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ABSTRACT

Recently, Transformer-based methods have achieved surprising performance in the
field of long-term series forecasting, but the attention mechanism for computing
global correlations entails high complexity. And they do not allow for targeted
modeling of local features as CNN structures do. To solve the above problems, we
propose to combine local features and global correlations to capture the overall view
of time series (e.g., fluctuations, trends). To fully exploit the underlying information
in the time series, a multi-scale branch structure is adopted to model different
potential patterns separately and purposefully. Each pattern is extracted with
down-sampled convolution and isometric convolution for local features and global
correlations, respectively. In addition to being more effective, our proposed method,
termed as Multi-scale Isometric Convolution Network (MICN), is more efficient
with linear complexity with respect to the sequence length. Our experiments on
five benchmark datasets show that compared with state-of-the-art methods, MICN
yields 18.2% and 24.5 relative improvements for multivariate and univariate time
series, respectively. Code will be released soon.

1 INTRODUCTION

Researches related to time series forecasting are widely applied in the real world, such as sensor
network monitoring (Papadimitriou & Yu., 2006), weather forecasting, economics and finance (Zhu
& Shasha, 2002), and disease propagation analysis (Matsubara et al., 2014) and electricity forecasting.
In particular, long-term time series forecasting is increasingly in demand in reality. Therefore, this
paper focuses on the task of long-term forecasting. The problem to be solved is to predict values
for a future period: Xt+1,Xt+2, ...,Xt+T−1,Xt+T , based on observations from a historical period:
X1,X2, ...,Xt−1,Xt , and T ≫ t.

As a classic CNN-based model, TCN (Bai et al., 2018) uses causal convolution to model the temporal
causality and dilated convolution to expand the receptive field. It can integrate the local information
of the sequence better and achieve competitive results in short and medium-term forecasting (Sen
et al., 2019) (Borovykh et al., 2017). However, limited by the receptive field size, TCN often needs
many layers to model the global relationship of time series, which greatly increases the complexity of
the network and the training difficulty of the model.

Transformers (Vaswani et al., 2017) based on the attention mechanism shows great power in
sequential data, such as natural language processing (Devlin et al., 2019) (Brown et al., 2020), audio
processing (Huang et al., 2019) and even computer vision (Dosovitskiy et al., 2021) (Liu et al.,
2021b). It has also recently been applied in long-term series forecasting tasks (Li et al., 2019b)
(Wen et al., 2022) and can model the long-term dependence of sequences effectively, allowing leaps
and bounds in the accuracy and length of time series forecasts (Zhu & Soricut, 2021) (Wu et al.,
2021) (Zhou et al., 2022). The learned attention matrix represents the correlations between different
time points of the sequence and can explain relatively well how the model makes future predictions
based on past information. However, it has a quadratic complexity, and many of the computations
between token pairs are non-essential, so it is also an interesting research direction to reduce its
computational complexity. Some notable models include: LogTrans (Li et al., 2019b), Informer
(Zhou et al., 2021), Reformer (Kitaev et al., 2020), Autoformer Wu et al. (2021), Pyraformer (Liu
et al., 2021a), FEDformer (Zhou et al., 2022).
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However, as a special sequence, time series has not led to a unified modeling direction so far. In this
paper, we combine the modeling perspective of CNNs with that of Transformers to build models from
the realistic features of the sequences themselves, i.e., local features and global correlations. Local
features represent the characteristics of a sequence over a small period T , and global correlations are
the correlations exhibited between many periods T1,T2, ...Tn−1,Tn. For example, the temperature at
a moment is not only influenced by the specific change during the day but may also be correlated
with the overall trend of a period (e.g., week, month, etc.). We can identify the value of a time point
more accurately by learning the overall characteristics of that period and the correlation among many
periods before. Therefore, a good forecasting method should have the following two properties: (1)
The ability to extract local features to measure short-term changes. (2) The ability to model the global
correlations to measure the long-term trend.

Based on this, we propose Multi-scale Isometric Convolution Network (MICN). We use multiple
branches of different convolution kernels to model different potential pattern information of the
sequence separately. For each branch, we extract the local features of the sequence using a local
module based on downsampling convolution, and on top of this, we model the global correlation
using a global module based on isometric convolution. Finally, concat operation is adopted to
fuse information about different patterns from several branches. This design reduces the time and
space complexity to linearity, eliminating many unnecessary and redundant calculations. MICN
achieves state-of-the-art accuracy on five real-world benchmarks. The contributions are summarized
as follows:

• We propose MICN based on convolution structure to efficiently replace the self-attention,
and it achieves linear computational complexity and memory cost.

• We propose a multiple branches framework to deeply mine the intricate temporal patterns of
time series, which validates the need and validity for separate modeling when the input data
is complex and variable.

• We propose a local-global structure to implement information aggregation and long-term
dependency modeling for time series, which outperforms the self-attention family and
Auto-correlation mechanism. We adopt downsampling one-dimensional convolution for
local features extraction and isometric convolution for global correlations discovery.

• Our empirical studies show that the proposed model improves the performance of state-of-
the-art methods by 18.2% and 24.5% for multivariate and univariate forecasting, respectively.

2 RELATED WORK

2.1 CNNS AND TRANSFORMERS

Convolutional neural networks (CNN) are widely used in computer vision, natural language process-
ing and speech recognition (Sainath et al., 2013) (Li et al., 2019a) (Han et al., 2020). It is widely
believed that this success is due to the use of convolution operations, which can introduce certain
inductive biases, such as translation invariance, etc. CNN-based methods are usually modeled from
the local perspective, and convolution kernels can be very good at extracting local information from
the input. By continuously stacking convolution layers, the field of perception can be extended to the
entire input space, enabling the aggregation of the overall information.

Transformer (Vaswani et al., 2017) has achieved the best performance in many fields since its
emergence, which is mainly due to the attention mechanism. Unlike modeling local information
directly from the input, the attention mechanism does not require stacking many layers to extract
global information. Although the complexity is higher and learning is more difficult, it is more
capable of learning long-term dependencies (Vaswani et al., 2017).

Although CNNs and Transformers are modeled from different perspectives, they both aim to achieve
efficient utilization of the overall information of the input. In this paper, from the view of combining
the modeling principles of CNNs and Transformers, we consider both local and global context, extract
local features of data first, and then model global correlation on this basis. Furthermore, our method
achieves lower computational effort and complexity.
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2.2 MODELING BOTH LOCAL AND GLOBAL CONTEXT

Both local and global relationships play an important role in sequence modeling. Some works have
been conducted to study how to combine local and global modeling into a unified model to achieve
high efficiency and interpretability. Two well-known architectures are: Conformer (Gulati et al.,
2020) and Lite Transformer (Wu et al., 2020).

Conformer is a variant of Transformer and has achieved state-of-the-art performance in many speech
applications. It adopts the attention mechanism to learn the global interaction, the convolution module
to capture the relative-offset-based local features, and combines these two modules sequentially.
However, Conformer does not analyze in detail what local and global features are learned and how
they affect the final output. There is also no explanation why the attention module is followed by a
convolution module. Another limitation of Conformer is the quadratic complexity with respect to the
sequence length due to self-attention.

Lite Transformer also adopts convolution to extract local information and self-attention to capture
long-term correlation, but it separates them into two branches for parallel processing. A visual
analysis of the feature weights extracted from the two branches is also presented in the paper, which
can provide a good interpretation of the model results. However, the parallel structure of the two
branches determines that there may be some redundancy in its computation, and it still has the
limitation of quadratic complexity.

Whether the convolution and self-attention are serialized to extract local and global relationships step
by step or in parallel, it inevitably results in quadratic time and space complexity. Therefore, in this
paper, we propose a new framework for modeling local features and global correlations of time series
along with a new module instead of an attention mechanism. We also use the convolution operation
to extract its local information and then propose isometric convolution to model the global correlation
between each segment of the local features. This modeling method not only avoids more redundant
computations but also reduces the overall time and space complexity to linearity with respect to the
sequence length.

3 MODEL

In this section, we will introduce (1) the overall structure of MICN, as shown in Figure 1; (2) the
multi-scale hybrid decomposition block; (3) the trend-cyclical forecasting block; (4) the seasonal
forecasting block.

Multi-scale
Hybrid

Decomposition

Regression

Seasonal Prediction Block

Trend-cyclical Prediction Block

Embedding MIC

Figure 1: MICN overall architecture.

3.1 MICN FRAMEWORK

The long time series prediction task is to predict a future series of length O based on a past series of
length I, which can be expressed as input − I − predict −O, where O is much larger than I. Inspired
by traditional time series decomposition algorithms (Robert et al., 1990) (Wu et al., 2021), we have
designed a novel multi-scale hybrid decomposition (MHDecomp) block to separate input series X of
length I into trend-cyclical part Xt and seasonal part Xs. We make separate forecasting for Xt and Xs
using Trend-cyclical Prediction Block and Seasonal Prediction Block to obtain the result Yt and Ys
of length O, and then add them up to get the final prediction Ypred . We donate d as the number of
variables in multivariate time series and D as the hidden state of the series. The details will be given
in the following sections.
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3.2 MULTI-SCALE HYBRID DECOMPOSITION

Previous series decomposition algorithms (Wu et al., 2021) adopt the moving average to smooth out
periodic fluctuations and highlight the long-term trends. For the input series X ∈ RI×d , the process is:

Xt = AvgPool(Padding(X))kernel

Xs = X −Xt ,
(1)

where: Xt ,Xs ∈ RI×d denote the trend-cyclical and seasonal parts, respectively. The use of the
Avgpool(·) with the padding operation keeps the series length unchanged. But the parameter kernel
of the Avgpool(·) is artificially set and there are often large differences in trend-cyclical series and
seasonal series obtained from different kernels . Based on this, we design a multi-scale hybrid
decomposition block that uses several different kernels of the Avgpool(·) and can separate several
different patterns of trend-cyclical and seasonal parts purposefully. Concretely, for the input series
X ∈ RI×d , the process is:

Xt = mean(AvgPool(Padding(X))kernel1 , ...,AvgPool(Padding(X))kerneln)

Xs = X −Xt ,
(2)

where Xt ,Xs ∈ RI×d denote the trend-cyclical and seasonal part, respectively. Its effectiveness is
demonstrated experimentally in Appendix B.1.

3.3 TREND-CYCLICAL PREDICTION BLOCK

Currently, Autoformer (Wu et al., 2021) concatenates the mean of the original series and then
accumulates it with the trend-cyclical part obtained from the inner series decomposition block. But
there is no explanation of this and no proof of its effectiveness. Therefore, in this paper, we use
a simple linear regression strategy to make a prediction about trend-cyclical, demonstrating that
simple modeling of trend-cyclical is also necessary for time series forecasting tasks (See Section 4.2).
Concretely, for the trend-cyclical series Xt ∈ RI×d obtained with MHDecomp block, the process is:

Y regre
t = regression(Xt) (3)

where Y regre
t ∈ RO×d denotes the prediction of the trend part using the linear regression strategy. And

we use MICN − regre to represent MICN model with this trend-cyclical prediction method.

For comparison, we also use the mean of Xt to predict the trend part and the process is:

Y mean
t = mean(Xt) (4)

where Y mean
t ∈ RO×d denotes the prediction of the trend part. And we use MICN −mean to represent

MICN model with this trend-cyclical prediction method.
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Figure 2: Seasonal Prediction Block.

3.4 SEASONAL PREDICTION BLOCK

As shown in Figure 2, the Seasonal Prediction Block focuses on the more complex seasonal part
modeling. After embedding the input sequence Xs, we adopt multi-scale isometric convolution to
capture the local features and global correlations, and branches of different scales model different
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Figure 3: Local-Global module architecture.

underlying patterns of the time series. We then merge the results from different branches to complete
comprehensive information utilization of the sequence. It can be summarised as follows:

Xemb
s = Embedding(Concat(Xs,Xzero))

Y 0
s = Xemb

s

Ys,l = MIC(Ys,l−1), l ∈ {1,2, ...,N}
Ys = Truncate(Pro jection(Ys,N)),

(5)

where Xzero ∈ RO×d denotes the placeholders filled with zero, and Xemb
s ∈ R(I+O)×D denotes the

embedded representation of Xs. Ys,l ∈ R(I+O)×D represents the output of l − th multi-scale isometric
convolution ( MIC) layer, and Ys ∈ RO×d represents the final prediction of the seasonal part after a
linear function Pro jection with Ys,N ∈ R(I+O)×D and Truncate operation. The detailed description of
Embedding and MIC will be given as follows.

Embedding The decoder of the latest Transformer-based models such as Informer (Zhou et al.,
2021), Autoformer (Wu et al., 2021) and FEDformer (Zhou et al., 2022) contain the latter half of the
encoder’s input with the length I

2 and placeholders with length O filled by scalars, which may lead
to redundant calculations. To avoid this problem and adapt to the prediction length O , we replace
the traditional encoder-decoder style input with a simpler complementary 0 strategy. Meanwhile,
we follow the setting of the latest model FEDformer and adopt three parts to embed the input. The
process is:

Xemb
s = sum(T FE +PE +V E(Concat(Xs,Xzero))) (6)

where Xemb
s ∈ R(I+O)×D. T FE represents time features encoding (e.g., MinuteOfHour, HourOfDay,

DayOfWeek, DayOfMonth, and MonthOfYear), PE represents positional encoding and V E represents
value embedding.

Multi-scale isometric Convolution(MIC) Layer MIC layer contains several branches, with dif-
ferent scale sizes used to model potentially different temporal patterns. In each branch, as shown
in Figure 3, the local-global module extracts the local features and the global correlations of the
sequence. Concretely, after obtaining the corresponding single pattern by avgpool, the local module
adopts one-dimensional convolution to implement downsampling. The process is:

Ys,l = Ys,l−1

Y local,i
s,l =Conv1d(Avgpool(Padding(Ys,l))kernel=i)kernel=i,

(7)

where Ys,l−1 denotes the output of (l −1)− th MIC layer and Ys,0 = Xemb
s . i ∈

{ I
2

I
4

I
6

I
8 , ...

}
denote

the different scale sizes corresponding to the different branches in Figure 2. For Conv1d, we set

stride = kernel = i, which serves as compression of local features. Y local,i
s,l ∈ R

(I+O)
i ×D represents the

result obtained by compressing local features, which is a short sequence. Concretely, in this work, if
the length of the input series is 96, we set i ∈ {12,16}.

And furthermore, the global module is designed to model the global correlations of the output of
the local module. A commonly used method for modeling global correlations is the self-attention
mechanism, but its time and space complexity is too high. To solve this problem, we propose
isometric convolution as an alternative to the self-attention mechanism. As shown in Figure 4, as a
variant of casual convolution, isometric convolution pads the sequence of length S with placeholders
zero of length S− 1 , and its kernel is equal to S . Moreover, we demonstrate that for a shorter
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sequence, isometric convolution is superior in both complexity and effectiveness to self-attention.
The detailed experiments of the proof are in Appendix B.3. And to keep the sequence length constant,
we upsample the result of the isometric convolution using transposed convolution. The global module
can be formalized as follows:

Y
′,i
s,l = Norm(Y local,i

s,l +Dropout(Tanh(IsometricConv(Y local,i)
s,l )))

Y global,i
s,l = Norm(Ys,l−1 +Dropout(Tanh(Conv1dTranspose(Y

′,i
s,l )kernel=i))),

(8)

where Y local,i
s,l ∈ R

(I+O)
i ×D denote the result after the global correlations modeling, i ∈

{ I
2

I
4

I
6

I
8 , ...

}
corresponds to the one in the local module. Ys,l−1 is the output of l−1 MIC layer. Y global,i

s,l ∈ R(I+O)×D

represents the result of this pattern (i.e., this branch).

0 000000

Isometric Convolution Self-attention

Figure 4: Isometric Convolution architecture vs. Self-attention architecture

Then we propose to use Conv2d to merge the different patterns instead of the traditional concat
operation. The validity of Conv2d is verified in Appendix B.4. The process can be formalized as
follows:

Y merge
s,l = (Concat(Y global,i

s,l , i ∈
{

I
2
,

I
4
,

I
6
,

I
8
, ...

}
))

Ys,l = Norm(Y merge
s,l +FeedForward(Y merge

s,l )),

(9)

where Ys,l ∈ R(I+O)×D represents the result of l − th MIC layer.

To get the final prediction of the seasonal part, we use the projection and truncate operations as
follows:

Ys = Truncate(Pro jection(Ys,N)) (10)

where Ys,N ∈ R(I+O)×D represents the output of N-th MIC layer, and Ys ∈ RO×d represents the final
prediction about the seasonal part.

4 EXPERIMENTS

Dataset To evaluate the proposed MICN, we conduct extensive experiments on five popular real-
world datasets, covering many aspects of life: energy, traffic, economics, and weather. We follow
standard protocol (Zhou et al., 2021) and split all datasets into training, validation and test set in
chronological order by the ratio of 6:2:2 for the ETT dataset and 7:1:2 for the other datasets. More
details about the datasets and implementation are described in Appendix A.1 and A.2.

Baselines We include four transformer-based models: FEDformer (Zhou et al., 2022), Autoformer
(Wu et al., 2021), Informer (Zhou et al., 2021), LogTrans (Li et al., 2019b), two RNN-based models:
LSTM (Hochreiter & Schmidhuber, 1997), LSTNet (Lai et al., 2018b) and CNN-based model TCN
(Bai et al., 2018) as baselines. For the univariate setting, we mainly compare transformer-based
models. For the state-of-the-art model FEDformer, we compare the better one (FEDformer-f).

4.1 MAIN RESULTS

Multivariate results For multivariate long-term series forecasting, MICN achieves the state-of-
the-art performance in all benchmarks and all prediction length settings (Table 1). Compared to
the previous best model FEDformer, MICN yields an 18.2% averaged MSE reduction. Especially,
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Table 1: Multivariate long-term series forecasting results with input length I = 96 and prediction
length O ∈ {96,192,336,720}. A lower MSE or MAE indicates a better prediction, and the best
results are highlighted in bold.

Methods MICN-regre MICN-mean FEDformer Autoformer Informer LogTrans LSTNet LSTM TCN

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

2 96 0.179 0.275 0.203 0.287 0.203 0.287 0.255 0.339 0.365 0.453 0.768 0.642 3.142 1.365 2.041 1.073 3.041 1.330
192 0.307 0.376 0.262 0.326 0.269 0.328 0.281 0.340 0.533 0.563 0.989 0.757 3.154 1.369 2.249 1.112 3.072 1.339
336 0.325 0.388 0.305 0.353 0.325 0.366 0.339 0.372 1.363 0.887 1.334 0.872 3.160 1.369 2.568 1.238 3.105 1.348
720 0.502 0.490 0.389 0.407 0.421 0.415 0.422 0.419 3.379 1.388 3.048 1.328 3.171 1.368 2.720 1.287 3.135 1.354

E
le

ct
ri

ci
ty 96 0.164 0.269 0.193 0.308 0.193 0.308 0.201 0.317 0.274 0.368 0.258 0.357 0.680 0.645 0.375 0.437 0.985 0.813

192 0.177 0.285 0.200 0.308 0.201 0.315 0.222 0.334 0.296 0.386 0.266 0.368 0.725 0.676 0.442 0.473 0.996 0.821
336 0.193 0.304 0.219 0.328 0.214 0.329 0.231 0.338 0.300 0.394 0.280 0.380 0.828 0.727 0.439 0.473 1.000 0.824
720 0.212 0.321 0.224 0.332 0.246 0.355 0.254 0.361 0.373 0.439 0.283 0.376 0.957 0.811 0.980 0.814 1.438 0.784

E
xc

ha
ng

e 96 0.102 0.235 0.173 0.297 0.148 0.278 0.197 0.323 0.847 0.752 0.968 0.812 1.551 1.058 1.453 1.049 3.004 1.432
192 0.172 0.316 0.324 0.408 0.271 0.380 0.300 0.369 1.204 0.895 1.040 0.851 1.477 1.028 1.846 1.179 3.048 1.444
336 0.272 0.407 0.639 0.598 0.460 0.500 0.509 0.524 1.672 1.036 1.659 1.081 1.507 1.031 2.136 1.231 3.113 1.459
720 0.714 0.658 1.218 0.862 1.195 0.841 1.447 0.941 2.478 1.310 1.941 1.127 2.285 1.243 2.984 1.427 3.150 1.458

Tr
af

fic

96 0.519 0.309 0.575 0.344 0.587 0.366 0.613 0.388 0.719 0.391 0.684 0.384 1.107 0.685 0.843 0.453 1.438 0.784
192 0.537 0.315 0.580 0.349 0.604 0.373 0.616 0.382 0.696 0.379 0.685 0.390 1.157 0.706 0.847 0.453 1.463 0.794
336 0.534 0.313 0.583 0.345 0.621 0.383 0.622 0.337 0.777 0.420 0.733 0.408 1.216 0.730 0.853 0.455 1.479 0.799
720 0.577 0.325 0.601 0.363 0.626 0.382 0.660 0.408 0.864 0.472 0.717 0.396 1.481 0.805 1.500 0.805 1.499 0.804

W
ea

th
er 96 0.161 0.229 0.183 0.250 0.217 0.296 0.266 0.336 0.300 0.384 0.458 0.490 0.594 0.587 0.369 0.406 0.615 0.589

192 0.220 0.281 0.246 0.317 0.276 0.336 0.307 0.367 0.598 0.544 0.658 0.589 0.560 0.565 0.416 0.435 0.629 0.600
336 0.278 0.331 0.293 0.335 0.339 0.380 0.359 0.395 0.578 0.523 0.797 0.652 0.597 0.587 0.455 0.454 0.639 0.608
720 0.311 0.356 0.373 0.399 0.403 0.428 0.419 0.428 1.059 0.741 0.869 0.675 0.618 0.599 0.535 0.520 0.639 0.610

Table 2: Univariate long-term series forecasting results with input length I = 96 and prediction
length O ∈ {96,192,336,720}. A lower MSE or MAE indicates a better prediction, and the best
results are highlighted in bold.

Methods MICN-regre MICN-mean FEDformer Autoformer Informer LogTrans

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

2 96 0.059 0.176 0.074 0.206 0.072 0.206 0.065 0.189 0.088 0.225 0.075 0.208
192 0.100 0.234 0.098 0.238 0.102 0.245 0.118 0.256 0.132 0.283 0.129 0.275
336 0.153 0.301 0.135 0.282 0.130 0.279 0.154 0.305 0.180 0.336 0.154 0.302
720 0.210 0.354 0.175 0.326 0.178 0.325 0.182 0.335 0.300 0.435 0.160 0.321

E
le

ct
ri

ci
ty 96 0.310 0.398 0.326 0.418 0.253 0.370 0.341 0.438 0.484 0.538 0.288 0.393

192 0.300 0.394 0.317 0.410 0.282 0.386 0.345 0.428 0.557 0.558 0.432 0.483
336 0.323 0.413 0.376 0.450 0.346 0.431 0.406 0.470 0.636 0.613 0.430 0.483
720 0.364 0.449 0.417 0.479 0.422 0.484 0.565 0.581 0.819 0.682 0.491 0.531

E
xc

ha
ng

e 96 0.099 0.240 0.179 0.312 0.154 0.304 0.241 0.387 0.591 0.615 0.237 0.377
192 0.198 0.354 0.304 0.420 0.286 0.420 0.300 0.369 1.183 0.912 0.738 0.619
336 0.302 0.447 0.711 0.651 0.511 0.555 0.509 0.524 1.367 0.984 2.018 1.070
720 0.738 0.662 1.416 0.918 1.301 0.879 1.260 0.867 1.872 1.072 2.405 1.175

Tr
af

fic

96 0.158 0.241 0.214 0.324 0.207 0.312 0.246 0.346 0.257 0.353 0.226 0.317
192 0.154 0.236 0.228 0.336 0.205 0.312 0.266 0.370 0.299 0.376 0.314 0.408
336 0.165 0.243 0.217 0.337 0.219 0.323 0.263 0.371 0.312 0.387 0.387 0.453
720 0.182 0.264 0.225 0.339 0.244 0.344 0.269 0.372 0.366 0.436 0.491 0.437

W
ea

th
er 96 0.0029 0.039 0.0038 0.052 0.0062 0.062 0.011 0.081 0.0038 0.044 0.0046 0.052

192 0.0021 0.034 0.0015 0.029 0.0060 0.062 0.0075 0.067 0.0023 0.040 0.0056 0.060
336 0.0023 0.034 0.0039 0.053 0.0041 0.050 0.0063 0.062 0.0041 0.049 0.0060 0.054
720 0.0048 0.054 0.0024 0.037 0.0055 0.059 0.0085 0.070 0.0031 0.042 0.0071 0.063

under the input-96-predict-96 setting, MICN gives 12% relative MSE reduction in ETTm2, 14%
relative MSE reduction in Electricity, 31% relative MSE reduction in Exchange, 12% relative MSE
reduction in Traffic, 26% relative MSE reduction in Weather, and 19% average MSE reduction in this
setting. And we can also find that MICN makes consistent improvements as the prediction increases,
showing its competitiveness in terms of long-term time-series forecasting. Note that MICN still
provides remarkable improvements with a 51% averaged MSE reduction in the Exchange dataset
that is without obvious periodicity. All above shows that MICN can cope well with a variety of
time-series forecasting tasks in real-world applications. More results about other ETT benchmarks
are provided in Appendix A.3. See Appendix C.3 for detailed showcases.

Univariate results We also show the univariate time-series forecasting results in Table 2. Sig-
nificantly, MICN achieves a 24.5% averaged MSE reduction compared to FEDformer. Especially
for the Weather dataset, MICN gives 53% relative MSE reduction under the predict-96 setting,
75% relative MSE reduction under the predict-192 setting, 44% relative MSE reduction under the
predict-336 setting, and 56% relative MSE reduction under the predict-720 setting. It again verifies
the greater time-series forecasting capacity. Note that with different trend-cyclical prediction blocks,
we have different models named MICN − regre and MICN −mean. The importance of modeling the
trend-cyclical part of time series is demonstrated by the fact that MICN − regre works better on all
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datasets and all the input-predict settings. More results about other ETT benchmarks are provided in
Appendix A.3. See Appendix C.2 for detailed showcases.

4.2 ABLATION STUDIES

Trend-cyclical Prediction Block We attempt to verify the necessity of modeling the trend-cyclical
part when using a decomposition-based structure. Like Autoformer (Wu et al., 2021), previous
methods decompose the time series and then take the mean prediction of the trend information, which
is then added to the other trend information obtained from the decomposition module in the model.
However, the reasons and rationality are not argued in the relevant papers. In this paper, we use
simple linear regression to predict the trend-cyclical part and we also record the results of the mean
prediction for comparison. As shown in Table 3, making predictions for the trend-cyclical part is
valid and necessary. See Appendix B.2 for more visualization results.

Table 3: Comparison of sample linear regression prediction and mean prediction in multivariate
datasets. The better results are highlighted in bold.

Datasets ETTm2 Electricity Exchange Traffic WTH

Prediction Length O 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

MICN - MSE 0.179 0.307 0.325 0.502 0.164 0.177 0.193 0.212 0.102 0.172 0.272 0.714 0.519 0.537 0.534 0.577 0.161 0.220 0.278 0.311
regre MAE 0.275 0.376 0.388 0.490 0.269 0.285 0.304 0.321 0.235 0.316 0.407 0.658 0.309 0.315 0.313 0.325 0.229 0.281 0.331 0.356

MICN - MSE 0.200 0.262 0.305 0.389 0.188 0.200 0.219 0.224 0.173 0.324 0.639 1.218 0.575 0.580 0.583 0.601 0.183 0.246 0.293 0.373
mean MAE 0.287 0.326 0.353 0.407 0.302 0.308 0.328 0.332 0.297 0.408 0.598 0.862 0.344 0.349 0.345 0.363 0.250 0.317 0.335 0.399

Local-Global Structure vs. Auto-correlation, self-attention In this work, we propose the local-
global module to model the underlying pattern of time series, including local features and global
correlations, while the previous outstanding model Autoformer uses auto-correlation. We replace the
auto-correlation module in the original Autoformer with our proposed local-global module (we set
i ∈ {12,16}) for training, and the results are shown in Table 4. Also, We replace the Local-Global
module in MICN-regre with the Auto-Correlation module and self-attention module for training, and
the results are shown in Table 5. They all demonstrate that modeling time series in terms of local
features and global correlations is better and more realistic.

Table 4: Ablation of Local-global structure in other models. We replace the Auto-Correlation in
Autoformer with our local-global module and implement it in the multivariate Electricity, Exchange
and Traffic. The better results are highlighted in bold.

Datasets Electricity Exchange Traffic

Prediction Length O 96 192 336 720 96 192 336 720 96 192 336 720

Autoformer- MSE 0.192 0.204 0.223 0.238 0.194 0.293 1.012 1.289 0.572 0.580 0.587 0.601
Local-Global MAE 0.314 0.323 0.339 0.352 0.338 0.416 0.766 0.928 0.352 0.351 0.353 0.359

Autoformer MSE 0.207 0.236 0.275 0.289 0.160 0.327 0.509 1.133 0.675 0.666 0.765 1.098
Auto-correlation MAE 0.323 0.343 0.372 0.380 0.292 0.415 0.527 0.825 0.406 0.425 0.487 0.647

Table 5: Ablation of Local-global structure in our model. We replace the Local-Global module
in MICN-regre with Auto-correlation and self-attention and implement it in the multivariate
Electricity, Exchange and Traffic. The better results are highlighted in bold.

Datasets Electricity Exchange Traffic

Prediction Length O 96 192 336 720 96 192 336 720 96 192 336 720

MICN- MSE 0.164 0.177 0.193 0.212 0.102 0.172 0.272 0.714 0.519 0.537 0.534 0.577
Local-Global MAE 0.269 0.285 0.304 0.321 0.235 0.316 0.407 0.658 0.309 0.315 0.313 0.325

MICN- MSE 0.205 0.209 0.229 0.260 0.111 0.178 0.331 0.804 0.596 0.613 0.609 0.635
Auto-Correlation MAE 0.299 0.305 0.327 0.353 0.255 0.311 0.440 0.718 0.366 0.386 0.379 0.381

MICN MSE 0.181 0.194 0.216 0.271 0.147 0.290 0.480 1.578 0.612 0.642 0.622 0.656
self-attention MAE 0.289 0.304 0.321 0.362 0.291 0.402 0.549 0.978 0.357 0.376 0.374 0.382

4.3 MODEL ANALYSIS

Impact of input length In time series forecasting tasks, the size of the input length indicates
how much historical information the algorithm can utilize. In general, a model that has a strong
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Figure 5: The MSE results with different input lengths and same prediction lengths (192 time steps).

ability to model long-term temporal dependency should perform better as the input length increases.
Therefore, we conduct experiments with different input lengths and the same prediction length to
validate our model. As shown in Figure 5, when the input length is relatively long, the performance
of Transformer-based models becomes worse because of repeated short-term patterns as stated in
(Zhou et al., 2021). Relatively, the overall performance of MICN prediction gradually gets better as
the input length increases, indicating that MICN can capture the long-term temporal dependencies
well and extract useful information deeply.

Robustness analysis We use a simple noise injection to demonstrate the robustness of our model.
Concretely, we randomly select data with proportion ε in the original input sequence and randomly
perturb the selected data in the range [−2Xi,2Xi] , where Xi denotes the original data. The data after
noise injection is then trained, and the MSE and MAE metrics are recorded. The results are shown in
Table 6. As the proportion of perturbations ε increases, the MSE and MAE metrics of the predictions
increase by a small amount. It indicates that MICN exhibits good robustness in response to less noisy
data (up to 10%) and has a great advantage in dealing with many data abnormal fluctuations (e.g.
abnormal power data caused by equipment damage).

Table 6: Robustness analysis of multivariate results. Different ε indicates different proportions of
noise injection. And MICN-regre is used as the base model.

Datasets Electricity Exchange Traffic

Prediction Length O 96 192 336 720 96 192 336 720 96 192 336 720

MICN - MSE 0.164 0.177 0.193 0.212 0.102 0.172 0.272 0.714 0.519 0.537 0.534 0.577
regre MAE 0.269 0.285 0.304 0.321 0.235 0.316 0.407 0.658 0.309 0.315 0.313 0.325

ε = 1% MSE 0.163 0.179 0.192 0.217 0.103 0.172 0.289 0.691 0.518 0.530 0.535 0.575
MAE 0.270 0.288 0.303 0.325 0.237 0.316 0.424 0.652 0.321 0.312 0.315 0.323

ε = 5% MSE 0.164 0.181 0.192 0.218 0.104 0.167 0.296 1.742 0.518 0.541 0.558 0.585
MAE 0.272 0.289 0.303 0.328 0.239 0.308 0.413 1.009 0.313 0.327 0.330 0.328

ε = 10% MSE 0.171 0.189 0.202 0.220 0.136 0.181 0.402 0.944 0.538 0.557 0.561 0.605
MAE 0.281 0.297 0.311 0.328 0.273 0.324 0.497 0.771 0.332 0.324 0.325 0.335

5 CONCLUSIONS

This paper presents a convolution-based framework MICN, which makes predictions for the trend-
cyclical part and seasonal part separately. It achieves O(L) complexity and yields consistent state-
of-the-art performance in extensive real-world datasets. In the Seasonal-Prediction block, we use
different scales to mine the sequence for potentially different patterns, each modeled from a local
and global perspective, which is implemented by different convolution operations. The proposed
isometric convolution outperforms self-attention in terms of capturing global correlations for a short
sequence. The extensive experiments further demonstrate the effectiveness of our modeling approach
for long-term forecasting tasks.
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A SUPPLEMENTAL EXPERIMENTS

A.1 DATASET DETAILS

In this work, the details of the experiment datasets are summarized as follows: (1) ETT (Zhou et al.,
2021) dataset contains two visions of the sub-dataset: ETTh and ETTm, collected from electricity
transformers every 15 minutes and 1 hour between July 2016 and July 2018. (2) Electricity1

dataset contains the electricity consumption of 321 customers recorded hourly from 2012 to 2014.
(3) Exchange (Lai et al., 2018a) dataset records daily exchange rates of eight different countries
daily ranging from 1990 to 2016. (4) Traffic2 contains the data from California Department of
Transportation hourly, which describes the road occupancy rates measured by different sensors on
San Francisco Bay area freeways. (5) Weather3 contains 21 meteorological indicators, recorded
every 10 minutes for 2020 whole year. Table 7 summarizes feature details (Sequence Length: Len,
Dimension: Dim, Frequency: Freq) .

Table 7: The details of datasets.

Dataset len dim freq

ETTh 17420 8 1h
ETTm 69680 8 15 min
Electricity 26304 322 1h
Exchange 7588 9 1 day
Traffic 17544 863 1h
Weather 52696 22 10 min

A.2 IMPLEMENTATION DETAILS

Our method is trained with the L2 loss, using the ADAM optimizer with an initial learning rate of
10-3. Batch size is set to 32. The training process is early stopped after three epochs if there is no loss
degradation on the valid set. The mean square error (MSE) and mean absolute error (MAE) are used
as metrics. All the experiments are repeated 3 times with different seeds, implemented in PyTorch and
conducted on NVIDIA RTX A5000 24GB GPU. The hyper-parameter i is set to {12,16} , and the
hyper-parameter sensitivity analysis can be seen in Appendix A.4 . MICN contains 1 MIC layer. We
use MICN − regre and MICN −mean to represent the different strategies of trend-cyclical prediction
block in the following.

A.3 FULL BENCHMARK ON THE ETT DATASETS

We build the benchmark on the four ETT datasets in Table 8 and Table 9. The ETTh1 and ETTh2
datasets are recorded hourly, while the ETTm1 and ETTm2 datasets are recorded every 15 minutes.
MICN achieves state-of-the-art performance in all benchmarks in general. Especially for the multi-
variate ETTm1 dataset, MICN gives 17% relative MSE reduction under the predict-96 setting, gives
15% relative MSE reduction under the predict-192 setting, gives 8% relative MSE reduction under
the predict-336 setting, gives 15% relative MSE reduction under the predict-720 setting.

A.4 HYPER-PARAMETER SENSITIVITY

As shown in Table 10, we can verify the model robustness with respect to hyper-parameter i. Different
values of i have slightly different results. Concretely, when i take one value, MICN performs worse
because of the lack of ability to capture complex temporal patterns of the time series. Meanwhile,
MICN can achieve almost the same better performance when i takes two or three values, indicating
that the multi-branch structure is effective. To be more representative, we set i to {12,16} in this
paper.

1https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
2http://pems.dot.ca.gov
3https://www.bgc-jena.mpg.de/wetter/
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Table 8: Multivariate long-term forecasting results on ETT full benchmark. The best results are
highlighted in bold.

Methods MICN-regre MICN-mean FEDformer Autoformer Informer LogTrans

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
E

T
T

h1
96 0.421 0.431 0.398 0.427 0.376 0.419 0.449 0.459 0.865 0.713 0.878 0.740

192 0.474 0.487 0.430 0.453 0.420 0.448 0.500 0.482 1.008 0.792 1.037 0.824
336 0.569 0.551 0.440 0.460 0.459 0.465 0.521 0.496 1.107 0.809 1.238 0.932
720 0.770 0.672 0.491 0.509 0.506 0.507 0.514 0.512 1.181 0.865 1.135 0.852

E
T

T
h2

96 0.299 0.364 0.332 0.377 0.346 0.388 0.358 0.397 3.755 1.525 2.116 1.197
192 0.441 0.454 0.422 0.441 0.429 0.439 0.456 0.452 5.602 1.931 4.315 1.635
336 0.654 0.567 0.447 0.474 0.496 0.487 0.482 0.486 4.721 1.835 1.124 1.604
720 0.956 0.716 0.442 0.467 0.463 0.474 0.515 0.511 3.647 1.625 3.188 1.540

E
T

T
m

1 96 0.316 0.362 0.360 0.399 0.379 0.419 0.505 0.475 0.672 0.571 0.600 0.546
192 0.363 0.390 0.402 0.426 0.426 0.441 0.553 0.496 0.795 0.669 0.837 0.700
336 0.408 0.426 0.403 0.437 0.445 0.459 0.621 0.537 1.212 0.871 1.124 0.832
720 0.481 0.476 0.459 0.464 0.543 0.490 0.671 0.561 1.166 0.823 1.153 0.820

E
T

T
m

2 96 0.179 0.275 0.203 0.287 0.203 0.287 0.255 0.339 0.365 0.453 0.768 0.642
192 0.307 0.376 0.262 0.326 0.269 0.328 0.281 0.340 0.533 0.563 0.989 0.757
336 0.325 0.388 0.305 0.353 0.325 0.366 0.339 0.372 1.363 0.887 1.334 0.872
720 0.502 0.490 0.389 0.407 0.421 0.415 0.422 0.419 3.379 1.338 3.048 1.328

Table 9: Univariate long-term forecasting results on ETT full benchmark. The best results are
highlighted in bold.

Methods MICN-regre MICN-mean FEDformer Autoformer Informer LogTrans

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.058 0.186 0.069 0.210 0.079 0.215 0.071 0.206 0.193 0.377 0.283 0.468
192 0.079 0.210 0.081 0.223 0.104 0.245 0.114 0.262 0.217 0.395 0.234 0.409
336 0.092 0.237 0.104 0.259 0.119 0.270 0.107 0.258 0.202 0.381 0.386 0.546
720 0.138 0.298 0.090 0.238 0.142 0.299 0.126 0.283 0.183 0.355 0.475 0.628

E
T

T
h2

96 0.155 0.300 0.137 0.286 0.128 0.271 0.153 0.306 0.213 0.373 0.217 0.379
192 0.169 0.316 0.179 0.334 0.185 0.330 0.204 0.351 0.227 0.387 0.281 0.429
336 0.238 0.384 0.203 0.359 0.231 0.378 0.246 0.389 0.242 0.401 0.293 0.437
720 0.447 0.561 0.193 0.352 0.278 0.420 0.268 0.409 0.291 0.439 0.218 0.387

E
T

T
m

1 96 0.033 0.134 0.039 0.152 0.033 0.140 0.056 0.183 0.109 0.277 0.049 0.171
192 0.048 0.164 0.050 0.180 0.058 0.186 0.081 0.216 0.151 0.310 0.157 0.317
336 0.079 0.210 0.064 0.202 0.084 0.231 0.076 0.218 0.427 0.591 0.289 0.459
720 0.096 0.233 0.085 0.232 0.102 0.250 0.110 0.267 0.438 0.586 0.430 0.579

E
T

T
m

2 96 0.059 0.176 0.074 0.206 0.067 0.198 0.065 0.189 0.088 0.225 0.075 0.208
192 0.100 0.234 0.098 0.238 0.102 0.245 0.118 0.256 0.132 0.283 0.129 0.275
336 0.153 0.301 0.135 0.282 0.130 0.279 0.154 0.305 0.180 0.336 0.154 0.302
720 0.210 0.354 0.175 0.326 0.178 0.325 0.182 0.335 0.300 0.435 0.160 0.321

A.5 SELECTION OF DIFFERENT CONVOLUTION MODES

As shown in Table 11, we also record the performance in different convolution modes: stride= kernel
and stride = kernel

2 . The second mode makes more comprehensive use of local information, making
the convolution more coherent. MICN achieves similar performance in different convolution modes.
It proves that MICN can make the most of sequence information, and the performance of the model
depends on the structure we proposed.

B ADDITIONAL MODEL ANALYSIS

B.1 MULTI-SCALE HYBRID DECOMPOSITION

Autoformer harnesses the decomposition as an inner block of deep models and gets good performance.
However, the patterns obtained by its decomposition are simple and cannot effectively deal with
the complex and changeable properties of time series. As shown in Table 12, we replace the
decomposition block in Autoformer with our proposed multi-scale hybrid decomposition block. For
Exchange, we achieve a similar performance because it has no obvious temporal pattern. The result
verifies that multi-scale hybrid decomposition is more in line with the complex temporal patterns in
real-time series.
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Table 10: Multivariate results with different parameters i in three datasets: Electricity, Exchange and
Traffic.

Datasets Electricity Exchange Traffic

Prediction Length O 96 192 336 720 96 192 336 720 96 192 336 720

< 24 > MSE 0.174 0.200 0.207 0.240 0.093 0.181 0.271 0.762 0.575 0.569 0.581 0.607
MAE 0.282 0.303 0.317 0.336 0.227 0.321 0.404 0.675 0.334 0.316 0.323 0.339

< 48 > MSE 0.167 0.179 0.195 0.265 0.080 0.185 0.288 0.758 0.512 0.532 0.556 0.595
MAE 0.278 0.287 0.303 0.361 0.204 0.316 0.412 0.671 0.296 0.304 0.315 0.330

< 12, 16 > MSE 0.164 0.177 0.193 0.212 0.102 0.172 0.272 0.714 0.513 0.537 0.534 0.577
MAE 0.269 0.285 0.304 0.321 0.235 0.316 0.407 0.658 0.309 0.315 0.313 0.325

< 16, 24 > MSE 0.160 0.182 0.192 0.232 0.086 0.198 0.266 0.632 0.524 0.545 0.547 0.584
MAE 0.267 0.291 0.299 0.341 0.210 0.334 0.388 0.639 0.300 0.310 0.317 0.329

< 12, 24 > MSE 0.160 0.185 0.195 0.220 0.100 0.153 0.269 0.775 0.517 0.537 0.546 0.573
MAE 0.268 0.293 0.307 0.329 0.231 0.295 0.403 0.678 0.303 0.310 0.319 0.319

< 24, 48 > MSE 0.180 0.201 0.211 0.250 0.079 0.175 0.269 0.658 0.537 0.587 0.607 0.603
MAE 0.288 0.306 0.316 0.344 0.203 0.310 0.401 0.634 0.307 0.324 0.329 0.340

< 6, 12, 24 > MSE 0.169 0.180 0.195 0.215 0.114 0.208 0.299 0.798 0.513 0.522 0.535 0.560
MAE 0.278 0.287 0.300 0.323 0.244 0.348 0.425 0.704 0.303 0.304 0.307 0.321

< 12, 24, 48 > MSE 0.168 0.185 0.200 0.212 0.113 0.213 0.364 0.680 0.521 0.559 0.554 0.604
MAE 0.274 0.293 0.305 0.320 0.247 0.354 0.462 0.655 0.305 0.317 0.317 0.336

Table 11: MICN performance under different convolution modes. We implement it on three multi-
variate datasets: Electricity, Exchange and Traffic.

Datasets Electricity Exchange Traffic

Prediction Length O 96 192 336 720 96 192 336 720 96 192 336 720

stride = kernel MSE 0.164 0.177 0.193 0.212 0.102 0.172 0.272 0.714 0.519 0.537 0.534 0.577
MAE 0.269 0.285 0.304 0.321 0.235 0.316 0.407 0.658 0.309 0.315 0.313 0.325

stride = kernel
2

MSE 0.158 0.177 0.198 0.221 0.081 0.173 0.305 0.706 0.509 0.534 0.545 0.563
MAE 0.267 0.283 0.310 0.326 0.208 0.314 0.430 0.647 0.306 0.303 0.310 0.323

B.2 VISUALIZATION OF LEARNED TREND-CYCLICAL PARTS

As shown in Figure 6 and Figure 7, we plot the results of learned trend-cyclical parts. The separate
modeling of the trend-cyclical part makes better performance and grasp of long-term progression.
We also observe that the mean prediction is slightly better on the ETTm2 dataset. This is due to the
complexity of the trend-cyclical information and the inability of simple linear regression, which may
require a more advanced trend prediction method.
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Figure 7: Visualization of Yt and Ys in ETTm2 dataset under MICN-regre. Sample linear regression
does not perform very well.

Table 12: Ablation of multi-scale hybrid decomposition (MHDecomp). Autoformer-MHDecomp
adopts multi-scale hybrid decomposition block into Autoformer.

Datasets Electricity Exchange Traffic

Prediction Length O 96 192 336 720 96 192 336 720 96 192 336 720

Autoformer MSE 0.207 0.236 0.275 0.289 0.160 0.327 0.509 1.133 0.675 0.666 0.765 1.098
MAE 0.323 0.343 0.372 0.380 0.292 0.415 0.527 0.825 0.406 0.425 0.487 0.647

Autoformer- MSE 0.197 0.236 0.253 0.291 0.162 0.291 0.545 1.135 0.653 0.678 0.673 0.800
MHDecomp MAE 0.312 0.340 0.356 0.382 0.292 0.392 0.552 0.826 0.402 0.427 0.421 0.493
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Figure 6: Visualization of learned trend-cyclical part prediction result Yt and seasonal part prediction
result Ys in ETTm1 dataset under MICN-regre. Sample linear regression performs well.

B.3 ISOMETRIC CONVOLUTION VS. SELF-ATTENTION

With the local module in MICN, we get a short sequence characterizing local features. On this
basis, we propose the isometric convolution in global module to model the global correlation of the
sequence, while previously the first choice is self-attention. We replace the isometric convolution in
the global module of MICN with self-attention for training, and the results are shown in Table 13 and
Table 14. It verifies that for a short sequence, isometric convolution outperforms self-attention in
general while still achieving linear complexity.

Table 13: Ablation of isometric convolution. We replace the Isometric convolution in MICN-regre
with self-attention and implement it in the multivariate Electricity, Exchange and Traffic. The better
results are highlighted in bold.

Datasets Electricity Exchange Traffic

Prediction Length O 96 192 336 720 96 192 336 720 96 192 336 720

Isometric MSE 0.164 0.177 0.193 0.212 0.102 0.172 0.272 0.714 0.519 0.537 0.534 0.577
Convolution MAE 0.269 0.285 0.304 0.321 0.235 0.316 0.407 0.658 0.309 0.315 0.313 0.325

self- MSE 0.153 0.179 0.201 0.256 0.096 0.209 0.311 0.960 0.501 0.522 0.543 0.568
attention MAE 0.260 0.286 0.310 0.352 0.227 0.349 0.441 0.747 0.295 0.293 0.303 0.326

Table 14: Comparison of Isometric convolution and self-attention in the univariate Electricity,
Exchange and Traffic. We replace the Isometric convolution in MICN-regre with self-attention. The
better results are highlighted in bold.

Datasets Electricity Exchange Traffic

Prediction Length O 96 192 336 720 96 192 336 720 96 192 336 720

Isometric MSE 0.310 0.300 0.323 0.364 0.099 0.198 0.302 0.738 0.158 0.154 0.165 0.182
Convolution MAE 0.398 0.394 0.413 0.449 0.240 0.354 0.447 0.662 0.241 0.236 0.243 0.264

self- MSE 0.404 0.351 0.384 0.398 0.101 0.209 0.303 0.564 0.140 0.153 0.148 0.166
attention MAE 0.461 0.428 0.456 0.467 0.237 0.369 0.450 0.600 0.217 0.233 0.228 0.249

B.4 COMPARISON OF MERGING OPERATIONS

The traditional method of merging branch structures is the concat operation on the hidden state. In
this paper, we propose to adopt 2D convolution to merge multiple branches to better measure the
importance of each branch. As shown in Table 15, the better performance verifies the effectiveness of
our proposed method.

B.5 EFFICIENCY ANALYSIS

For MICN, since we are using a pure convolution structure, the time and space complexity is O(LD2)
with respect to the sequence length L and the hidden states D . The comparisons of the time complexity
and memory usage in training and the inference steps in testing are summarized in Table 16.

Furthermore, we compare the running memory and time among Local-Global-based, Auto-correlation-
based and self-attention-based models during the training phase. As shown in Figure 8, the proposed
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Table 15: Comparison of different merging operations. The better results are highlighted in bold.

Datasets Electricity Exchange Traffic

Prediction Length O 96 192 336 720 96 192 336 720 96 192 336 720

MICN MSE 0.164 0.177 0.193 0.212 0.102 0.172 0.272 0.714 0.519 0.537 0.534 0.577
Conv2d MAE 0.269 0.285 0.304 0.321 0.235 0.316 0.407 0.658 0.309 0.315 0.313 0.325

MICN- MSE 0.160 0.183 0.202 0.214 0.099 0.175 0.264 0.711 0.528 0.549 0.536 0.577
concat MAE 0.266 0.289 0.310 0.324 0.229 0.322 0.403 0.655 0.313 0.318 0.316 0.326

Table 16: Complexity analysis of different forecasting models.

Methods Training
Time Memory

MICN O(L) O(L)
FEDformer (Zhou et al., 2022) O(L) O(L)
Autoformer (Wu et al., 2021) O(L logL) O(L logL)
Informer (Zhou et al., 2021) O(L logL) O(L logL)
LogTrans (Li et al., 2019b) O(L logL) O

(
L2
)

Transformer (Vaswani et al., 2017) O
(
L2
)

O
(
L2
)

LSTM (Hochreiter & Schmidhuber, 1997) O(L) O(L)

Local-Global module shows O(L) complexity and achieves better long-term sequences efficiency.
As the prediction length increases, our model takes a little more time than Auto-Correlation. We
speculate that this may be due to the use of the convolution operation or the activation function Tanh.
In general, our method is the most portable and valuable in practical applications.

Memory Efficiency Analysis Running Time Efficiency Analysis

Figure 8: Efficiency Analysis. We place the Local-Global module in MICN with Auto-correlation
and self-attention. Then we record the memory and running time of an epoch with fixed input length
96 and increasing output length. Missing values of self-attention are due to out-of-memory.

C SUPPLEMENTARY OF MAIN RESULTS

C.1 MAIN RESULTS WITH STANDARD DEVIATIONS

To get more robust experimental results, we repeat each experiment three times with different random
seeds. For easier comparison, the results are shown in the main text when the seed is set to 2021.
Table 17 shows the standard deviations.

C.2 UNIVARIATE SHOWCASES

As shown in Figure 9, Figure 10, Figure 11, Figure 12, Figure 13, and Figure 14, we plot the
forecasting results from the test set of univariate dataset Electricity and Traffic for comparison. Our
model gives the best performance among different models. Moreover, MICN is significantly better at
predicting the overall change and peak in the time series than Transformer-based models.
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Table 17: Quantitative results with fluctuations under different prediction lengths O for multivariate
forecasting. A lower MSE or MAE indicates a better performance.

Methods MICN-regre MICN-mean Autoformer Informer LogTrans

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
E

T
T

m
2 96 0.177±0.004 0.273±0.004 0.204±0.003 0.289±0.002 0.255±0.020 0.339±0.020 0.365±0.062 0.453±0.047 0.768±0.071 0.642±0.020

192 0.289±0.013 0.360±0.012 0.257±0.004 0.323±0.002 0.281±0.027 0.340±0.025 0.533±0.109 0.563±0.050 0.989±0.124 0.757±0.049
336 0.324±0.001 0.381±0.006 0.310±0.003 0.357±0.004 0.339±0.018 0.372±0.015 1.363±0.173 0.887±0.056 1.334±0.168 0.872±0.054
720 0.470±0.032 0.468±0.019 0.392±0.008 0.407±0.001 0.422±0.015 0.419±0.010 3.379±0.143 1.388±0.037 3.048±0.140 1.328±0.023

E
le

ct
ri

ci
ty 96 0.163±0.003 0.269±0.002 0.190±0.005 0.303±0.004 0.201±0.003 0.317±0.004 0.274±0.004 0.368±0.003 0.258±0.002 0.357±0.002

192 0.180±0.002 0.288±0.002 0.204±0.008 0.311±0.008 0.222±0.003 0.334±0.004 0.296±0.009 0.386±0.007 0.266±0.005 0.368±0.004
336 0.193±0.003 0.302±0.002 0.218±0.102 0.326±0.007 0.231±0.006 0.338±0.004 0.300±0.007 0.394±0.004 0.280±0.006 0.380±0.001
720 0.221±0.012 0.326±0.006 0.230±0.009 0.337±0.009 0.254±0.007 0.361±0.008 0.373±0.034 0.439±0.024 0.283±0.003 0.376±0.002

E
xc

ha
ng

e 96 0.093±0.007 0.221±0.010 0.172±0.007 0.299±0.002 0.197±0.019 0.323±0.012 0.847±0.150 0.752±0.060 0.968±0.177 0.812±0.027
192 0.168±0.003 0.314±0.003 0.286±0.027 0.385±0.017 0.300±0.020 0.369±0.016 1.204±0.149 0.895±0.061 1.040±0.232 0.851±0.029
336 0.269±0.008 0.397±0.009 0.552±0.064 0.552±0.035 0.509±0.041 0.524±0.016 1.672±0.036 1.036±0.014 1.659±0.122 1.081±0.015
720 0.715±0.022 0.666±0.011 1.203±0.026 0.848±0.015 1.447±0.084 0.941±0.028 2.478±0.198 1.310±0.070 1.941±0.327 1.127±0.030

Tr
af

fic

96 0.521±0.005 0.308±0.002 0.575±0.002 0.347±0.005 0.613±0.028 0.388±0.012 0.719±0.015 0.391±0.004 0.684±0.041 0.384±0.008
192 0.537±0.008 0.313±0.001 0.577±0.005 0.345±0.005 0.616±0.042 0.382±0.020 0.696±0.050 0.379±0.023 0.685±0.055 0.390±0.021
336 0.536±0.003 0.314±0.001 0.587±0.005 0.350±0.005 0.622±0.016 0.337±0.011 0.777±0.009 0.420±0.003 0.733±0.069 0.408±0.026
720 0.595±0.014 0.325±0.003 0.601±0.005 0.359±0.003 0.660±0.025 0.408±0.015 0.864±0.026 0.472±0.015 0.717±0.030 0.396±0.010

W
ea

th
er 96 0.163±0.003 0.231±0.004 0.185±0.003 0.258±0.007 0.266±0.007 0.336±0.006 0.300±0.013 0.384±0.013 0.458±0.143 0.490±0.038

192 0.216±0.003 0.279±0.001 0.239±0.005 0.308±0.007 0.307±0.024 0.367±0.022 0.598±0.045 0.544±0.028 0.658±0.151 0.589±0.032
336 0.268±0.010 0.321±0.010 0.303±0.015 0.351±0.018 0.359±0.035 0.395±0.031 0.578±0.024 0.523±0.016 0.797±0.034 0.652±0.019
720 0.319±0.006 0.362±0.005 0.355±0.030 0.400±0.005 0.419±0.017 0.428±0.014 1.059±0.096 0.741±0.042 0.869±0.045 0.675±0.093
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Figure 9: Prediction cases from the univariate Electricity dataset under MICN.
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Figure 10: Prediction cases from the univariate Electricity dataset under Autoformer.
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Figure 11: Prediction cases from the univariate Electricity dataset under Informer.
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Figure 12: Prediction cases from the univariate Traffic dataset under MICN.
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Figure 13: Prediction cases from the univariate Traffic dataset under Autoformer.
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Figure 14: Prediction cases from the univariate Traffic dataset under Informer.

C.3 MULTIVARIATE SHOWCASES

As shown in Figure 15, Figure 16, Figure 17, Figure 18, Figure 19, and Figure 20, we also plot the
forecasting results from the test set of multivariate datasets ETTm1 and ETTm2 for comparison. Our
model gives the most accurate prediction. Moreover, MICN is better at predicting rising and falling
turning points in time series and closer to ground truth.
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Figure 15: Prediction cases from the multivariate ETTm1 dataset under MICN.
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Figure 16: Prediction cases from the multivariate ETTm1 dataset under Autoformer.
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Figure 17: Prediction cases from the multivariate ETTm1 dataset under Informer.
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Figure 18: Prediction cases from the multivariate ETTm2 dataset under MICN.
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Figure 19: Prediction cases from the multivariate ETTm2 dataset under Autoformer.
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Figure 20: Prediction cases from the multivariate ETTm2 dataset under Informer.
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