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Abstract

Learning a new language is often difficult,
especially practising it independently. The
main issue with self-study is the absence
of accurate feedback from a teacher, which
would enable students to learn unfamil-
iar languages. In recent years, with ad-
vances in Artificial Intelligence and Auto-
matic Speech Recognition, it has become
possible to build applications that can pro-
vide valuable feedback on the users’ pro-
nunciation. In this paper, we introduce
the APP NAME1 app explicitly developed
to aid students in practising their Finnish
pronunciation on handheld devices. Our
app is a valuable resource for immigrants
who are busy with school or work, and
it helps them integrate faster into society.
Furthermore, by providing this service for
L2 speakers and collecting their data, we
can continuously improve our system and
provide better aid in the future.

1 Introduction

Proper pronunciation is needed to build confidence
in second language (L2) learners and is essential
for effective communication and language acqui-
sition (Gilakjani, 2012). L2 adult learners, who
might not have regular exposure to the target lan-
guage during their everyday life, may lack suffi-
cient opportunities to practise and receive correc-
tive feedback.

With recent advances in Automatic Speech
Recognition (ASR) technologies, computer-
assisted pronunciation training (CAPT) apps have
become more and more effective in helping L2
learners. These apps can immediately give the
users feedback on their pronunciation at their
convenience. However, while popular languages

1We hide the app name for anonymous reason

such as English have many pronunciation ap-
plications (Kholis, 2021; Fouz-González, 2020;
Wellocution, 2023), there are fewer resources
available for Finnish L2 learners. To the best
of our knowledge, there was no similar app for
CAPT in Finnish before this work.

The main challenge in developing CAPT ap-
plications for Finnish and other low-resource lan-
guages is the lack of data from L2 speakers. Fur-
thermore, if the L2 corpus is not annotated at the
phoneme level, it makes developing an app for
mispronunciation detection (MD) more compli-
cated. We designed our APP NAME app to func-
tion as well as possible using all available data and
add the possibility of collecting users’ data after
the pilot phase (figure 1). Such information will
help evaluate the app’s effectiveness for language
training and improve our model’s performance to
better address students’ needs in later versions.

Figure 1: APP NAME app processing flowchart

Recent works from Wu et al. (2021) and Xu
et al. (2021) have demonstrated the effectiveness
of end-to-end systems with Transformer-based ar-
chitectures for English MD. While we focus more
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on practicality, we use a similar approach without
a detailed annotation dataset for Finnish.

2 Dataset

One of the major challenges that we needed to
overcome was the limited data at our disposal. We
should note that for the English language, sev-
eral datasets are available with phoneme level an-
notation (Zhao et al., 2018; Zhang et al., 2021;
Weinberger, 2015). Unfortunately, no such pub-
lic Finnish resources exist. Thus we opted to use
the data collected during the Digitala project (Al-
Ghezi et al., 2023) as our primary corpus. This
dataset includes ratings from language experts on
pronunciation, fluency, lexical, grammatical and
the holistic overall level for each audio file, but
it does not have phoneme level information.

The Digitala corpus consists of free-form and
read-aloud speech, from which we selected 768
short read-aloud samples as those matched our in-
tended scenario most closely. This gave us ap-
proximately 60 minutes of audio with the overall
pronunciation ratings ranging from 1 to 4, with 4
being the best. The rating is for the whole pro-
nunciation task and not individual phonemes. The
lowest pronunciation level (1) contains approxi-
mately 2,200 phonemes, the highest one (4) has
only 576 phonemes, while the remaining 14,000
phonemes are split almost equally between levels
2 and 3. The corpus was also transcribed by third
parties who were not language experts.

The small size of the Digitala corpus and the
lack of phoneme annotation meant it was not suit-
able for training or finetuning for the MD task.
However, as there were no better alternatives, we
used the Digitala read-aloud transcript as a re-
placement for the evaluation set. Consequently,
we needed another dataset to train our models. Af-
ter some preliminary experiments, we selected the
Finnish Parliament corpus (Kielipankki, 2022), a
publicly available corpus without any statistically
significant use of dialects (Virkkunen et al., 2022).
By training our models for the ASR task with
suitably chosen native speakers’ samples, we ex-
pected the models could learn the features of na-
tive Finnish speech and have the potential to iden-
tify deviations made by L2 speakers. As a first
step, we filtered the most suitable portion of the
data, by selecting speeches with low or average
speaking rates (which is the most similar to how
L2 learners speak). As an additional step, we

also restricted the data by excluding older (50+)
speakers, since our target audience is generally
younger immigrants. The last step in data prepara-
tion was the splitting of the 281 hours of data into
75% for training, and 25% for tuning hyperparam-
eters and evaluating the speech recognition mod-
els. We should note that we also used two publicly
available reference models, called Finnish-NLP2

and Finnish-NLP-S 3. Both have been trained with
228 hours of Finnish Parliament data and approx-
imately 47 hours of data from other sources.

3 Implementation

3.1 Server

The core technology inside our server is based on
wav2vec 2.0 (Baevski et al., 2020), which was al-
ready proven to work exceptionally well even with
very limited amount of data (Wu et al., 2021; Xu
et al., 2021). We selected XLS-R (Babu et al.,
2021) and Uralic, a subset of VoxPopuli (Wang
et al., 2021), as our pre-train models, and use
the state-of-the-art model in Finnsh ASR, Finnish-
NLP, as our baseline. Except for entropy β, all
models used the same hyperparameters, and there
is no language model used for decoding.

Leveraging the phonetic nature of the Finnish
language, where each phoneme is represented by
exactly one grapheme4, we can use graphemes
as output units during the ASR training proce-
dure. Once the ASR models were trained, we used
the forced alignment algorithm for Connection-
ist Temporal Classification (CTC) from Kürzinger
et al. (2020) to determine the success of pronun-
ciation. This algorithm provides both time align-
ment and a probability score for each grapheme.
Inspired by the traditional Goodness of Pronunci-
ation method (Witt and Young, 2000), we use such
information to generate feedback for the user.

One major issue we had to overcome was the
overconfidence of the wav2vec 2.0 models. As it
is well known, the CTC algorithm often results in
spiky outputs (Zeyer et al., 2021), which in terms
would mean that we can only provide binary (cor-
rect/incorrect) feedback to the user. Naturally, a
good pronunciation training app should give more
detailed information (Engwall and Bälter, 2007),

2https://huggingface.co/Finnish-NLP/wav2vec2-xlsr-1b-
finnish-lm-v2

3https://huggingface.co/Finnish-NLP/wav2vec2-xlsr-
300m-finnish-lm

4except “nk” [Nk] and “ng” [N:]
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Model Vocabulary Parameters Entropy β CER Recall Precision F1

Finnish-NLP
Grapheme

1bil
0%

15.4% 59.8% 33.3% 42.8%
Finnish-NLP-S 300mil 22.3% 65.0% 26.1% 37.2%
XLS-R Grapheme

300mil

0% 20.9% 61.1% 26.7% 37.2%
XLS-R-5 Grapheme 5% 19.5% 63.1% 30.0% 40.6%
XLS-R-10 Grapheme 10% 21.2% 63.1% 29.4% 40.1%
XLS-R-10-P Phoneme 10% 21.3% 63.2% 27.3% 38.1%
Uralic-10 Grapheme 10% 30.4% 64.3% 23.4% 34.3%
Uralic-10-P Phoneme 10% 29.6% 66.8% 22.6% 33.8%

Table 1: Speech models’ performance in ASR and MD on Digitala read-aloud set.

thus, reducing the peakedness of the outputs was
important. To achieve this, we chose the negative
maximum entropy regularization technique Liu
et al. (2018) during training, which redistributes
β% of the total probability mass uniformly to all
outputs, ensuring the smoothness of the final pre-
dictions.

3.2 Mobile app

We use Unity (Juliani et al., 2018) as our de-
velopment engine. With Unity we can simulta-
neously publish our APP NAME app to multiple
platforms: Android, iOS and Windows. Our app
contains various study materials, and Unity Edi-
tor allows us to easily integrate those multimedia
content into the app. We make use of the engine to
visualize our pronunciation instructions with ani-
mations and limit the rest to simple UI, thus low-
ering the application’s power consumption.

Arapakis et al. (2021) estimated a 7 seconds
threshold where mobile (web search) users’ expe-
rience decreases significantly. To maintain a rea-
sonable response time, we use a manual VAD sys-
tem to remove the silent parts from the recording:
the users must press and hold the record button to
record their audio samples.

The app supports two modes; the “Topic” mode
supplies curated words and phrases for various
topics, often along with English translation and
audio samples from native speakers. On the other
hand, the “Freestyle” mode enables users to prac-
tice any word or phrase by first prompting for the
text that the user will attempt to pronounce.

The score for each phoneme is saved locally, en-
abling users to track their progress. The data is
valuable in developing speech applications for L2
speakers. In the future, with the users’ permission,
we can collect their records to evaluate the app’s
effectiveness and other metadata.

APP NAME also provides pronunciation in-
structions via sample audios, pictures, animations
and videos, which are beneficial for users during
self-practice (Engwall and Bälter, 2007). The au-
dio, photo and animation materials are directly
stored in the app, while the videos are accessible
via a public, ad-free platform. We should note that
external links would generally have an adverse ef-
fect on user experience, still we choose this so-
lution to supply high-quality tutorial videos while
keeping the size of the app reasonably small.

4 Results

To validate our models, we computed their charac-
ter error rate (CER), Recall (percentage of mispro-
nunciations correctly detected) and Precision (the
ratio of detected mispronunciations actually being
mispronunciation, according to a native Finnish
listener) using the Digitala read-aloud corpus. The
empirical results can be seen in Table 1. The first
thing that we noticed is that the large Finnish-
NLP produced significantly lower and the small
Finnish-NLP-S higher CER compared to the ma-
jority of our models. Next, we compared the mod-
els in terms of MD and saw that Finnish-NLP
yielded the highest overall F1 score. However,
the smaller XLS-R-5 and XLS-R-10 managed to
achieve comparable results with the help of en-
tropy regularization.

The benefit of entropy regularization is seen
when we increase the value of β and note that both
Recall and Precision also increase. From our ex-
periment, we found that β between 5% and 10%
produces the best result for MD task. Looking at
the detailed breakdown in table 2, we also found
that, the smaller XLS-R outperformed the Finnish-
NLP in Recall for pronunciation level 1 samples,
while slightly falling behind in Precision. The gap
in Precision widens as the speakers’ pronuncia-
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Model CER Recall Precision
Finnish-NLP 26.9% 72.6% 38.7%
XLS-R-5 31.4% 77.4% 36.2%
XLS-R-10 33.5% 78.5% 36.8%
Finnish-NLP 20.0% 61.5% 32.7%
XLS-R-5 24.1% 63.3% 29.1%
XLS-R-10 24.7% 63.2% 28.9%
Finnish-NLP 11.6% 42.4% 27.2%
XLS-R-5 15.4% 46.7% 24.1%
XLS-R-10 17.6% 45.7% 22.2%
Finnish-NLP 6.0% 18.8% 20.0%
XLS-R-5 10.3% 25.0% 16.0%
XLS-R-10 13.6% 25.0% 10.0%

Table 2: CER, Recall and Precision for the pro-
nunciation levels 1 to 4 (top to bottom: worst to
best)

tion skill improves. Considering the practicality of
smaller models, they would be suitable in MD for
beginner L2 learners. While the Uralic model did,
in our preliminary experiment on Common Voice
7.0 test set, produce lower CER on native Finnish
speakers, it failed in both ASR and MD task on L2
speakers. One possible reason is that the Uralic
models were not exposed to foreign language fam-
ilies, unlike the XLS-R models.

While it is possible to use the training part of
the Digitala corpus for finetuning our wav2vec 2.0
models, we could not control the pronunciation
quality, as the speakers are L2 learners and there
is no phoneme annotation. In our preliminary ex-
periments we found that finetuning with bad pro-
nunciation data led to lower performance in MD.

5 Self-study assistant

APP NAME (see figure 1) allows users to enter
words into a text prompt to practise pronunciation.
Their audio is sent to the server, and the device
will display the obtained rating for each phoneme,
with three possible ratings in colors (figure 2):
flawed (phoneme is not recognizable), almost cor-
rect (improved, but not clear), and correct. The
“almost correct” rating is given as positive feed-
back when user’s phoneme score improves, but is
still not considered correct. The users are also ad-
vised to refer to the app multimedia pronunciation
instructions (figure 3).

Figure 2: The result is coloured based on pronun-
ciation score.

Figure 3: Visual pronunciation instructions for A
[A] (left) and Ä [æ] (right).

6 Conclusion

In this paper, we presented the prototype of
APP NAME, an app that helps language learn-
ers practise Finnish pronunciation. Because of the
lack of data available for phoneme level pronunci-
ation mistakes, our solution is based on multilin-
gual wav2vec 2.0 models, which are finetuned for
native Finnish ASR. By running the L2 learners’
utterances through the ASR without a language
model, we predict pronunciation errors and proba-
bility scores that indicate the success of pronunci-
ation. The resulting models are validated by mea-
suring CER, Recall and Precision for samples of
different levels of pronunciation judged by human
experts. In the future, we plan to collect user data
(feedback and audio) with our app to update the
models and improve the self-study application.
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