APP_NAME - A mobile app for practising Finnish pronunciation

Anonymous Author Affiliation email@domain

Anonymous Author Affiliation email@domain Anonymous Author Affiliation email@domain

Abstract

Learning a new language is often difficult, especially practising it independently. The main issue with self-study is the absence of accurate feedback from a teacher, which would enable students to learn unfamiliar languages. In recent years, with advances in Artificial Intelligence and Automatic Speech Recognition, it has become possible to build applications that can provide valuable feedback on the users' pronunciation. In this paper, we introduce the APP_NAME¹ app explicitly developed to aid students in practising their Finnish pronunciation on handheld devices. Our app is a valuable resource for immigrants who are busy with school or work, and it helps them integrate faster into society. Furthermore, by providing this service for L2 speakers and collecting their data, we can continuously improve our system and provide better aid in the future.

1 Introduction

Proper pronunciation is needed to build confidence in second language (L2) learners and is essential for effective communication and language acquisition (Gilakjani, 2012). L2 adult learners, who might not have regular exposure to the target language during their everyday life, may lack sufficient opportunities to practise and receive corrective feedback.

With recent advances in Automatic Speech Recognition (ASR) technologies, computerassisted pronunciation training (CAPT) apps have become more and more effective in helping L2 learners. These apps can immediately give the users feedback on their pronunciation at their convenience. However, while popular languages such as English have many pronunciation applications (Kholis, 2021; Fouz-González, 2020; Wellocution, 2023), there are fewer resources available for Finnish L2 learners. To the best of our knowledge, there was no similar app for CAPT in Finnish before this work.

The main challenge in developing CAPT applications for Finnish and other low-resource languages is the lack of data from L2 speakers. Furthermore, if the L2 corpus is not annotated at the phoneme level, it makes developing an app for mispronunciation detection (MD) more complicated. We designed our APP_NAME app to function as well as possible using all available data and add the possibility of collecting users' data after the pilot phase (figure 1). Such information will help evaluate the app's effectiveness for language training and improve our model's performance to better address students' needs in later versions.

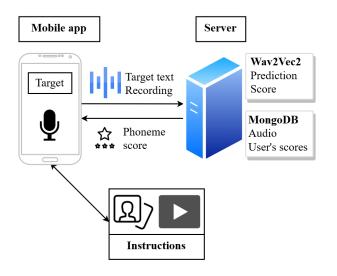


Figure 1: APP_NAME app processing flowchart

Recent works from Wu et al. (2021) and Xu et al. (2021) have demonstrated the effectiveness of end-to-end systems with Transformer-based architectures for English MD. While we focus more

¹We hide the app name for anonymous reason

108 on practicality, we use a similar approach without 109 a detailed annotation dataset for Finnish. 110

Dataset 2

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

140

One of the major challenges that we needed to overcome was the limited data at our disposal. We should note that for the English language, several datasets are available with phoneme level annotation (Zhao et al., 2018; Zhang et al., 2021; Weinberger, 2015). Unfortunately, no such public Finnish resources exist. Thus we opted to use the data collected during the Digitala project (Al-Ghezi et al., 2023) as our primary corpus. This dataset includes ratings from language experts on pronunciation, fluency, lexical, grammatical and the holistic overall level for each audio file, but it does not have phoneme level information.

The Digitala corpus consists of free-form and read-aloud speech, from which we selected 768 short read-aloud samples as those matched our intended scenario most closely. This gave us approximately 60 minutes of audio with the overall pronunciation ratings ranging from 1 to 4, with 4 being the best. The rating is for the whole pronunciation task and not individual phonemes. The lowest pronunciation level (1) contains approximately 2,200 phonemes, the highest one (4) has only 576 phonemes, while the remaining 14,000 138 phonemes are split almost equally between levels 139 2 and 3. The corpus was also transcribed by third parties who were not language experts.

141 The small size of the Digitala corpus and the 142 lack of phoneme annotation meant it was not suit-143 able for training or finetuning for the MD task. 144 However, as there were no better alternatives, we 145 used the Digitala read-aloud transcript as a re-146 placement for the evaluation set. Consequently, 147 we needed another dataset to train our models. Af-148 ter some preliminary experiments, we selected the 149 Finnish Parliament corpus (Kielipankki, 2022), a 150 publicly available corpus without any statistically 151 significant use of dialects (Virkkunen et al., 2022). 152 By training our models for the ASR task with 153 suitably chosen native speakers' samples, we ex-154 pected the models could learn the features of na-155 tive Finnish speech and have the potential to iden-156 tify deviations made by L2 speakers. As a first 157 step, we filtered the most suitable portion of the 158 data, by selecting speeches with low or average 159 speaking rates (which is the most similar to how 160 L2 learners speak). As an additional step, we 161

also restricted the data by excluding older (50+) speakers, since our target audience is generally younger immigrants. The last step in data preparation was the splitting of the 281 hours of data into 75% for training, and 25% for tuning hyperparameters and evaluating the speech recognition models. We should note that we also used two publicly available reference models, called Finnish-NLP² and Finnish-NLP-S³. Both have been trained with 228 hours of Finnish Parliament data and approximately 47 hours of data from other sources.

3 Implementation

3.1 Server

The core technology inside our server is based on wav2vec 2.0 (Baevski et al., 2020), which was already proven to work exceptionally well even with very limited amount of data (Wu et al., 2021; Xu et al., 2021). We selected XLS-R (Babu et al., 2021) and Uralic, a subset of VoxPopuli (Wang et al., 2021), as our pre-train models, and use the state-of-the-art model in Finnsh ASR, Finnish-NLP, as our baseline. Except for entropy β , all models used the same hyperparameters, and there is no language model used for decoding.

Leveraging the phonetic nature of the Finnish language, where each phoneme is represented by exactly one grapheme⁴, we can use graphemes as output units during the ASR training procedure. Once the ASR models were trained, we used the forced alignment algorithm for Connectionist Temporal Classification (CTC) from Kürzinger et al. (2020) to determine the success of pronunciation. This algorithm provides both time alignment and a probability score for each grapheme. Inspired by the traditional Goodness of Pronunciation method (Witt and Young, 2000), we use such information to generate feedback for the user.

One major issue we had to overcome was the overconfidence of the wav2vec 2.0 models. As it is well known, the CTC algorithm often results in spiky outputs (Zeyer et al., 2021), which in terms would mean that we can only provide binary (correct/incorrect) feedback to the user. Naturally, a good pronunciation training app should give more detailed information (Engwall and Bälter, 2007),

⁴except "nk" [ŋk] and "ng" [ŋː]

212

213

214

215

162

163

164

165

166

²https://huggingface.co/Finnish-NLP/wav2vec2-xlsr-1bfinnish-lm-v2

³https://huggingface.co/Finnish-NLP/wav2vec2-xlsr-300m-finnish-lm

Model	Vocabulary	Parameters	Entropy β	CER	Recall	Precision	$\mathbf{F_1}$
Finnish-NLP	Grapheme	1bil	0%	15.4%	59.8%	33.3%	42.8%
Finnish-NLP-S		300mil		22.3%	65.0%	26.1%	37.2%
XLS-R	Grapheme	300mil	0%	20.9%	61.1%	26.7%	37.2%
XLS-R-5	Grapheme		5%	19.5%	63.1%	30.0%	40.6%
XLS-R-10	Grapheme		10%	21.2%	63.1%	29.4%	40.1%
XLS-R-10-P	Phoneme		10%	21.3%	63.2%	27.3%	38.1%
Uralic-10	Grapheme		10%	30.4%	64.3%	23.4%	34.3%
Uralic-10-P	Phoneme		10%	29.6%	66.8%	22.6%	33.8%

Table 1: Speech models' performance in ASR and MD on Digitala read-aloud set.

thus, reducing the peakedness of the outputs was important. To achieve this, we chose the negative maximum entropy regularization technique Liu et al. (2018) during training, which redistributes $\beta\%$ of the total probability mass uniformly to all outputs, ensuring the smoothness of the final predictions.

3.2 Mobile app

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245 246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

We use Unity (Juliani et al., 2018) as our development engine. With Unity we can simultaneously publish our APP_NAME app to multiple platforms: Android, iOS and Windows. Our app contains various study materials, and Unity Editor allows us to easily integrate those multimedia content into the app. We make use of the engine to visualize our pronunciation instructions with animations and limit the rest to simple UI, thus lowering the application's power consumption.

Arapakis et al. (2021) estimated a 7 seconds threshold where mobile (web search) users' experience decreases significantly. To maintain a reasonable response time, we use a manual VAD system to remove the silent parts from the recording: the users must press and hold the record button to record their audio samples.

The app supports two modes; the "Topic" mode supplies curated words and phrases for various topics, often along with English translation and audio samples from native speakers. On the other hand, the "Freestyle" mode enables users to practice any word or phrase by first prompting for the text that the user will attempt to pronounce.

The score for each phoneme is saved locally, enabling users to track their progress. The data is valuable in developing speech applications for L2 speakers. In the future, with the users' permission, we can collect their records to evaluate the app's effectiveness and other metadata. APP_NAME also provides pronunciation instructions via sample audios, pictures, animations and videos, which are beneficial for users during self-practice (Engwall and Bälter, 2007). The audio, photo and animation materials are directly stored in the app, while the videos are accessible via a public, ad-free platform. We should note that external links would generally have an adverse effect on user experience, still we choose this solution to supply high-quality tutorial videos while keeping the size of the app reasonably small. 270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

4 **Results**

To validate our models, we computed their character error rate (CER), Recall (percentage of mispronunciations correctly detected) and Precision (the ratio of detected mispronunciations actually being mispronunciation, according to a native Finnish listener) using the Digitala read-aloud corpus. The empirical results can be seen in Table 1. The first thing that we noticed is that the large Finnish-NLP produced significantly lower and the small Finnish-NLP-S higher CER compared to the majority of our models. Next, we compared the models in terms of MD and saw that Finnish-NLP yielded the highest overall F_1 score. However, the smaller XLS-R-5 and XLS-R-10 managed to achieve comparable results with the help of entropy regularization.

The benefit of entropy regularization is seen when we increase the value of β and note that both Recall and Precision also increase. From our experiment, we found that β between 5% and 10% produces the best result for MD task. Looking at the detailed breakdown in table 2, we also found that, the smaller XLS-R outperformed the Finnish-NLP in Recall for pronunciation level 1 samples, while slightly falling behind in Precision. The gap in Precision widens as the speakers' pronuncia-

324	Model	CER	Recall	Precision
325	Finnish-NLP	26.9%	72.6%	38.7%
326	XLS-R-5	31.4%	77.4%	36.2%
327	XLS-R-10	33.5%	78.5%	36.8%
328	Finnish-NLP	20.0%	61.5%	32.7%
329	XLS-R-5	24.1%	63.3%	29.1%
330	XLS-R-10	24.7%	63.2%	28.9%
331	Finnish-NLP	11.6%	42.4%	27.2%
332	XLS-R-5	15.4%	46.7%	24.1%
333	XLS-R-10	17.6%	45.7%	22.2%
334	Finnish-NLP	6.0%	18.8%	20.0%
335	XLS-R-5	10.3%	25.0%	16.0%
336 337	XLS-R-10	13.6%	25.0%	10.0%

Table 2: CER, Recall and Precision for the pronunciation levels 1 to 4 (top to bottom: worst to best)

tion skill improves. Considering the practicality of smaller models, they would be suitable in MD for beginner L2 learners. While the Uralic model did, in our preliminary experiment on Common Voice 7.0 test set, produce lower CER on native Finnish speakers, it failed in both ASR and MD task on L2 speakers. One possible reason is that the Uralic models were not exposed to foreign language families, unlike the XLS-R models.

While it is possible to use the training part of the Digitala corpus for finetuning our wav2vec 2.0 models, we could not control the pronunciation quality, as the speakers are L2 learners and there is no phoneme annotation. In our preliminary experiments we found that finetuning with bad pronunciation data led to lower performance in MD.

Self-study assistant

APP_NAME (see figure 1) allows users to enter words into a text prompt to practise pronunciation. Their audio is sent to the server, and the device will display the obtained rating for each phoneme, with three possible ratings in colors (figure 2): flawed (phoneme is not recognizable), almost correct (improved, but not clear), and correct. The "almost correct" rating is given as positive feedback when user's phoneme score improves, but is still not considered correct. The users are also advised to refer to the app multimedia pronunciation instructions (figure 3).

	ি	
Correct sound	What you said	
m /m/	p /p/ Flawed	
u /u/	Almost correct	
< /k/	e /e/ Almost correct	
a /ɑ/	ä /æ/ Flawed	

Figure 2: The result is coloured based on pronunciation score.

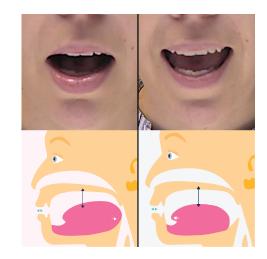


Figure 3: Visual pronunciation instructions for A $[\alpha]$ (left) and \ddot{A} $[\alpha]$ (right).

Conclusion

In this paper, we presented the prototype of APP_NAME, an app that helps language learners practise Finnish pronunciation. Because of the lack of data available for phoneme level pronunciation mistakes, our solution is based on multilingual wav2vec 2.0 models, which are finetuned for native Finnish ASR. By running the L2 learners' utterances through the ASR without a language model, we predict pronunciation errors and probability scores that indicate the success of pronunciation. The resulting models are validated by measuring CER, Recall and Precision for samples of different levels of pronunciation judged by human experts. In the future, we plan to collect user data (feedback and audio) with our app to update the models and improve the self-study application.

432 References 433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

- Ragheb Al-Ghezi, Yaroslav Getman, Ekaterina Voskoboinik, Mittul Singh, and Mikko Kurimo. 2023. Automatic rating of spontaneous speech for low-resource languages. In 2022 IEEE Spoken Language Technology Workshop (SLT), pages 339–345. IEEE.
- Ioannis Arapakis, Souneil Park, and Martin Pielot. 2021. Impact of response latency on user behaviour in mobile web search. In *Proceedings of the 2021 Conference on Human Information Interaction and Retrieval*, pages 279–283.
- Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, et al. 2021. Xls-r: Self-supervised cross-lingual speech representation learning at scale. *arXiv preprint arXiv:2111.09296*.
- Alexei Baevski, Zhou, Henry Abdelrah-Michael Mohamed. and Auli. 2020. man http://arxiv.org/abs/2006.11477 wav2vec 2.0: A framework for self-supervised learning of speech representations. CoRR, abs/2006.11477.
- Olov Engwall and Olle Bälter. 2007. Pronunciation feedback from real and virtual language teachers. *Computer Assisted Language Learning*, 20(3):235–262.
- Jonas Fouz-González. 2020. Using apps for pronunciation training: An empirical evaluation of the english file pronunciation app. *Language, Learning and Technology*, 24.
- Abbas Pourhosein Gilakjani. 2012. A study of factors affecting efl learners' english pronunciation learning and the strategies for instruction. *International journal of humanities and social science*, 2(3):119–128.
- Arthur Juliani, Vincent-Pierre Berges, Ervin Teng, Andrew Cohen, Jonathan Harper, Chris Elion, Chris Goy, Yuan Gao, Hunter Henry, Marwan Mattar, et al. 2018. Unity: A general platform for intelligent agents. arXiv preprint arXiv:1809.02627.
- Adhan Kholis. 2021. Elsa speak app: automatic speech recognition (asr) for supplementing english pronunciation skills. *Pedagogy: Journal of English Language Teaching*, 9(1):01–14.
- Kielipankki. 2022. http://urn.fi/urn:nbn:fi:lb-2022052002 Aalto Finnish Parliament ASR Corpus 2008-2020, version 2.
- Ludwig Kürzinger, Dominik Winkelbauer, Lujun Li, Tobias Watzel, and Gerhard Rigoll. 2020. Ctcsegmentation of large corpora for german end-toend speech recognition. In *International Conference on Speech and Computer*, pages 267–278. Springer.

Hu Liu, Sheng Jin, and Changshui Zhang. 2018. Connectionist temporal classification with maximum entropy regularization. *Advances in Neural Information Processing Systems*, 31. 486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508 509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

- Anja Virkkunen, Aku Rouhe, Nhan Phan, and Mikko Kurimo. 2022. Finnish parliament asr corpusanalysis, benchmarks and statistics. *arXiv preprint arXiv:2203.14876*.
- Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, and Emmanuel Dupoux. 2021. Voxpopuli: A large-scale multilingual speech corpus for representation learning, semisupervised learning and interpretation. *arXiv preprint arXiv:2101.00390*.
- Steven Weinberger. 2015. http://accent.gmu.edu Speech Accent Archive. George Mason University.
- Wellocution. 2023. https://www.boldvoice.com/ Boldvoice web page.
- Silke M Witt and Steve J Young. 2000. Phone-level pronunciation scoring and assessment for interactive language learning. *Speech communication*, 30(2-3):95–108.
- Minglin Wu, Kun Li, Wai-Kim Leung, and Helen Meng. 2021. Transformer based end-to-end mispronunciation detection and diagnosis. In *Interspeech*, pages 3954–3958.
- Xiaoshuo Xu, Yueteng Kang, Songjun Cao, Binghuai Lin, and Long Ma. 2021. Explore wav2vec 2.0 for mispronunciation detection. In *Interspeech*, pages 4428–4432.
- Albert Zeyer, Ralf Schlüter, and Hermann Ney. 2021. Why does ctc result in peaky behavior? *arXiv preprint arXiv:2105.14849*.
- Junbo Zhang, Zhiwen Zhang, Yongqing Wang, Zhiyong Yan, Qiong Song, Yukai Huang, Ke Li, Daniel Povey, and Yujun Wang. 2021. https://doi.org/10.48550/ARXIV.2104.01378 speechocean762: An open-source non-native english speech corpus for pronunciation assessment.
- Guanlong Zhao, Sinem Sonsaat, Alif Silpachai, Ivana Lucic, Evgeny Chukharev-Hudilainen, John Levis, and Ricardo Gutierrez-Osuna. 2018. L2-arctic: A non-native english speech corpus. In *Interspeech*, pages 2783–2787.