes up the major computation in the flat transformer model
(‘Flat’ in Figure 2b), leaving a larger space for further optimization. We also test the performance
change of such modification on IWSLT and WMT datasets (Table 1). On IWSLT De-En task, our
Flatten Transformer can achieve similar BLEU score using less than half computation compared
to the original transformer; on WMT, we can achieve comparable performance at a slightly larger
computation, which can be easily reduced with further optimization on the attention heads.

4 LONG-SHORT RANGE ATTENTION (LSRA)

Since the attention-based network made a great progress in NLP, researchers have tried to understand
what the exact information an attention captures. Kovaleva et al. (2019) and Clark et al. (2020)
visualized the attention weights from different layers in BERT. As shown in Figure 3b, the weight w
illustrate the relationships between the words from the source sentence and the target sentence (the
same for self-attention). With a greater weight wij (darker color), the i-th word in the source has
more attention focus on the j-th word in the target. And the focus of an attention module typically
has some strong patterns: sparse points, vertical lines and diagonal groups. The three of them
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Figure 3: Model architecture (a) and the visualization of attention weights. Conventional attention (b)
put too much emphasizes on local relationship modeling (see the diagonal structure). We specialize
the local feature extraction by a convolutional branch which efficiently models locality, so that the
attention branch can specialize on global feature extraction (c).

respectively represent the relationships between some particular words, the long term information
and the correlation in small neighborhoods. We denotes the former two as “global” relationships and
the last one as “local”.

In order to provide both the global and local information for a translation task, the attention modules
have to extract all of those features with exactly the same architecture, requiring a large capacity.
That is not an optimal case since, taking hardware design as an example, devices for general purpose,
like CPUs, tend to be more redundant than specialized ones, like FPGAs. When the model capacity
is relatively large, the redundancy can be tolerated and may even provides a better performance.
However, when it comes to mobile applications, a model should be more efficient due to the
computation and power constraints. To tackle the problem, instead of having one module for “general”
information, we propose a more specialized architecture, Long-Short Range Attention (LSRA), that
captures the global and local information separately.

As shown in Figure 3a, our LSRA module follows a two-branch design. The left branch captures
global context, while the right branch models local information. Instead of feeding the whole input
to both branch, we split it into two parts along the channel dimension, which will be mixed by the
following FFN layer. Such a practice reduces the overall computation by 2 times. The left branch
is a normal attention model as in Vaswani et al. (2017), while the channel dimension is reduced
by half. For the right branch of local relationships, one natural idea is to apply convolution over
sequence. With a sliding window, the diagonal groups can be easily covered by the module. To
further reduce the computation, we replace the normal convolution with a lighter version (Wu et al.,
2019b) consisting of linear layers and depth-wise convolution. In this manner, we place the attention
and the convolutional module side by side, encouraging them to have different perspective of the
sentence, globally and locally, so that the architecture can then benefit from the specialization and
achieve a better efficiency.

To have a better insight, we visualized the average attention weights of the same layer for a fully
trained basic Transformer and our Mobile Transformer in Figure 3. It can be easily distinguished that
instead of attempting to model both global and local features, the attention module in LSRA only
focus on the global, leaving the local context modeling to the convolution branch.

5 EXPERIMENTAL SETUP

Mobile Settings. Most of machine translation architectures benefit from the large model size
and computational complexity. For example, the transformer architecture gains 1.1 BLEU score
improvement on WMT’14 En-De datasets from the base to the big model and 3.7 on WMT’14
En-Fr (Vaswani et al., 2017). Empirically, however, edge devices, such as mobile phones and IoTs,
is highly computationally limited. Those massive architectures are no more suitable for real-world
mobile applications.
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#Parameters #Mult-Adds BLEU ∆BLEU

Transformer (Vaswani et al., 2017) 2.8M 63M 27.9 –
LightConv (Wu et al., 2019b) 2.5M 52M 28.5 +0.6
Mobile Transformer (Ours) 2.8M 54M 30.0 +2.1

Transformer (Vaswani et al., 2017) 5.7M 139M 31.4 –
LightConv (Wu et al., 2019b) 5.1M 115M 31.6 +0.2
Mobile Transformer (Ours) 5.4M 119M 32.3 +0.9

Transformer (Vaswani et al., 2017) 9.6M 245M 32.9 –
LightConv (Wu et al., 2019b) 8.4M 204M 32.9 +0.0
Mobile Transformer (Ours) 8.9M 209M 33.4 +0.5

Table 2: Quantitative results on IWSLT’14 De-En. Our MBT outperforms the transformer (Vaswani
et al., 2017) and the Lightweight convolution network (Wu et al., 2019b) especially in mobile settings.
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Figure 4: Trade-off curve on IWSLT’14 De-En. Both curves show that our Mobile Transformer
achieves better performance on mobile settings. With tighter constraints, the improvement is more
significant.

• The floating-point performance of the ARM Cortex-A72 mobile CPU is about 48G FLOPS (4
cores @1.5GHz). To achieve the peak performance of 50 sentences per second, the model should
be less than 960M FLOPs (480M Mult-Adds). This is a common constraint in the computer
vision community. For example, Liu et al. (2018) also uses 500M Mult-Adds as the constraint
of its mobile setting. Therefore, we define the mobile settings for machine translation tasks: the
computation constraint should be under 500M Mult-Adds (or 1G FLOPs) with a sequence of 30
tokens (general length for machine translation).

• Additionally, we set a limitation for the parameters of the models. The constraint is based on the
download limitation. When an application is larger than 100MB, it cannot be downloaded with
4G LTE (only with WIFI) in the App Store. Therefore, the number of parameters for a mobile
model should be limited. As MobileNet contains around 7M parameters, we round it to the nearest
magnitude, 10M parameters, as our constraint.

Datasets. The results are based on three machine translation benchmarks: For IWSLT’14 German-
English (De-En), we follow the settings in Grave et al. (2017) with 160K training sentence pairs
and 10K joint BPE vocabulary in lower case. For WMT English to German (En-De) we train the
model on WMT’16 training data with 4.5M sentence pairs and validate on newstest2013 and test on
newstest2014, the same as Wu et al. (2019b). Moreover, the vocabulary used is a 32K joint source
and target byte pair encoding (Sennrich et al., 2016). For WMT English to Franch (En-Fr), we
replicate the setup in Gehring et al. (2017) with 36M training sentence pairs from WMT’14, validate
on newstest2012 and 2013 and test on newstest2014. Also, the 40K vocabulary is based on a joint
source and target BPE factorization.
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WMT’14 En-De WMT’14 En-Fr

#Parameters #Mult-Adds BLEU ∆BLEU BLEU ∆BLEU

Transformer (Vaswani et al., 2017) 2.8M 87M 21.3 – 33.6 –
Mobile Transformer (Ours) 2.9M 90M 22.5 +1.2 34.9 +1.3

Transformer (Vaswani et al., 2017) 11.1M 338M 25.1 – 37.6 –
Mobile Transformer (Ours) 11.7M 360M 25.8 +0.7 38.7 +1.1

Transformer (Vaswani et al., 2017) 17.3M 527M 26.1 – 38.4 –
Mobile Transformer (Ours) 17.3M 527M 26.5 +0.4 39.6 +1.2

Table 3: Quantitative results on WMT’14 En-De. Our Mobile Transformer improves the BLEU score
over the transformer under similar Mult-Adds constraints.
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Figure 5: Trade-off curve on WMT dataset of En-De and En-Fr. Both curves illustrate that our Mobile
Transformer outperform the basic transformer on mobile settings.

Architecture. The model architecture is based on the sequence to sequence learning encoder-
decoder (Sutskever et al., 2014). Our baseline model is based on the one proposed by Vaswani
et al. (2017) for WMT. For IWSLT, we follow the settings in Wu et al. (2019b). We adopt fairseq’s
re-implementation (Ott et al., 2019) of transformer base model as the backbone. Transformer blocks
form both the encoder and the decoder. In the encoder, the transformer block consists of a self-
attention module followed by a feed-forward network (FFN) module. The block in the decoder is the
same, except for an additional encoder-decoder attention module in the middle of the self-attention
and FFN. Each module is surrounded by the residual connection (He et al., 2016) and followed by a
layer normalization.

In our architecture, we first flatten the bottleneck from the transformer base model and then replace
the self-attention with the LSRA. More specifically, we use two specialized modules on both WMT
and IWSLT, an attention branch and a convolutional branch. Both the input and the output of the
convolution are transformed by fully connected layers (GLU is applied for the input on WMT) and
the kernel is dynamically calculated from the input using a fully connected layer in the WMT models.
The kernel sizes are [3, 5, 7, 31×3] for both the encoder and the decoder (Wu et al., 2019b), and the
number of heads for each module is 4 (half of the heads number in the transformer base model).

Training Settings. All of our training settings are in line with Wu et al. (2019b). We use a dropout
of 0.3 for both the WMT and IWSLT datasets and linearly scale down the dropout ratio when
shrinking the dimension of the embeddings for the WMT datasets. Same as Wu et al. (2019b), we
apply Adam optimizer and a cosine learning rate schedule (Kingma & Ba, 2015; Loshchilov & Hutter,
2017) for the WMT models, where the learning rate is first linearly warm up from 10−7 to 10−3 and
then annealed following a cosine rate with a single cycle. For IWSLT De-En, we use inverse square
root learning rate scheduling (Vaswani et al., 2017) with linear warm-up.
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We train WMT models on 8 NVIDIA RTX 2080Ti GPUs for a total of 50K steps. For IWSLT De-En,
we train for 50K steps on a single GPU.

Mixed-precision training with floating point 16 is used for WMT models, when applicable. We also
accumulate the gradients for 16 batches before each model update (Ott et al., 2018). The gradients of
IWSLT models are not accumulated. Particularly, the maximum number of tokens in a batch is 4K for
all the models. Label smooth of 0.1 is applied for the prior distribution over the vocabulary (Szegedy
et al., 2016; Pereyra et al., 2017).

Evaluation. For evaluation, we use the same beam decoding configuration used by Vaswani et al.
(2017), where there is a beam size of 4 and a length penalty of 0.6. All BLEUs are calculated with
case-sensitive tokenization*, but for WMT En-De, we also use the compound splitting BLEU†, the
same as Vaswani et al. (2017). When testing, we average the last 10 model checkpoints for IWSLT’14
De-En and take the model with the lowest perplexity on the validation set for the WMT’14 En-De.
We omit the word embedding lookup table from the model parameters since the number of entries in
the table would highly differ for various tasks using transformer. For the Mult-Adds, we calculate
the total number of multiplication-addition pairs for a model translating a sequence with the length
of 30 to a sequence with the same length, which is the common length for sentence-level machine
translation tasks.

6 RESULTS

6.1 RESULTS ON IWSLT

We first report the result on IWSLT’14 De-En dataset. The baseline model is the same as the one used
in Wu et al. (2019b), which provides the best results in the literature with 512 embedding dimension,
1024 FFN hidden dimension and 4 heads for all the attentions. Figure 4 illustrate the trade-off of
BLEU score and model computation as well as model size. Our Mobile Transformer generally
outperforms the base transformer on mobile constraints. With tighter computation limitation, our
model achieves more significant improvement. That is because, when the dimension of the embedding
decreases, it becomes much harder for the “general” attention to extract both the global and local
feature from the rather more compact information within the embedding. On the contrary, with the
specialized LSRA, our model can capture the information from the embedding more effectively.

In Table 2, we present the quantitative results of our Mobile Transformer on IWSLT’14 De-En dataset,
comparing to the transformer baseline as well as the LightConv (Wu et al., 2019b). Under 100M
Mult-Adds, our model even achieves 2.1 BLEU score improvement than the transformer.

#Mult-Adds BLEU

Mobile Transformer (Ours) 209M 34.5

- with 2 branches of attention 232M 33.6
- with 2 branches of convolution 217M 33.8
- without flattening the FFN 207M 34.0

Table 4: Ablation study on IWSLT’14 De-En. All
results are evaluated on the validation set.

We also explored different combinations of two
branches and validated the effectiveness of flat-
tening the FFN. Table 4 shows the results of
the last checkpoint evaluated on the validation
set of IWSLT’14 De-En dataset with beam size
of 4. With specialized branches and flattened
FFN, our Mobile Transformer achieves the best
performance among all design choices.

6.2 RESULTS ON WMT

We also show the result on the WMT’14 En-De and WMT’14 En-Fr dataset. Similar to the IWSLT,
our Mobile Transformer achieves a better trade-off with regard to transformer (Vaswani et al., 2017)
against the total computation and the number of model parameters Figure 5 on mobile settings.
The quantitative results in Table 3 indicates that our specialized MBT has 1.2 and 1.3 BLEU score
improvement under 100M Mult-Adds and 0.7 and 1.1 under 300M Mult-Adds for WMT En-De
dataset and WMT En-Fr dataset respectively.

*https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
†https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/get_ende_bleu.sh

8



Under review as a conference paper at ICLR 2020

#Params #Mult-Adds BLEU GPU Hours
CO2e Cloud
(lbs) Computation Cost

Transformer (Vaswani et al., 2017) 2.8M 87M 21.3 8×12 26 $68 - $227
Evolved Transformer (So et al., 2019) 3.0M 94M 22.0 8×274K 626K $1.6M - $5.5M
Mobile Transformer (Ours) 2.9M 90M 22.5 8×14 32 $83 - $278

Transformer (Vaswani et al., 2017) 11.1M 338M 25.1 8×16 36 $93.9 - $315
Evolved Transformer (So et al., 2019) 11.8M 364M 25.4 8×274K 626K $1.6M - $5.5M
Mobile Transformer (Ours) 11.7M 360M 25.8 8×19 43 $112 - $376

Table 5: Performance and training cost of an NMT model in terms of CO2 emissions (lbs) and cloud
compute cost (USD). The training cost estimation is adapted from Strubell et al. (2019). The training
time for transformer and our Mobile Transformer is measured on NVIDIA V100 GPU. The cloud
computation price is based on the AWS.

6.3 COMPARISON WITH AUTOMATED DESIGN

Comparing with the AutoML-based Evolved Transformer (ET) (So et al., 2019), our Mobile Trans-
former also shows a significant improvement in mobile settings. Moreover, within mobile settings,
the MBT outperforms the ET by 0.5 and 0.4 BLEU scores under 100M and 300M Mult-Adds,
respectively, as shown in Table 5. Our architecture design is different from ET’s design: ET stacks
attentions and convolutions sequentially, while our MBT puts them in a parallel manner; also, ET
does not flatten the FFN.

Though nowadays, neural architecture search has been proved to be very powerful for searching in
a large design space, the huge cost, more than 626155 lbs CO2 emissions and more than 250 GPU
years, cannot be ignored. Instead, careful human design with intuitions for specific tasks can also be
a great choice in practice to save a large number of resources for the earth.

7 CONCLUSION

In this paper, we presented Long-Short Range Attention (LSRA), where some heads focus on the local
context modeling while the others capture the long-distance relationship. Based on this primitive, we
design Mobile Transformer (MBT) that is specialized for the mobile setting (under 500M Mult-Adds)
to facilitate the deployment on the edge devices. Our MBT demonstrates consistent improvement
over the transformer on multiple datasets. It also surpasses the Evolved Transformer that requires
costly architecture search under the mobile setting.
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