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ABSTRACT

Recently, Transformer-based methods have achieved surprising performance in the
field of long-term series forecasting, but the attention mechanism for computing
global correlations entails high complexity. And they do not allow for targeted
modeling of local features as CNN structures do. To solve the above problems, we
propose to combine local features and global correlations to capture the overall view
of time series (e.g., fluctuations, trends). To fully exploit the underlying information
in the time series, a multi-scale branch structure is adopted to model different
potential patterns separately and purposefully. Each pattern is extracted with
down-sampled convolution and isometric convolution for local features and global
correlations, respectively. In addition to being more effective, our proposed method,
termed as Multi-scale Isometric Convolution Network (MICN), is more efficient
with linear complexity with respect to the sequence length. Our experiments on
five benchmark datasets show that compared with state-of-the-art methods, MICN
yields 18.2% and 24.5 relative improvements for multivariate and univariate time
series, respectively. Code will be released soon.

1 INTRODUCTION

Researches related to time series forecasting are widely applied in the real world, such as sensor
network monitoring (Papadimitriou & Yu., 2006), weather forecasting, economics and finance (Zhu
& Shasha) 2002), and disease propagation analysis (Matsubara et al.,|2014) and electricity forecasting.
In particular, long-term time series forecasting is increasingly in demand in reality. Therefore, this
paper focuses on the task of long-term forecasting. The problem to be solved is to predict values
for a future period: X;41,Xi42,...,Xs+7—1,X:47 , based on observations from a historical period:
X1,X0,...,X—1,X;,and T > 1.

As a classic CNN-based model, TCN (Bai et al.} 2018)) uses causal convolution to model the temporal
causality and dilated convolution to expand the receptive field. It can integrate the local information
of the sequence better and achieve competitive results in short and medium-term forecasting (Sen
et al.,[2019) (Borovykh et al.l[2017). However, limited by the receptive field size, TCN often needs
many layers to model the global relationship of time series, which greatly increases the complexity of
the network and the training difficulty of the model.

Transformers (Vaswani et al., [2017) based on the attention mechanism shows great power in
sequential data, such as natural language processing (Devlin et al.,2019) (Brown et al., 2020), audio
processing (Huang et al.l 2019) and even computer vision (Dosovitskiy et al.,|2021) (Liu et al.|
2021b)). It has also recently been applied in long-term series forecasting tasks (Li et al., 2019b)
(Wen et al}[2022)) and can model the long-term dependence of sequences effectively, allowing leaps
and bounds in the accuracy and length of time series forecasts (Zhu & Soricut, 2021) (Wu et al.,
2021) (Zhou et al.,|[2022)). The learned attention matrix represents the correlations between different
time points of the sequence and can explain relatively well how the model makes future predictions
based on past information. However, it has a quadratic complexity, and many of the computations
between token pairs are non-essential, so it is also an interesting research direction to reduce its
computational complexity. Some notable models include: LogTrans (Li et al.,[2019b), Informer
(Zhou et al.| [2021)), Reformer (Kitaev et al.,[2020), Autoformer |Wu et al.|(2021), Pyraformer (Liu
et al., [2021a), FEDformer (Zhou et al., 2022)).



However, as a special sequence, time series has not led to a unified modeling direction so far. In this
paper, we combine the modeling perspective of CNNs with that of Transformers to build models from
the realistic features of the sequences themselves, i.e., local features and global correlations. Local
features represent the characteristics of a sequence over a small period 7', and global correlations are
the correlations exhibited between many periods 711,73, ...T,—1, T,,. For example, the temperature at
a moment is not only influenced by the specific change during the day but may also be correlated
with the overall trend of a period (e.g., week, month, etc.). We can identify the value of a time point
more accurately by learning the overall characteristics of that period and the correlation among many
periods before. Therefore, a good forecasting method should have the following two properties: (1)
The ability to extract local features to measure short-term changes. (2) The ability to model the global
correlations to measure the long-term trend.

Based on this, we propose Multi-scale Isometric Convolution Network (MICN). We use multiple
branches of different convolution kernels to model different potential pattern information of the
sequence separately. For each branch, we extract the local features of the sequence using a local
module based on downsampling convolution, and on top of this, we model the global correlation
using a global module based on isometric convolution. Finally, concat operation is adopted to
fuse information about different patterns from several branches. This design reduces the time and
space complexity to linearity, eliminating many unnecessary and redundant calculations. MICN
achieves state-of-the-art accuracy on five real-world benchmarks. The contributions are summarized
as follows:

* We propose MICN based on convolution structure to efficiently replace the self-attention,
and it achieves linear computational complexity and memory cost.

* We propose a multiple branches framework to deeply mine the intricate temporal patterns of
time series, which validates the need and validity for separate modeling when the input data
is complex and variable.

* We propose a local-global structure to implement information aggregation and long-term
dependency modeling for time series, which outperforms the self-attention family and
Auto-correlation mechanism. We adopt downsampling one-dimensional convolution for
local features extraction and isometric convolution for global correlations discovery.

* QOur empirical studies show that the proposed model improves the performance of state-of-
the-art methods by 18.2% and 24.5% for multivariate and univariate forecasting, respectively.

2 RELATED WORK

2.1 CNNs AND TRANSFORMERS

Convolutional neural networks (CNN) are widely used in computer vision, natural language process-
ing and speech recognition (Sainath et al.,[2013) (Li et al.,[2019a) (Han et al.,[2020). It is widely
believed that this success is due to the use of convolution operations, which can introduce certain
inductive biases, such as translation invariance, etc. CNN-based methods are usually modeled from
the local perspective, and convolution kernels can be very good at extracting local information from
the input. By continuously stacking convolution layers, the field of perception can be extended to the
entire input space, enabling the aggregation of the overall information.

Transformer (Vaswani et al., [2017)) has achieved the best performance in many fields since its
emergence, which is mainly due to the attention mechanism. Unlike modeling local information
directly from the input, the attention mechanism does not require stacking many layers to extract
global information. Although the complexity is higher and learning is more difficult, it is more
capable of learning long-term dependencies (Vaswani et al.|[2017).

Although CNNs and Transformers are modeled from different perspectives, they both aim to achieve
efficient utilization of the overall information of the input. In this paper, from the view of combining
the modeling principles of CNNs and Transformers, we consider both local and global context, extract
local features of data first, and then model global correlation on this basis. Furthermore, our method
achieves lower computational effort and complexity.



2.2 MODELING BOTH LOCAL AND GLOBAL CONTEXT

Both local and global relationships play an important role in sequence modeling. Some works have
been conducted to study how to combine local and global modeling into a unified model to achieve
high efficiency and interpretability. Two well-known architectures are: Conformer (Gulati et al.|
2020) and Lite Transformer (Wu et al., [2020).

Conformer is a variant of Transformer and has achieved state-of-the-art performance in many speech
applications. It adopts the attention mechanism to learn the global interaction, the convolution module
to capture the relative-offset-based local features, and combines these two modules sequentially.
However, Conformer does not analyze in detail what local and global features are learned and how
they affect the final output. There is also no explanation why the attention module is followed by a
convolution module. Another limitation of Conformer is the quadratic complexity with respect to the
sequence length due to self-attention.

Lite Transformer also adopts convolution to extract local information and self-attention to capture
long-term correlation, but it separates them into two branches for parallel processing. A visual
analysis of the feature weights extracted from the two branches is also presented in the paper, which
can provide a good interpretation of the model results. However, the parallel structure of the two
branches determines that there may be some redundancy in its computation, and it still has the
limitation of quadratic complexity.

Whether the convolution and self-attention are serialized to extract local and global relationships step
by step or in parallel, it inevitably results in quadratic time and space complexity. Therefore, in this
paper, we propose a new framework for modeling local features and global correlations of time series
along with a new module instead of an attention mechanism. We also use the convolution operation
to extract its local information and then propose isometric convolution to model the global correlation
between each segment of the local features. This modeling method not only avoids more redundant
computations but also reduces the overall time and space complexity to linearity with respect to the
sequence length.

3 MODEL

In this section, we will introduce (1) the overall structure of MICN, as shown in Figure (2) the
multi-scale hybrid decomposition block; (3) the trend-cyclical forecasting block; (4) the seasonal
forecasting block.
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Figure 1: MICN overall architecture.

3.1 MICN FRAMEWORK

The long time series prediction task is to predict a future series of length O based on a past series of
length 1, which can be expressed as input — I — predict — O, where O is much larger than /. Inspired
by traditional time series decomposition algorithms (Robert et al.,[1990) (Wu et al.| 2021)), we have
designed a novel multi-scale hybrid decomposition (MHDecomp) block to separate input series X of
length [ into trend-cyclical part X; and seasonal part X;. We make separate forecasting for X; and X;
using Trend-cyclical Prediction Block and Seasonal Prediction Block to obtain the result ¥; and Y
of length O, and then add them up to get the final prediction Y,.; . We donate d as the number of
variables in multivariate time series and D as the hidden state of the series. The details will be given
in the following sections.



3.2 MULTI-SCALE HYBRID DECOMPOSITION

Previous series decomposition algorithms (Wu et al.,[2021) adopt the moving average to smooth out
periodic fluctuations and highlight the long-term trends. For the input series X € R*?, the process is:

X, = AvgPool(Padding(X))kernel

1
XY:X*XM ( )

where: X;,X; € R'*¢ denote the trend-cyclical and seasonal parts, respectively. The use of the
Avgpool(-) with the padding operation keeps the series length unchanged. But the parameter kernel
of the Avgpool(-) is artificially set and there are often large differences in trend-cyclical series and
seasonal series obtained from different kernels . Based on this, we design a multi-scale hybrid
decomposition block that uses several different kernels of the Avgpool(-) and can separate several
different patterns of trend-cyclical and seasonal parts purposefully. Concretely, for the input series
X € R™4 | the process is:

X; = mean(AvgPool (Padding (X ))ernel, s ---,AvgPool (Padding(X) ) kernel, )

2
Xo=X—-X, @

where X;,X; € R"™“ denote the trend-cyclical and seasonal part, respectively. Its effectiveness is
demonstrated experimentally in Appendix

3.3 TREND-CYCLICAL PREDICTION BLOCK

Currently, Autoformer (Wu et al., [2021) concatenates the mean of the original series and then
accumulates it with the trend-cyclical part obtained from the inner series decomposition block. But
there is no explanation of this and no proof of its effectiveness. Therefore, in this paper, we use
a simple linear regression strategy to make a prediction about trend-cyclical, demonstrating that
simple modeling of trend-cyclical is also necessary for time series forecasting tasks (See Section [4.2).
Concretely, for the trend-cyclical series X, € R"*? obtained with MHDecomp block, the process is:

Y™ = regression(X;) 3)
where ¥,“¢" € RO*? denotes the prediction of the trend part using the linear regression strategy. And
we use MICN — regre to represent MICN model with this trend-cyclical prediction method.

For comparison, we also use the mean of X; to predict the trend part and the process is:
Y = mean(X;) (€))

where ¥/"#" ¢ RO*4 denotes the prediction of the trend part. And we use MICN — mean to represent
MICN model with this trend-cyclical prediction method.
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Figure 2: Seasonal Prediction Block.

3.4 SEASONAL PREDICTION BLOCK

As shown in Figure [2] the Seasonal Prediction Block focuses on the more complex seasonal part
modeling. After embedding the input sequence X;, we adopt multi-scale isometric convolution to
capture the local features and global correlations, and branches of different scales model different
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Figure 3: Local-Global module architecture.

underlying patterns of the time series. We then merge the results from different branches to complete
comprehensive information utilization of the sequence. It can be summarised as follows:

X — Embedding(Concat (X, Xzero))
Y :Xemb
Ysl *MIC( s,1— 1) le {1727~~~7N}
Y, = Truncate(Projection(Ysn)),

(&)

where X,.,, € R9*? denotes the placeholders filled with zero, and X € RU+0)*D denotes the
embedded representation of X;. Y;; € RU+0)xD represents the output of [ — rh multi-scale isometric
convolution ( MIC) layer, and Y; € R%*¢ represents the final prediction of the seasonal part after a

linear function Pro jection with Y y € RUH0OXD and Truncate operation. The detailed description of
Embedding and MIC will be given as follows.

Embedding The decoder of the latest Transformer-based models such as Informer (Zhou et al.,
2021), Autoformer (Wu et al.,[2021) and FEDformer (Zhou et al.| 2022} contain the latter half of the
encoder’s input with the length é and placeholders with length O filled by scalars, which may lead
to redundant calculations. To avoid this problem and adapt to the prediction length O , we replace
the traditional encoder-decoder style input with a simpler complementary O strategy. Meanwhile,
we follow the setting of the latest model FEDformer and adopt three parts to embed the input. The
process is:

Xsemb = sum(TFE + PE +VE(Concat (X, Xzer0))) ©)

where X" € RU+0)*P_ T FE represents time features encoding (e.g., MinuteOfHour, HourOfDay,
DayOfWeek, DayOfMonth, and MonthOfYear), PE represents positional encoding and V E represents
value embedding.

Multi-scale isometric Convolution(MIC) Layer MIC layer contains several branches, with dif-
ferent scale sizes used to model potentially different temporal patterns. In each branch, as shown
in Figure (3] the local-global module extracts the local features and the global correlations of the
sequence. Concretely, after obtaining the corresponding single pattern by avgpool, the local module
adopts one-dimensional convolution to implement downsampling. The process is:

YS,I = Ys,lfl

o 7
ocall — Convld(Avgpool (Padding(Ys 1)) kernel=i)kernelis @

!

Y

where Y;;_; denotes the output of (I — 1) —th MIC layer and Y; o = X{™". i € {1211 .} denote
the different scale sizes corresponding to the different branches in Flgure @ F Convld, we set

= Q oI~

local i

stride = kernel = i, which serves as compression of local features. Y D represents the

result obtained by compressmg local features, which is a short sequence Concretely, in this work, if
the length of the input series is 96, we seti € {12,16}.

And furthermore, the global module is designed to model the global correlations of the output of
the local module. A commonly used method for modeling global correlations is the self-attention
mechanism, but its time and space complexity is too high. To solve this problem, we propose
isometric convolution as an alternative to the self-attention mechanism. As shown in Figure4] as a
variant of casual convolution, isometric convolution pads the sequence of length S with placeholders
zero of length S — 1, and its kernel is equal to S . Moreover, we demonstrate that for a shorter



sequence, isometric convolution is superior in both complexity and effectiveness to self-attention.
The detailed experiments of the proof are in Appendix [B.3} And to keep the sequence length constant,
we upsample the result of the isometric convolution using transposed convolution. The global module
can be formalized as follows:

YS/; = Norm(lfs{(;cal’i + Dropout(Tanh(IsometricConv(YSlf;ml’o))) ®)
Zfllobal,i = Norm(Ys;_ +Dropout(Tanh(Conv1dTransp0se(X£7*;)kernel:i)))’

(+0)
1

where YS{?C“M €R *D denote the result after the global correlations modeling, i € {é%éé, }
corresponds to the one in the local module. ¥, is the output of / — 1 MIC layer. Y% ¢ RU+0)xD

represents the result of this pattern (i.e., this branch).

Isometric Convolution Self-attention

Figure 4: Isometric Convolution architecture vs. Self-attention architecture

Then we propose to use Conv2d to merge the different patterns instead of the traditional concat
operation. The validity of Conv2d is verified in Appendix [B.4] The process can be formalized as
follows:

5l 5)176’§,..
Ys; = Norm(Y]"* + FeedForward(Y"*)),

i I 111
Y8 = (Concat (Y& i € )
N ©

where Y, ; € RUTO)*P represents the result of / —th MIC layer.

To get the final prediction of the seasonal part, we use the projection and truncate operations as
follows:

Y; = Truncate(Projection(Y; y)) (10)

where Y, y € RUT9)*P represents the output of N-th MIC layer, and ¥, € RO*? represents the final
prediction about the seasonal part.

4 EXPERIMENTS

Dataset To evaluate the proposed MICN, we conduct extensive experiments on five popular real-
world datasets, covering many aspects of life: energy, traffic, economics, and weather. We follow
standard protocol (Zhou et al.,[2021]) and split all datasets into training, validation and test set in
chronological order by the ratio of 6:2:2 for the ETT dataset and 7:1:2 for the other datasets. More
details about the datasets and implementation are described in Appendix[A.T|and[A.2]

Baselines We include four transformer-based models: FEDformer (Zhou et al.| 2022)), Autoformer
(Wu et al.l 2021)), Informer (Zhou et al.,[2021)), LogTrans (Li et al.;,2019b)), two RNN-based models:
LSTM (Hochreiter & Schmidhuber, [1997), LSTNet (Lai et al.l[2018b) and CNN-based model TCN
(Bai et al.} |2018) as baselines. For the univariate setting, we mainly compare transformer-based
models. For the state-of-the-art model FEDformer, we compare the better one (FEDformer-f).

4.1 MAIN RESULTS

Multivariate results For multivariate long-term series forecasting, MICN achieves the state-of-
the-art performance in all benchmarks and all prediction length settings (Table [I). Compared to
the previous best model FEDformer, MICN yields an 18.2% averaged MSE reduction. Especially,



Table 1: Multivariate long-term series forecasting results with input length 7 = 96 and prediction
length O € {96,192,336,720}. A lower MSE or MAE indicates a better prediction, and the best
results are highlighted in bold.

Methods MICN-regre MICN-mean FEDformer Autoformer Informer LogTrans LSTNet LST™M TCN
Metric ‘MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

9 | 0179 0.275 0203 0.287 0.203 0287 0.255 0.339 0365 0453 0.768 0.642 3.142 1365 2.041 1.073 3.041 1330
192 | 0307 0376 0262 0326 0.269 0.328 0281 0.340 0.533 0563 0989 0.757 3.154 1.369 2249 1.112 3.072 1339
336 | 0325 0.388 0305 0.353 0.325 0366 0339 0372 1363 0.887 1.334 0872 3.160 1369 2568 1.238 3.105 1.348
720 | 0.502 0490 0.389 0.407 0421 0415 0422 0419 3379 1383 3.048 1.328 3.171 1.368 2720 1.287 3.135 1.354

9 | 0.164 0.269 0.193 0308 0.193 0308 0.201 0.317 0274 0.368 0.258 0357 0.680 0.645 0375 0437 0985 0813
192 | 0.177 0.285 0200 0.308 0.201 0315 0.222 0.334 0296 0386 0266 0368 0.725 0.676 0442 0473 0.99 0.821
336 | 0193 0304 0219 0328 0214 0329 0231 0338 0300 0394 0280 0380 0.828 0.727 0439 0473 1000 0.824
720 | 0.212 0321 0224 0332 0246 0355 0254 0361 0373 0439 0283 0376 0957 0.811 0980 0814 1438 0.784

96 | 0102 0235 0.173 0.297 0.148 0278 0.197 0.323 0.847 0.752 0968 0812 1.551 1.058 1453 1.049 3.004 1432
192 | 0172 0316 0.324 0408 0.271 0.380 0300 0.369 1204 0895 1.040 0851 1477 1.028 1846 1.179 3.048 1444
336 | 0272 0.407 0.639 0598 0460 0.500 0509 0.524 1.672 1.036 1.659 1.081 1507 1.031 2136 1231 3.113 1459
720 | 0.714 0.658 1218 0.862 1.195 0.841 1447 0.941 2478 1310 1.941 1.127 2285 1.243 2984 1427 3.150 1458

96 | 0.519 0.309 0575 0344 0.587 0366 0.613 0.388 0.719 0391 0.684 0384 1.107 0.685 0843 0453 1438 0.784
192 | 0.537 0.315 0.580 0349 0.604 0373 0.616 0.382 0.696 0379 0.685 0.390 1.157 0.706 0.847 0453 1.463 0.794
336 | 0.53¢ 0313 0583 0.345 0.621 0383 0.622 0337 0.777 0420 0.733 0408 1.216 0.730 0853 0455 1479 0.799
720 | 0.577 0.325 0.601 0363 0.626 0.382 0.660 0408 0.864 0472 0717 0.396 1481 0.805 1500 0805 1.499 0.804

96 | 0161 0.229 0.183 0.250 0217 0296 0.266 0.336 0300 0.384 0458 0490 0.594 0.587 0369 0406 0.615 0.589
192 | 0220 0.281 0246 0317 0276 0336 0307 0.367 0.598 0544 0.658 0.589 0560 0.565 0416 0435 0.629 0.600
336 | 0278 0.331 0293 0335 0339 0380 0359 0395 0578 0523 0797 0.652 0597 0.587 0455 0454 0.639 0.608
720 | 0311 0356 0.373 0399 0403 0428 0419 0428 1059 0741 0.869 0.675 0618 0.599 0.535 0520 0.639 0.610

ETTm2

Exchange | Electricity

Traffic

Weather

Table 2: Univariate long-term series forecasting results with input length / = 96 and prediction
length O € {96,192,336,720}. A lower MSE or MAE indicates a better prediction, and the best
results are highlighted in bold.

Methods MICN-regre MICN-mean FEDformer Autoformer Informer LogTrans
Metric | MSE. MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
~ | 96 0.059 0176 0.074 0.206 0.072 0206 0.065 0.189 0.088 0.225 0.075 0.208
192 | 0.100 0234 0.098 0238 0.102 0245 0.118 0256 0.132 0283 0.129 0275
E 336 | 0.153 0301 0135 0282 0.130 0279 0.154 0305 0.180 0336 0.154 0.302
720 | 0210 0354 0175 0326 0.178 0325 0.182 0.335 0.300 0435 0.160 0.321
2| 9% 0310 0398 0.326 0418 0253 0370 0341 0438 0484 0.538 0.288 0.393
2| 192 | 0300 0394 0317 0410 0282 0386 0345 0428 0.557 0.558 0.432 0483
2 336 | 0323 0413 0376 0450 0346 0431 0406 0470 0.636 0613 0430 0483
m | 720 | 0364 0449 0417 0479 0422 0484 0565 0581 0.819 0.682 0.491 0531
& 96 0.099 0240 0.179 0312 0.154 0304 0241 0387 0591 0.615 0237 0377
E 192 | 0198 0354 0304 0420 0286 0420 0300 0369 1.183 0912 0.738  0.619
S | 336 | 0302 0447 0711 0651 0511 0555 0509 0524 1367 0984 2018 1.070
=720 | 0738  0.662 1416 0918 1301 0.879 1.260 0.867 1.872 1.072 2405 1.175
o | 96 0.158 0.241 0214 0324 0207 0312 0246 0346 0257 0353 0226 0317
€ | 192 | 0154 0236 0228 0336 0205 0312 0266 0370 0.299 0376 0.314  0.408
E 336 | 0165 0.243 0217 0337 0219 0323 0263 0371 0312 0387 0387 0453
720 | 0.182 0.264 0.225 0339 0244 0344 0269 0372 0366 0436 0491 0437
5 | 96 | 0.0029 0.039 0.0038 0.052 0.0062 0062 0011 0081 0.0038 0.044 0.0046 0.052
< | 192 | 00021 0034 0.0015 0.029 0.0060 0.062 0.0075 0.067 0.0023 0.040 0.0056 0.060
é’ 336 | 0.0023 0.034 0.0039 0.053 0.0041 0.050 0.0063 0.062 0.0041 0.049 0.0060 0.054
720 | 0.0048 0.054 0.0024 0.037 0.0055 0.059 0.0085 0.070 0.0031 0.042 0.0071 0.063

under the input-96-predict-96 setting, MICN gives 12% relative MSE reduction in ETTm2, 14%
relative MSE reduction in Electricity, 31% relative MSE reduction in Exchange, 12% relative MSE
reduction in Traffic, 26% relative MSE reduction in Weather, and 19% average MSE reduction in this
setting. And we can also find that MICN makes consistent improvements as the prediction increases,
showing its competitiveness in terms of long-term time-series forecasting. Note that MICN still
provides remarkable improvements with a 51% averaged MSE reduction in the Exchange dataset
that is without obvious periodicity. All above shows that MICN can cope well with a variety of
time-series forecasting tasks in real-world applications. More results about other ETT benchmarks
are provided in Appendix [A.3] See Appendix [C.3|for detailed showcases.

Univariate results We also show the univariate time-series forecasting results in Table 2] Sig-
nificantly, MICN achieves a 24.5% averaged MSE reduction compared to FEDformer. Especially
for the Weather dataset, MICN gives 53% relative MSE reduction under the predict-96 setting,
75% relative MSE reduction under the predict-192 setting, 44% relative MSE reduction under the
predict-336 setting, and 56% relative MSE reduction under the predict-720 setting. It again verifies
the greater time-series forecasting capacity. Note that with different trend-cyclical prediction blocks,
we have different models named MICN — regre and MICN — mean. The importance of modeling the
trend-cyclical part of time series is demonstrated by the fact that MICN — regre works better on all



datasets and all the input-predict settings. More results about other ETT benchmarks are provided in
Appendix[A.3] See Appendix [C.2]for detailed showcases.

4.2 ABLATION STUDIES

Trend-cyclical Prediction Block We attempt to verify the necessity of modeling the trend-cyclical
part when using a decomposition-based structure. Like Autoformer (Wu et al.l 2021)), previous
methods decompose the time series and then take the mean prediction of the trend information, which
is then added to the other trend information obtained from the decomposition module in the model.
However, the reasons and rationality are not argued in the relevant papers. In this paper, we use
simple linear regression to predict the trend-cyclical part and we also record the results of the mean
prediction for comparison. As shown in Table [3] making predictions for the trend-cyclical part is
valid and necessary. See Appendix for more visualization results.

Table 3: Comparison of sample linear regression prediction and mean prediction in multivariate
datasets. The better results are highlighted in bold.

Datasets ETTm2 Electricity Exchange Traffic WTH
Prediction Length O 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

MICN - MSE 0.179 0307 0325 0502 0.164 0.177 0193 0.212 0.102 0.172 0272 0.714 0519 0.537 0.534 0577 0.161 0.220 0278 0.311
regre MAE 0275 0376 0388 0490 0.269 0.285 0.304 0321 0235 0316 0407 0.658 0309 0315 0313 0325 0229 0281 0331 0356
MICN - MSE 0200 0262 0305 0389 0.188 0200 0219 0224 0173 0324 0639 1218 0575 0580 0583 0601 0.183 0246 0293 0373

mean MAE 0.287 0326 0353 0.407 0302 0308 0.328 0.332 0297 0408 0598 0862 0344 0349 0345 0363 0250 0317 0335 0.399

Local-Global Structure vs. Auto-correlation, self-attention In this work, we propose the local-
global module to model the underlying pattern of time series, including local features and global
correlations, while the previous outstanding model Autoformer uses auto-correlation. We replace the
auto-correlation module in the original Autoformer with our proposed local-global module (we set
i € {12,16}) for training, and the results are shown in TableE} Also, We replace the Local-Global
module in MICN-regre with the Auto-Correlation module and self-attention module for training, and
the results are shown in Table[5] They all demonstrate that modeling time series in terms of local
features and global correlations is better and more realistic.

Table 4: Ablation of Local-global structure in other models. We replace the Auto-Correlation in
Autoformer with our local-global module and implement it in the multivariate Electricity, Exchange
and Traffic. The better results are highlighted in bold.

Datasets Electricity Exchange Traffic
Prediction Length O 96 192 336 720 96 192 336 720 96 192 336 720
Autoformer- ‘ MSE ‘ 0.192 0.204 0.223 0.238 0.194 0.293 1.012 1289 0.572 0.580 0.587 0.601

Local-Global MAE | 0314 0.323 0339 0.352 0338 0416 0.766 0928 0.352 0351 0.353 0.359
Autoformer MSE | 0.207 0236 0.275 0289 0.160 0.327 0.509 1.133 0.675 0.666 0.765 1.098
Auto-correlation | MAE | 0323 0.343 0.372 0380 0.292 0415 0.527 0.825 0406 0425 0487 0.647

Table 5: Ablation of Local-global structure in our model. We replace the Local-Global module
in MICN-regre with Auto-correlation and self-attention and implement it in the multivariate
Electricity, Exchange and Traffic. The better results are highlighted in bold.

Datasets Electricity Exchange Traffic
Prediction Length O 96 192 336 720 96 192 336 720 96 192 336 720

Local-Global MAE | 0.269 0.285 0.304 0.321 0.235 0.316 0.407 0.658 0.309 0.315 0.313 0.325
MICN- MSE ‘ 0205 0.209 0229 0.260 0.111 0.178 0331 0804 0.596 0.613 0.609 0.635

MICN- ‘MSE ‘ 0.164 0.177 0.193 0.212 0.102 0.172 0.272 0.714 0.519 0.537 0.534 0.577

Auto-Correlation | MAE | 0.299 0305 0.327 0353 0255 0311 0440 0.718 0366 0.386 0379 0.381
MICN ‘MSE ‘ 0.181 0.194 0216 0.271 0.147 0.290 0.480 1578 0.612 0.642 0.622 0.656

self-attention MAE | 0.289 0304 0.321 0362 0.291 0.402 0.549 0978 0357 0376 0374 0.382

4.3 MODEL ANALYSIS

Impact of input length In time series forecasting tasks, the size of the input length indicates
how much historical information the algorithm can utilize. In general, a model that has a strong



Electricity Exchange Traffic WTH

Figure 5: The MSE results with different input lengths and same prediction lengths (192 time steps).

ability to model long-term temporal dependency should perform better as the input length increases.
Therefore, we conduct experiments with different input lengths and the same prediction length to
validate our model. As shown in Figure[5] when the input length is relatively long, the performance
of Transformer-based models becomes worse because of repeated short-term patterns as stated in
(Zhou et al.| [2021). Relatively, the overall performance of MICN prediction gradually gets better as
the input length increases, indicating that MICN can capture the long-term temporal dependencies
well and extract useful information deeply.

Robustness analysis We use a simple noise injection to demonstrate the robustness of our model.
Concretely, we randomly select data with proportion € in the original input sequence and randomly
perturb the selected data in the range [—2X;,2X;] , where X; denotes the original data. The data after
noise injection is then trained, and the MSE and MAE metrics are recorded. The results are shown in
Table[6] As the proportion of perturbations € increases, the MSE and MAE metrics of the predictions
increase by a small amount. It indicates that MICN exhibits good robustness in response to less noisy
data (up to 10%) and has a great advantage in dealing with many data abnormal fluctuations (e.g.
abnormal power data caused by equipment damage).

Table 6: Robustness analysis of multivariate results. Different € indicates different proportions of
noise injection. And MICN-regre is used as the base model.

Datasets Electricity Exchange Traffic
Prediction Length O 96 192 336 720 96 192 336 720 96 192 336 720
MICN - ‘ MSE 0.164 0.177 0.193 0.212 0.102 0.172 0272 0.714 0.519 0537 0.534 0577

regre MAE ‘ 0269 0.285 0304 0321 0235 0316 0407 0658 0309 0315 0313 0325
&= 1% MSE 0.163 0.179 0.192 0.217 0.103 0.172 0.289 0.691 0.518 0.530 0.535 0.575
- MAE 0270 0.288 0303 0.325 0237 0316 0424 0.652 0321 0312 0315 0323
= 5% MSE 0.164 0.181 0.192 0.218 0.104 0.167 0296 1.742 0.518 0.541 0.558 0.585
N MAE 0272 0.289 0303 0.328 0.239 0308 0413 1009 0313 0327 0330 0328
£ — 10% MSE 0.171 0.189 0202 0.220 0.136 0.181 0.402 0.944 0.538 0.557 0.561 0.605
- MAE 0281 0.297 0311 0328 0273 0324 0497 0.771 0332 0324 0325 0335

5 CONCLUSIONS

This paper presents a convolution-based framework MICN, which makes predictions for the trend-
cyclical part and seasonal part separately. It achieves O(L) complexity and yields consistent state-
of-the-art performance in extensive real-world datasets. In the Seasonal-Prediction block, we use
different scales to mine the sequence for potentially different patterns, each modeled from a local
and global perspective, which is implemented by different convolution operations. The proposed
isometric convolution outperforms self-attention in terms of capturing global correlations for a short
sequence. The extensive experiments further demonstrate the effectiveness of our modeling approach
for long-term forecasting tasks.
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A  SUPPLEMENTAL EXPERIMENTS

A.1 DATASET DETAILS

In this work, the details of the experiment datasets are summarized as follows: (1) ETT (Zhou et al.|
2021)) dataset contains two visions of the sub-dataset: ETTh and ETTm, collected from electricit
transformers every 15 minutes and 1 hour between July 2016 and July 2018. (2) Electrici
dataset contains the electricity consumption of 321 customers recorded hourly from 2012 to 2014.
(3) Exchange (Lai et al.,|2018a) dataset records daily exchange rates of eight different countries
daily ranging from 1990 to 2016. (4) Tmﬁ'i contains the data from California Department of
Transportation hourly, which describes the road occupancy rates measured by different sensors on
San Francisco Bay area freeways. (5) WeatherE] contains 21 meteorological indicators, recorded
every 10 minutes for 2020 whole year. Table[7] summarizes feature details (Sequence Length: Len,
Dimension: Dim, Frequency: Freq) .

Table 7: The details of datasets.

Dataset | len  dim  freq
ETTh 17420 8 1h
ETTm 69680 8 15 min

Electricity | 26304 322 1h
Exchange | 7588 9 1 day
Traffic 17544 863 1h
Weather 52696 22 10 min

A.2 IMPLEMENTATION DETAILS

Our method is trained with the L2 loss, using the ADAM optimizer with an initial learning rate of
10-3. Batch size is set to 32. The training process is early stopped after three epochs if there is no loss
degradation on the valid set. The mean square error (MSE) and mean absolute error (MAE) are used
as metrics. All the experiments are repeated 3 times with different seeds, implemented in PyTorch and
conducted on NVIDIA RTX A5000 24GB GPU. The hyper-parameter i is set to {12,16} , and the
hyper-parameter sensitivity analysis can be seen in Appendix[A.4]. MICN contains 1 MIC layer. We
use MICN — regre and MICN — mean to represent the different strategies of trend-cyclical prediction
block in the following.

A.3 FULL BENCHMARK ON THE ETT DATASETS

We build the benchmark on the four ETT datasets in Table|8|and Table[9l The ETTh1 and ETTh2
datasets are recorded hourly, while the ETTm1 and ETTm?2 datasets are recorded every 15 minutes.
MICN achieves state-of-the-art performance in all benchmarks in general. Especially for the multi-
variate ETTm1 dataset, MICN gives 17% relative MSE reduction under the predict-96 setting, gives
15% relative MSE reduction under the predict-192 setting, gives 8% relative MSE reduction under
the predict-336 setting, gives 15% relative MSE reduction under the predict-720 setting.

A.4 HYPER-PARAMETER SENSITIVITY

As shown in Table[I0] we can verify the model robustness with respect to hyper-parameter i. Different
values of i have slightly different results. Concretely, when i take one value, MICN performs worse
because of the lack of ability to capture complex temporal patterns of the time series. Meanwhile,
MICN can achieve almost the same better performance when i takes two or three values, indicating
that the multi-branch structure is effective. To be more representative, we set i to {12,16} in this

paper.
Ihttps://archive.ics.uci.edu/ml/datasets/ElectricitylLoadDiagrams20112014

Zhttp://pems.dot.ca.gov
Shttps://www.bgc-jena.mpg.de/wetter/
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Table 8: Multivariate long-term forecasting results on ETT full benchmark. The best results are
highlighted in bold.

Methods MICN-regre MICN-mean FEDformer Autoformer Informer LogTrans
Metric | MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

— | 96 | 0421 0431 0.398 0427 0376 0419 0449 0459 0.865 0.713 0.878 0.740
£ 192 | 0474 0487 0430 0453 0420 0448 0500 0482 1.008 0.792 1.037 0.824
5] 336 | 0569 0551 0440 0460 0459 0465 0521 049 1.107 0809 1238 0932

720 | 0770 0.672 0.491 0.509 0.506 0.507 0.514 0512 1.181 0.865 1.135 0.852
| 96 | 0299 0364 0332 0377 0346 0388 0.358 0397 3755 1.525 2116 1.197
£ 192 | 0441 0454 0422 0441 0429 0439 0456 0452 5602 1931 4315 1.635
51336 | 0654 0567 0447 0474 0496 0487 0482 0486 4721 1835 1124 1.604

720 | 0956 0.716 0.442 0.467 0463 0474 0515 0511 3.647 1.625 3.188 1.540
— | 9 | 0316 0.362 0360 0.399 0379 0419 0505 0475 0.672 0571 0.600 0.546
E 192 | 0.363 0.390 0402 0426 0426 0441 0553 0496 0.795 0.669 0.837 0.700
g 336 | 0.408 0.426 0403 0437 0445 0459 0621 0537 1212 0871 1.124 0.832

720 | 0481 0476 0459 0464 0543 0490 0.671 0561 1.166 0.823 1.153 0.820
~ | 96 | 0179 0.275 0.203 0287 0203 0.287 0.255 0339 0365 0453 0.768 0.642
E 192 | 0307 0.376 0.262 0.326 0.269 0.328 0.281 0.340 0.533 0.563 0.989 0.757
L[?J 336 | 0325 0388 0305 0353 0.325 0366 0339 0372 1363 0.887 1334 0.872

720 | 0.502 0490 0.389 0.407 0421 0415 0422 0419 3379 1338 3.048 1.328

Table 9: Univariate long-term forecasting results on ETT full benchmark. The best results are
highlighted in bold.

Methods MICN-regre MICN-mean FEDformer Autoformer Informer LogTrans
Metric | MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

— | 96 | 0.058 0.186 0.069 0.210 0.079 0215 0.071 0.206 0.193 0.377 0.283 0.468
£1192 0079 0210 0081 0223 0.104 0245 0.114 0262 0217 0395 0234 0.409
51336 | 0092 0237 0.104 0259 0.119 0270 0.107 0258 0202 0381 0386 0546

720 | 0.138 0.298 0.090 0.238 0.142 0.299 0.126 0283 0.183 0.355 0475 0.628
« | 96 | 0155 0300 0.137 0286 0.128 0.271 0.153 0306 0213 0.373 0.217 0.379
£1192 | 0169 0316 0.179 0334 0.185 0330 0204 0.351 0227 0387 0281 0.429
1336 | 0238 0384 0203 0359 0231 0378 0246 0389 0242 0401 0293 0437

720 | 0.447 0.561 0.193 0352 0.278 0420 0268 0409 0.291 0439 0218 0.387
— | 9 | 0033 0134 0.039 0.152 0.033 0.140 0.056 0.183 0.109 0.277 0.049 0.171
[E 192 | 0.048 0.164 0.050 0.180 0.058 0.186 0.081 0216 0.151 0310 0.157 0317
L[?J 336 | 0.079 0210 0.064 0.202 0.084 0231 0.076 0.218 0427 0591 0289 0459

720 | 0.096 0.233 0.085 0.232 0.102 0250 0.110 0.267 0438 0586 0.430 0.579
~ | 96 | 0059 0176 0.074 0206 0.067 0.198 0.065 0.189 0.088 0.225 0.075 0.208
E 192 | 0.100 0.234 0.098 0.238 0.102 0.245 0.118 0256 0.132 0.283 0.129 0.275
E 336 | 0.153 0301 0.135 0.282 0.130 0.279 0.154 0305 0.180 0.336 0.154 0.302

720 | 0.210 0.354 0.175 0326 0.178 0.325 0.182 0.335 0.300 0435 0.160 0.321

A.5 SELECTION OF DIFFERENT CONVOLUTION MODES

As shown in Table[TT} we also record the performance in different convolution modes: stride = kernel
and stride = %€l The second mode makes more comprehensive use of local information, making
the convolution more coherent. MICN achieves similar performance in different convolution modes.
It proves that MICN can make the most of sequence information, and the performance of the model
depends on the structure we proposed.

B ADDITIONAL MODEL ANALYSIS

B.1 MULTI-SCALE HYBRID DECOMPOSITION

Autoformer harnesses the decomposition as an inner block of deep models and gets good performance.
However, the patterns obtained by its decomposition are simple and cannot effectively deal with
the complex and changeable properties of time series. As shown in Table [I2] we replace the
decomposition block in Autoformer with our proposed multi-scale hybrid decomposition block. For
Exchange, we achieve a similar performance because it has no obvious temporal pattern. The result
verifies that multi-scale hybrid decomposition is more in line with the complex temporal patterns in
real-time series.
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Table 10: Multivariate results with different parameters i in three datasets: Electricity, Exchange and
Traffic.

Datasets Electricity Exchange Traffic
Prediction Length O 96 192 336 720 96 192 336 720 96 192 336 720

<24> MSE | 0.174 0200 0.207 0.240 0.093 0.181 0.271 0.762 0.575 0.569 0.581 0.607
MAE | 0282 0.303 0.317 0336 0.227 0321 0404 0.675 0334 0316 0323 0.339

<48> MSE | 0.167 0.179 0.195 0.265 0.080 0.185 0.288 0.758 0.512 0.532 0.556 0.595
MAE | 0278 0.287 0.303 0361 0.204 0316 0412 0671 0.296 0.304 0315 0.330

<12.16> MSE | 0.164 0.177 0.193 0212 0.102 0.172 0272 0.714 0.513 0.537 0.534 0.577
? MAE | 0.269 0.285 0.304 0321 0.235 0316 0407 0.658 0309 0.315 0313 0.325
<16.24 > MSE | 0.160 0.182 0.192 0232 0.086 0.198 0.266 0.632 0.524 0.545 0.547 0.584
? MAE | 0.267 0.291 0.299 0341 0210 0.334 0.388 0.639 0.300 0.310 0317 0.329
<12.24> MSE | 0.160 0.185 0.195 0.220 0.100 0.153 0.269 0.775 0517 0.537 0.546 0.573
? MAE | 0268 0.293 0.307 0329 0.231 0.295 0403 0.678 0303 0.310 0319 0.319
<24.48> MSE | 0.180 0201 0.211 0.250 0.079 0.175 0.269 0.658 0.537 0.587 0.607 0.603

’ MAE | 0.288 0.306 0.316 0344 0203 0310 0401 0.634 0307 0.324 0329 0.340
<6.12.24> MSE | 0.169 0.180 0.195 0.215 0.114 0208 0.299 0.798 0.513 0.522 0.535 0.560
T MAE | 0278 0.287 0.300 0323 0.244 0.348 0425 0.704 0303 0.304 0.307 0.321
<12.24.48 > MSE | 0.168 0.185 0200 0.212 0.113 0213 0364 0.680 0.521 0.559 0.554 0.604
T MAE | 0274 0.293 0305 0.320 0.247 0.354 0462 0.655 0305 0.317 0317 0.336

Table 11: MICN performance under different convolution modes. We implement it on three multi-
variate datasets: Electricity, Exchange and Traffic.

Datasets Electricity Exchange Traffic
Prediction Length O 96 192 336 720 96 192 336 720 96 192 336 720

MSE | 0.164 0.177 0.193 0212 0.102 0.172 0272 0.714 0519 0.537 0.534 0.577
MAE | 0.269 0285 0.304 0321 0.235 0316 0407 0.658 0309 0315 0313 0.325

MSE | 0.158 0.177 0.198 0.221 0.081 0.173 0305 0.706 0.509 0.534 0.545 0.563
MAE | 0.267 0.283 0310 0.326 0.208 0.314 0430 0.647 0306 0.303 0.310 0.323

stride = kernel ‘

stride = W

B.2 VISUALIZATION OF LEARNED TREND-CYCLICAL PARTS

As shown in Figure [ and Figure[7] we plot the results of learned trend-cyclical parts. The separate
modeling of the trend-cyclical part makes better performance and grasp of long-term progression.
We also observe that the mean prediction is slightly better on the ETTm2 dataset. This is due to the
complexity of the trend-cyclical information and the inability of simple linear regression, which may
require a more advanced trend prediction method.

o] B G 0

prediction-96 prediction-192 prediction-336 prediction-720
Figure 7: Visualization of ¥; and Yy in ETTm?2 dataset under MICN-regre. Sample linear regression

does not perform very well.

Table 12: Ablation of multi-scale hybrid decomposition (MHDecomp). Autoformer-MHDecomp
adopts multi-scale hybrid decomposition block into Autoformer.

Datasets Electricity Exchange Traffic
Prediction Length O 96 192 336 720 96 192 336 720 96 192 336 720
Autoformer MSE | 0.207 0236 0.275 0.289 0.160 0327 0.509 1133 0.675 0.666 0.765 1.098
u MAE | 0.323 0343 0.372 0380 0.292 0415 0.527 0.825 0406 0425 0487 0.647
Autoformer- | MSE | 0.197 0.236 0253 0.291 0.162 0.291 0545 1.135 0.653 0.678 0.673 0.800
MHDecomp | MAE | 0.312 0.340 0.356 0.382 0.292 0.392 0552 0.826 0.402 0427 0421 0.493
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Figure 6: Visualization of learned trend-cyclical part prediction result ¥; and seasonal part prediction
result ¥y in ETTm1 dataset under MICN-regre. Sample linear regression performs well.

B.3 ISOMETRIC CONVOLUTION VS. SELF-ATTENTION

With the local module in MICN, we get a short sequence characterizing local features. On this
basis, we propose the isometric convolution in global module to model the global correlation of the
sequence, while previously the first choice is self-attention. We replace the isometric convolution in
the global module of MICN with self-attention for training, and the results are shown in Table[I3]and
Table E} It verifies that for a short sequence, isometric convolution outperforms self-attention in
general while still achieving linear complexity.

Table 13: Ablation of isometric convolution. We replace the Isometric convolution in MICN-regre
with self-attention and implement it in the multivariate Electricity, Exchange and Traffic. The better
results are highlighted in bold.

Datasets Electricity Exchange Traffic
Prediction Length O 96 192 336 720 96 192 336 720 96 192 336 720
Isometric

MSE | 0.164 0.177 0.193 0.212 0.102 0.172 0272 0.714 0519 0.537 0.534 0.577
MAE | 0269 0.285 0.304 0.321 0235 0316 0.407 0.658 0309 0315 0313 0.325

self- MSE | 0153 0.179 0.201 0256 0.096 0209 0311 0960 0.501 0.522 0.543 0.568
attention MAE | 0.260 0286 0.310 0.352 0.227 0349 0441 0.747 0.295 0.293 0.303 0.326

Convolution

Table 14: Comparison of Isometric convolution and self-attention in the univariate Electricity,
Exchange and Traffic. We replace the Isometric convolution in MICN-regre with self-attention. The
better results are highlighted in bold.

Datasets Electricity Exchange Traffic
Prediction Length O 96 192 336 720 96 192 336 720 96 192 336 720

Isometric MSE | 0310 0.300 0.323 0.364 0.099 0.198 0.302 0.738 0.158 0.154 0.165 0.182
Convolution | MAE | 0.398 0.394 0413 0449 0240 0.354 0447 0.662 0.241 0236 0.243 0.264

self- MSE ‘ 0.404 0.351 0384 0.398 0.101 0209 0303 0564 0.140 0.153 0.148 0.166

attention MAE | 0461 0428 0456 0467 0237 0369 0450 0.600 0.217 0.233 0.228 0.249

B.4 COMPARISON OF MERGING OPERATIONS

The traditional method of merging branch structures is the concat operation on the hidden state. In
this paper, we propose to adopt 2D convolution to merge multiple branches to better measure the
importance of each branch. As shown in Table[I3] the better performance verifies the effectiveness of
our proposed method.

B.5 EFFICIENCY ANALYSIS

For MICN, since we are using a pure convolution structure, the time and space complexity is O(LD?)
with respect to the sequence length L and the hidden states D . The comparisons of the time complexity
and memory usage in training and the inference steps in testing are summarized in Table[T6]

Furthermore, we compare the running memory and time among Local-Global-based, Auto-correlation-
based and self-attention-based models during the training phase. As shown in Figure (8| the proposed
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Table 15: Comparison of different merging operations. The better results are highlighted in bold.

Datasets Electricity Exchange Traffic
Prediction Length O 96 192 336 720 96 192 336 720 96 192 336 720
MICN

MSE 0.164 0.177 0.193 0.212 0.102 0.172 0.272 0.714 0.519 0.537 0.534 0.577
Conv2d MAE 0269 0.285 0.304 0.321 0235 0.316 0.407 0.658 0.309 0.315 0313 0.325

MICN- MSE 0.160 0.183 0202 0214 0.099 0.175 0264 0.711 0.528 0549 0.536 0.577
concat MAE 0.266 0.289 0310 0.324 0229 0322 0403 0.655 0313 0318 0316 0.326

Table 16: Complexity analysis of different forecasting models.

Trainin,
Methods Time I\%Iemory
MICN O(L) O(L)
FEDformer (Zhou et al.[[2022) o(L) o(L)
Autoformer (Wu et al.[[2021) O(LlogL) | O(LlogL)
Informer (Zhou et al.[[2021) O(LlogL) | O(LlogL)
LogTrans (Li et al.|[2019b) O(LlogL) | 0(L%)
Transformer (Vaswani et al.|[2017) (0] (Lz) (0] (Lz)
LSTM (Hochreiter & Schmidhuber||1997) O(L) O(L)

Local-Global module shows O(L) complexity and achieves better long-term sequences efficiency.
As the prediction length increases, our model takes a little more time than Auto-Correlation. We
speculate that this may be due to the use of the convolution operation or the activation function Tanh.
In general, our method is the most portable and valuable in practical applications.

Memory (M8)
Time (s)

,//"

Memory Efficiency Analysis Running Time Efficiency Analysis
Figure 8: Efficiency Analysis. We place the Local-Global module in MICN with Auto-correlation

and self-attention. Then we record the memory and running time of an epoch with fixed input length
96 and increasing output length. Missing values of self-attention are due to out-of-memory.

C SUPPLEMENTARY OF MAIN RESULTS

C.1 MAIN RESULTS WITH STANDARD DEVIATIONS

To get more robust experimental results, we repeat each experiment three times with different random
seeds. For easier comparison, the results are shown in the main text when the seed is set to 2021.
Table [[71 shows the standard deviations.

C.2 UNIVARIATE SHOWCASES

As shown in Figure 9 Figure Figure Figure Figure and Figure we plot the
forecasting results from the test set of univariate dataset Electricity and Traffic for comparison. Our
model gives the best performance among different models. Moreover, MICN is significantly better at
predicting the overall change and peak in the time series than Transformer-based models.
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Table 17: Quantitative results with fluctuations under different prediction lengths O for multivariate
forecasting. A lower MSE or MAE indicates a better performance.

Methods MICN-regre MICN-mean Autoformer Informer LogTrans
Metric ‘ MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 | 0.177+0.004  0.273+0.004 0.204+0.003  0.289+0.002  0.25540.020 0.339+0.020  0.365+0.062  0.453+0.047  0.768+0.071  0.642:40.020
192 | 0.289+0.013  0.360+0.012  0.257+£0.004  0.323+0.002  0.281+0.027  0.34040.025  0.533+0.109  0.563+0.050  0.989+0.124  0.757+0.049
336 | 0.324+0001  0.381+0.006  0.310+0.003  0.357+0.004 0.339+0.018  0.372+0.015 1.363+0.173  0.887+£0.056  1.334+0.168  0.872:+£0.054
720 | 0.470+0.032  0.468+0.019  0.392+0008 0.407+0.001 042240015 0.419+0010 3.379+0.143  1.388+0.037  3.048+0.140  1.328+0.023

96 | 0.163+0.003  0.269+0.002  0.19040.005  0.303+£0.004  0.201+0.003  0.317+0.004  0.274+0.004 0.368+0.003  0.258+0.002  0.35740.002
192 | 0.180+0.002  0.288+0.002  0.204:+0.008 0.31140.008  0.222:+0.003  0.334+0.004  0.296+0.009  0.386+0.007  0.266+0.005  0.3680.004
336 | 0.193+0003  0.302+0.002  0.218+0.102  0.326+0.007  0.231+0.006  0.338+0.004  0.300+0.007  0.394:£0.004  0.28040.006  0.380-:0.001
720 | 0.221+0.012  0.326+0.006  0.230+£0.009  0.33740.009  0.254:+£0.007 0.361+0.008  0.373+0.034  0.439+0.024  0.283+0.003  0.376-0.002

96 | 0.093+0.007  0.221+£0.010  0.17240.007  0.299+0.002  0.197+0.019  0.323+0.012  0.847+0.150  0.7524+0.060  0.968+0.177  0.812:+0.027
192 | 0.168+0.003  0.314+0.003 0.286:+0.027 0.385+0.017  0.300+0.020  0.369+0.016  1.204+0.149  0.895+0.061  1.040+0232  0.85140.029
336 | 0.269+0.008 0.397+0.009 0.552+0.064 0.552+0.035 0.509+0.041 0.524+0.016 1.672+0.036  1.036+0.014  1.659+0.122  1.081+0.015
720 | 0.715+0.022  0.666+0.011  1.203+0.026  0.848+0.015 1.447+0.084 0.941+0.028 2.478+0.198 1.310+0.070 1.941+0.327  1.127+0.030

96 | 0.521+0005  0.308+0.002 0.5754+0.002  0.347+0.005 0.613+0.028 0.388+0.012 071940015  0.3914+0.004  0.684:£0.041  0.384:40.008
192 | 0.537+0.008 0.313+0.001  0.577+0.005 0.3454+0.005  0.616+0.042  0.382+0.020  0.696+0.050  0.379+0.023  0.685+0.055  0.390+0.021
336 | 0.536+0.003 0.314:+0.001 0.587+0.005 0.350+0.005  0.622+0.016 0.337+0.011  0.777+0.009  0.420+0.003  0.733+£0.069  0.408+0.026
720 | 0.595+0.014  0.325+0.003 0.601+0.005  0.359+0.003 0.660+0.025  0.408+0.015 0.864+0.026 0.472+0.015 0.717+0.030  0.396-+0.010

96 | 0.163+0.003  0.231:+£0.004  0.185+0.003  0.258+0.007  0.266+0.007  0.336+0.006  0.300+0.013  0.384+0.013  0.458+0.143  0.49040.038
192 | 0.216+0.003  0.279+0.001  0.23940.005  0.308+0.007 0.307+0.024  0.367+0.022  0.598+0.045  0.544+0.028 0.658+0.151  0.589-+0.032
336 | 0.268+0.010 0.321+0010 0.303+0.015  0.351+0.018  0.359+0.035  0.395+0.031  0.578+0.024  0.523+£0.016  0.797+0.034  0.652:+0.019
720 | 0.319+0.006 0.362+0.005  0.355+0.030  0.400+0.005 0.419+0.017 0.428+0.014 1.059+0.096 0.741+0.042  0.869+0.045  0.675+0.093

ETTm2
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Figure 9: Prediction cases from the univariate Electricity dataset under MICN.
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Figure 10: Prediction cases from the univariate Electricity dataset under Autoformer.
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Figure 11: Prediction cases from the univariate Electricity dataset under Informer.
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Figure 12: Prediction cases from the univariate Traffic dataset under MICN.
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Figure 13: Prediction cases from the univariate Traffic dataset under Autoformer.
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Figure 14: Prediction cases from the univariate Traffic dataset under Informer.

C.3 MULTIVARIATE SHOWCASES

As shown in Figure[T3] Figure [16] Figure[T7] Figure[I8] Figure[I9] and Figure 20} we also plot the
forecasting results from the test set of multivariate datasets ETTm1 and ETTm?2 for comparison. Our
model gives the most accurate prediction. Moreover, MICN is better at predicting rising and falling
turning points in time series and closer to ground truth.

— predicion ¢ — prediction

prediction-96 prediction-192 prediction-336 prediction-720

Figure 15: Prediction cases from the multivariate ETTm1 dataset under MICN.
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Figure 16: Prediction cases from the multivariate ETTm1 dataset under Autoformer.
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Figure 17: Prediction cases from the multivariate ETTm1 dataset under Informer.
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Figure 18: Prediction cases from the multivariate ETTm?2 dataset under MICN.
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Figure 19: Prediction cases from the multivariate ETTm?2 dataset under Autoformer.
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Figure 20: Prediction cases from the multivariate ETTm?2 dataset under Informer.
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