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ABSTRACT

Inspired by the phenomenon of performance disparity between languages in ma-
chine translation, we investigate whether and to what extent languages are equally
hard to “conditional-language-model”. Our goal is to improve our understanding
and expectation of the relationship between language, data representation, size,
and performance in one-to-one conditional language modeling through a series of
systematically controlled experiments with the Transformer and parallel data on the
6 diverse, official languages of the United Nations — in 30 directions, 5 sizes, and
3 primary representation types in character, byte, and word, along with 5 alternate
variants for a secondary set of controls. We observe indications suggesting a script
bias on the character level, a length bias on the byte level, and a word bias that
gives rise to a hierarchy in performance across languages. We also identify two
types of sample-wise non-monotonicity — while word-based representations are
prone to exhibit Double Descent, length can induce unstable performance across
the size range studied in a novel meta phenomenon which we term erraticity. By
eliminating statistically significant performance disparity on the character and byte
levels, we show that, in the context of computing with the Transformer, there is no
complexity intrinsic to languages other than that related to their statistical attributes
and that performance disparity is not a necessary condition but a byproduct of word
segmentation. Our application of statistical comparisons as a fairness measure
also serves as a novel rigorous method for the intrinsic evaluation of languages,
resolving a decades-long debate on language complexity. We hope our work helps
open up new directions in the area of language and computing that would be fairer
and more flexible.

1 INTRODUCTION

With a transdisciplinary approach to explore a space at the intersection of Deep Learning (DL) /
Neural Networks (NNs), domain science, and language engineering, we report our undertaking in
use-inspired basic research — with an application-related phenomenon as inspiration, we seek
fundamental scientific understanding through empirical experimentation. This is not an application
or machine translation (MT) paper, but one that strives to evaluate and seek new insights on language
in the context of DL with a consideration to contribute to our evaluation, segmentation, and model
interpretation practice in multilingual Natural Language Processing (NLP).

Our inspiration: performance disparity in MT The use case that inspired our investigation is
the disparity of MT results reported in Junczys-Dowmunt et al. (2016). Of the 6 official languages of
the United Nations (UN) — Arabic (AR), English (EN), Spanish (ES), French (FR), Russian (RU),
and Chinese (ZH), results with target languages AR, RU, and ZH seem to be worse than those with
EN/ES/FR, regardless of the algorithm, may it be from phrased-based Statistical MT (SMT/Moses
(Koehn et al., 2007)) or Neural MT (NMT).1 The languages have the same amount of line-aligned,

1We provide a re-visualization of these grouped in 6 facets by target language in Figure 4 in Appendix A.
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high-quality parallel data available for training, evaluation, and testing. This prompts the question:
are some languages indeed harder to translate from or to?

1.1 PROBLEM STATEMENT

Are all languages equally hard to Conditional-Language-Model (CLM)? A similar question
concerning (monolingual) language modeling (LMing) was posed in Cotterell et al. (2018) and
Mielke et al. (2019) along with the introduction of a method to evaluate LMs with multiway parallel
corpora (multitexts) in information-theoretic terms. In order to eliminate confounds associated
with generation and other evaluation metrics that would differ from the one used in training and to
explicitly focus on modeling the complexities that may or may not be intrinsic to the languages, we
study the more fundamental process of CLMing, with a bilingual setup where perplexity of one target
language (ltrg) is estimated given the parallel data in one source language (lsrc), where lsrc 6= ltrg.
We do not perform any translation, rather, one could think of our effort as estimating conditional
probabilities with the Transformer. Furthermore, we focus on the very basics and examine the first
step in our pipeline — input representation, holding everything else constant. Instead of measuring
absolute cross-entropy scores, we evaluate the relative differences between languages from across 5
magnitudes of data sizes in 3 different representation types/levels. Disparity in how the Transformer
“sees”/classifies languages exists, if/when the differences are statistically significant.

1.2 SUMMARY OF FINDINGS AND CONTRIBUTIONS

In investigating performance disparity as a function of size and data with respect to language and
representation on the Transformer, we find:

1. in a bilingual (one-to-one) CLMing setup, there is neutralization of source language instances,
i.e. there are no statistically significant differences between source languages (when comparing
them pairwise). Only pairs of target languages differ significantly (see Table 1).

2. We identify 2 types of sample-wise non-monotonicity on each of the primary representation
levels we studied:

(a) Double Descent (Belkin et al., 2019; Nakkiran et al., 2020): on the word level, for all
languages, performance at 102 lines is typically better than at 103 before it improves again
at 104 and beyond. This phenomenon can also be observed in character models with ZH
as a target language as well as on the word level with non-neural n-gram LMs;

(b) erraticity: performance is irregular and exhibits great variance across runs. We find
sequence length to be predictive of this phenomenon. We show that this can be rectified by
data transformation or hyperparameter tuning. In our study, erraticity affects AR and RU
on the byte level where the sequences are too long with UTF-8 encoding and ZH when
decomposed into strokes on the character level.

3. In eliminating performance disparity on 6 diverse languages such that there are no statistically
significant differences between any of the 15 language pairs through lossless data transformation
(or hyperparameter tuning) on the character and byte level, we show that unless word-based
methods are used, there is no complexity that is intrinsic to a language aside from its
statistical properties concerning sequence length and vocabulary, irrespective of its lin-
guistic typological, phylogenetic, historical, or geographical profile. Language complexity
is relative to and bounded by its representation level (representation relativity). The conventional
expectation that languages should/must be different based on extra-statistical grounds stems
from the concept of a “word” and from our tradition of word-based segmentation practice. We
find explicitly debunking this expectation of disparity necessary because more diligent error
analyses need to be afforded instead of simply accepting massively disparate results.

4. Bigger/overparametrized models can exacerbate the effect of data statistics. Biases that can be
expressed quantitatively and lead to disparity are mitigable through hyperparameter tuning.

Outline of the paper In § 2, we define our method and experimental setup. We present our results
and analyses on the primary representations in § 3 and those from secondary set of controls in § 4
in a progressive manner to ease understanding. Meta analyses including fairness evaluation and
discussion on non-monotonic behavior are in § 5, related work in § 6. We suggest some possibilities
for future directions as we conclude in § 7. We refer our readers to the Appendices for more detailed
descriptions/discussions and supplementary experiments.
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2 METHOD AND DEFINITIONS

Controlled experiments as basic research for scientific understanding Using the United Na-
tions Parallel Corpus (Ziemski et al., 2016), the data from which the MT results in Junczys-Dowmunt
et al. (2016) stem, we perform a series of controlled experiments on the Transformer, holding the
hyperparameter settings for all 30 one-to-one language directions from the 6 languages constant
while controlling for size (from 102 to 106 lines) and language with respect to representational
granularity. We examine 3 primary representation types — character, byte (UTF-8), and word, and
upon encountering some unusual phenomena, we perform a secondary set of controls with 5 alternate
representations — on the character level: Pinyin and Wubi (ASCII representations for ZH phones
and character strokes, respectively), on the byte level: code page 1256 (for AR) and code page 1251
(for RU), and on the word level: Byte Pair Encoding (BPE) (Sennrich et al., 2016), an adapted com-
pression algorithm from Gage (1994). These symbolic variants allow us to manipulate the statistical
properties of the representations, while staying as “faithful” to the language as possible. We adopt
this symbolic data-centric approach because we would like to more directly interpret the confounds,
if any, that make language data different from other data types. We operate on a smaller data size
range as this is more common in traditional domain science and one of our higher goals is to bridge
an understanding between language science and engineering (the latter being the dominant focus in
NLP). We run statistical tests to identify the strongest correlates of performance and to assess whether
the differences between the mean performance of different groups are indeed significant. We are
concerned not with the absolute scores, but with the relations between scores from different
languages and the generalizations derived therefrom.

2.1 DEFINITIONS

Information-theoretic, fair evaluation with multitexts Most sequence-to-sequence models are
optimized using a cross-entropy loss (see Appendix B for definition). Cotterell et al. (2018) propose
to use “renormalized” perplexity (PP) to evaluate LMs fairly using the total number of bits divided
by some constant. In our case, we choose instead a simpler method of using an “unnormalized” PP,
directly using the total number of bits needed to encode the development (dev) set, which has a
constant size of 3,077 lines per language.

Disparity/Inequality In the context of our CLMing experiments, we consider there to be “dis-
parity” or “inequality” between languages l1 and l2 if there are significant differences between the
performance distributions of these two languages with respect to each representation. Here, by
performance we mean the number of bits required to encode the held-out data using a trained CLM.
With 30 directions, there are 15 pairs of source languages (lsrc1, lsrc2) and 15 pairs of target languages
(ltrg1, ltrg2) possible. To assess whether the differences are significant, we perform unpaired two-sided
significance tests with the null hypothesis that the score distributions for the two languages are not
different. Upon testing for normality with the Shapiro-Wilk test (Shapiro & Wilk, 1965; Royston,
1995), we use the parametric unpaired two-sample Welch’s t-test (Welch, 1947) (when normal) or the
non-parametric unpaired Wilcoxon test (Wilcoxon, 1945) (when not normal) for the comparisons.
We use the implementation in R (R Core Team, 2014) for these 3 tests. To account for the multiple
comparisons we are performing, we correct all p-values using Bonferroni’s correction (Benjamini
& Heller, 2008; Dror et al., 2017) and follow Holm’s procedure2 (Holm, 1979; Dror et al., 2017) to
identify the pairs of l1 and l2 with significant differences after correction. We report all 3 levels of
significance (α ≤ 0.05, 0.01, 0.001) for a more holistic evaluation.

Experimental setup The systematic, identical treatment we give to our data is described as follows
with further preprocessing and hyperparameter details in Appendices B and C, respectively. The
distinctive point of our experiment is that the training regime is the same for all (rationale in App. N.1).

After filtering length to 300 characters maximum per line in parallel for the 6 languages, we made 3
subsets of the data with 1 million lines each — one having lines in the order of the original corpus
(dataset A) and two other randomly sampled (without replacement) from the full corpus (datasets
B & C). Lines in all datasets are extracted in parallel and remain fully aligned for the 6 languages.
For each run and each representation, there are 30 pairwise directions (i.e. one lsrc to one ltrg) that

2using implementation from https://github.com/rtmdrr/replicability-analysis-NLP
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result from the 6 languages. We trained all 150 (for 5 sizes) 6-layer Transformer models for each run
using the SOCKEYE Toolkit (Hieber et al., 2018). We optimize using PP and use early stopping if no
PP improvement occurs after 3 checkpoints up to 50 epochs maximum, taking the best checkpoint.
Characters and bytes are supposed to mitigate the out-of-vocabulary (OOV) problem on the word
level. In order to assess the effect of modeling with finer granularity more precisely, all vocabulary
items appearing once in the train set are accounted for (i.e. full vocabulary on train, as in Gerz
et al. (2018a;b)). But we allow our system to categorize all unknown items in the dev set to be
unknown (UNK) so to measure OOVs (open vocabulary on dev (Jurafsky & Martin, 2009)). To
identify correlates of performance, we perform Spearman’s correlation (Spearman, 1904) with some
basic statistical properties of the data (e.g. length, vocabulary size (|V |), type-token-ratio, OOV
rate) as metrics — a complete list thereof is provided in Appendix E. For each of the 3 primary
representations — character, byte, and word, we performed 5 runs total in 5 sizes (102-106 lines)
(runs A0, B0, C0, A1, & A2) and 7 more runs in 4 sizes (102-105 lines) (A3-7, B1, & C1), also
controlling for seeds. For the alternate/secondary representations, we ran 3 runs each in 5 sizes
(102-106 lines) (A0, B0, & C0).

3 EXPERIMENTAL RESULTS OF PRIMARY REPRESENTATIONS
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Figure 1: Number of bits (the lower the better) as a function of data size plotted for all 30 directions.
Subfigures 1d, 1e, and 1f depict the corresponding information as in 1a, 1b, and 1c (showing mean across
12 runs), respectively, but sorted in 6 facets by target language and with error bars. Legend in Subfigure 1g
shows the correspondence between colors and source languages, in Subfigure 1h between line types and target
languages. (These figures are also shown enlarged in Appendix F.)

We should remind our readers that our goal is to investigate the presence of relative differences
between the languages and not to directly compare absolute scores for what is “better” or “worse”.
There are many perspectives and set of findings possible, and our experiments here present one
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perspective, one first attempt towards characterizing the behavior of the Transformer. What should
be considered relevant results for our investigation is the number of language pairs with significant
differences reported in Table 1, the general patterns of (non-)monotonicity and disparity in the figures,
and the corresponding analyses.

Subfigures 1a, 1b, and 1c present the mean results across 12 runs of the 3 primary representations
— character, byte, and word, respectively. The x-axis represents data size in number of lines and
y-axis the total conditional cross-entropy, measured in bits (Eq. 1). Each line connects 5 data points
corresponding to the number of bits the CLMs (trained with training data of 102, 103, 104, 105, and
106 lines) need to encode the target language dev set given the corresponding text in the source
language. These are the same data in the same 30 language directions and 5 sizes with the same
training regime, just segmented differently. This confirms representation relativity — languages (or
any objects being modeled) need to be evaluated relative to their representation. “One size does not fit
all” (Durrani et al., 2019), our conventional way of referring to “language” (as a socio-cultural product
or with traditional symbolic approaches, or even for most multilingual tasks and competitions) is too
coarse-grained.

Subfigures 1d, 1e, and 1f display the corresponding information sorted into facets by target language,
source languages represented as line types. Through these we see more clearly that results can be
grouped rather neatly by target language (cf. figures sorted by source language in Appendix G)
— as implicit in Transformer’s architecture, the decoder is unaware of the source language in the
encoder. As shown in Table 1 in § 5 summarizing the number of source and target language pairs
with significant differences, there are no significant differences across any source language pairs.
The Transformer neutralizes source language instances. This could explain why transfer learning or
multilingual/zero-shot translation (Johnson et al., 2017) is possible at all on a conceptual level.

In general, for character and byte models, most language directions do seem to converge at 104 lines
to similar values across all target languages, with few notable exceptions. There are some fluctuations
past 104, indicating further tuning of hyperparameters would be beneficial due to our present setting
possibly working most favorably for 104. On the character level, target language ZH (ZHtrg) shows a
different learning pattern throughout. And on the byte level, ARtrg and RUtrg display non-monotonic
and unstable behavior, which we refer to as erratic. Word models exhibit Double Descent across the
board (note the spike at 103), but overall, difficult/easy languages stay consistent, with AR and RU
being the hardest, followed by ES and FR, then EN and ZH. A practical takeaway from this set of
experiments: in order to obtain more robust training results, use bytes for ZH and characters for AR
and RU — also if one wanted to avoid any “class” problems in performance disparity with words.
Performance disparity for these representations is reported in Table 1 under “CHAR”, “BYTE”, and
“WORD”. Do note, however, that the intrinsic performance of ZH with word segmentation is not
particularly subpar. But this often does not correlate with its poorer downstream tasks results (recall
results from Junczys-Dowmunt et al. (2016)). And since the notion of word in ZH is highly contested
and ambiguous — 1) it is often aimed to align with that in other languages so to accommodate manual
feature engineering and academic theories, 2) there is great variation among different conventions, 3)
native ZH speakers identify characters as words, there are reasons to rethink this procedure now that
fairer processing in finer granularity is possible (cf. Li et al. (2019b) as well as Duanmu (2017) for a
summary of the contested nature of wordhood in ZH). A more native analysis of ZH, despite being
considered a high-resource language, has not yet been recognized in NLP.

4 UNDERSTANDING THE PHENOMENA WITH ALTERNATE REPRESENTATIONS

To understand why some languages show different results than others, we carried out a secondary
set of control experiments with representations targeting the problematic statistical properties of the
corresponding target languages. (An extended version of this section is provided in Appendix O.)

Character level We reduced the high |V | in ZH with representations in ASCII characters — Pinyin
and Wubi. The former is a romanization of ZH characters based on their pronunciations and the latter
an input algorithm that decomposes character-internal information into stroke shape and ordering and
matches these to 5 classes of radicals (Lunde, 2008). We replaced the ZH data with these formats only
on the target side and reran the experiments involving ZHtrg on the character level. Results in Figure 2
and Table 1 show that the elimination of disparity on character level is possible if ZH is represented
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(b) Wubi by target
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(c) Pinyin
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(d) Pinyin by target

Figure 2: Character-level remedies for ZH: Wubi vs. Pinyin.
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(a) Code page 1256 & 1251

AR EN ES

FR RU ZH

1000000

1500000

2000000

1000000

1500000

2000000

1e+03 1e+05 1e+03 1e+05 1e+03 1e+05
number of lines

nu
m

be
r 

of
 b

its

TRG

AR

EN

ES

FR

RU

ZH

SRC

AR

EN

ES

FR

RU

ZH

(b) Code page by target
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(c) BPE
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Figure 3: Byte-level (Subfigures 3a & 3b) remedies with code page 1256 for target AR and 1251 for
target RU, and word-level (Subfigures 3c & 3d) remedy with BPE for all languages.

through Pinyin (transliteration), as in Subfigure 2c. But models with ZH logographic scripts form
a behaviorial tendency unlike those with other (phonetic) alphabetic scripts (Subfigure 2a). To the
best of our knowledge, work published thus far using Wubi with the Transformer seems to have
needed some form of architectural modification (Gao et al., 2020) or a different architecture altogether
(Nikolov et al., 2018; Zhang et al., 2019), suggesting a possible script bias.

Byte level Length is the most salient statistical attribute that makes AR and RU outliers. To shorten
their sequence length, we tested with alternate encodings on ARtrg and RUtrg — code page 1256
and 1251, which provide 1-byte encodings specific to AR and RU, respectively. Results are shown
in Subfigures 3a and 3b. Not only is erraticity resolved, the number of 15 possible target language
pairs with significant differences reduces from 8 with the UTF-8 byte representation to 0 (Table 1
under “ARRUt”), indicating that we eliminated disparity with this optimization heuristic. Since
our heuristic is a lossless and reversible transform, it shows that a complexity that is intrinsic and
necessary in language3 does not exist in computing, however diverse they may be, as our 6 are,
from the conventional linguistic typological, phylogenetic, historical, or geographical perspectives.
Please refer to Appendix I for our discussion on language complexity.

Word level The main difference between word and character/byte models is length not being a top
contributing factor correlating with performance, but instead |V | is. This is understandable as word
segmentation neutralizes sequence lengths. To remedy the OOV problem, we use BPE, which learns
a fixed vocabulary of variable-length character sequences (on word level, as it presupposes word

3aside from its statistical properties related to length and vocabulary. “Language” here refers to language
represented through all representations.
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Table 1: Number of language pairs out of 15 with significant differences, with respective p-values. ARRUt

refers to AR & RU being optimized only on the target side; whereas ARRUs,t denotes optimization on both
source and target sides (relevant for directions AR-RU and RU-AR).

CHAR Pinyin Wubi BYTE ARRUt ARRUs,t WORD BPE

p-value src trg src trg src trg src trg src trg src trg src trg src trg

0.05 0 7 0 4 0 8 0 9 0 4 0 4 0 11 0 10
0.01 0 5 0 2 0 6 0 8 0 3 0 4 0 8 0 8

� 0.001 0 3 0 0 0 5 0 8 0 0 0 2 0 8 0 7

segmentation) from the training data. It is more fine-grained than word segmentation and is known
for its capability to model subword units for morphologically complex languages (e.g. AR and RU).
We use the same vocabulary of 30,000 as specified in Junczys-Dowmunt et al. (2016). This reduced
our averaged OOV token rate by 89-100% across the 5 sizes. The number of language pairs with
significant differences reduced to 7 from 8 for word models, showing how finer-grained modeling
has a positive effect on mitigating the word bias and closing the disparity gap.

5 META-RESULTS, ANALYSIS, AND DISCUSSION

Performance disparity Table 1 lists the number of language pairs with significant differences
under the representations studied. Considering how it is possible for our character and byte models to
effect no performance disparity for the same languages on the same data, this indicates that disparity
is not a necessary condition. In fact, the customary expectation that languages ought to perform
differently stems from our word segmentation practice. Furthermore, the order of AR/RU > ES/FR >
EN/ZH resembles the idea of morphological complexity. Considering there are character-internal
(morphologically) meaningful units in languages with logographic script such as ZH (cf. Zhang &
Komachi (2018)) that are rarely captured or studied, this goes to show that linguistic morphology,
along with its complexity, as is practiced today and that which has occurred in the NLP discourse
thus far, has only been relevant on and is bounded to the “word” level. The definition of word has
been recognized as problematic for a very long time in language science (see Haspelmath (2011)
and references therein from the past century). Since the notion of word, which has been centered on
English and languages with alphabetic scripts, has negative impact on languages both morphologically
rich (see Minkov et al. (2007), Seddah et al. (2010), inter alia) as well as morphologically “frugal”
(Koehn, 2005), finer-grained modeling with characters and bytes (or n-gram variants/pieces thereof)
is indeed a more sensible option and enables a greater variety of languages to be handled with more
simplicity, fairness, independence, and flexibility.

While the lack of significant differences between pairs of source languages would signify neutraliza-
tion of source language instances, it does not mean that source languages have no effect on target.
For our byte solutions with code pages, we experimented also with source side optimization in the
directions that involve AR/RU as source. This affected the distribution of the disparity results for that
representation — with 2 pairs being significantly different (see Table 1 under “ARRUs,t”).

Double Descent (DD) We notice word models and character models with ZHtrg , i.e. models with
high target |V |, are prone to exhibit a spike at 103. A common pattern for these is the ratio of
target training token count to number of parameters falls into O(10−4) for 102 lines, O(10−3)
at 103, O(10−2) at 104, and O(10−1) for 105 lines and so on. But for more atomic units such as
alphabetic (not logographic) characters (may it be Latin, Cyrillic, or Abjad) and for bytes, this
progression instead begins at O(10−3) at 102 lines. Instead of thinking this spike of 103 as irregular,
we may instead want to think of this learning curve as shifted by 1 order of magnitude to the right
for characters and bytes or the performance at 102 lines for words and ZH-characters due to being
overparametrized and hence abnormal. This would fit in with the findings by Belkin et al. (2019) and
Nakkiran et al. (2020) attributing DD to overparametrization. If we could use this ratio and logic
of higher |V | to automatically detect “non-atomic” units, ones that can be further decomposed, this
observation could potentially be beneficial for advancing other sciences, e.g. biology. Details of
our supplemental experiments on the datasets used by the Nakkiran et al. (2020) corroborating our
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findings as well as results additional experiments on a non-neural LM are provided in Appendix J.
Number of model parameters can be found in Appendix K.

Erraticity We observe another type of sample-wise non-monotonicity, one that signals irregular
and unstable performance across data sizes and runs. Within one run, erraticity can be observed
directly as changes in direction on the y-axis. Across runs, large variance can be observed, even with
the same dataset (see Figure 18 in Appendix L). Erraticity can also be observed indirectly through a
negative correlation between data size and performance. Many work on length bias in NMT have
focused on solutions related to search, e.g. Murray & Chiang (2018). Our experiments show that
a kind of length bias can surface already with CLMing, without generation taking place. If the
connection between erraticity and length bias can indeed be drawn, it could strengthen the case for
global conditioning (Sountsov & Sarawagi, 2016). (See Appendix L for more discussion and results.)

Script bias, erraticity, word bias — are these necessary conditions? To assess whether the
observed phenomena are particular to this one setting, we performed one run with dataset A in 4
sizes with the primary representations on 1-layer Transformers (see Appendix M). We observed no
significant disparity across the board. It seems larger/overparametrized models can magnify and
exacerbate the differences in the statistical properties in the data. That hyperparameter tuning, in this
case, by changing the number of layers can mitigate effects from the data statistics, to the best of our
knowledge, is a novel insight, suggesting also that a general expectation of monotonic development
as data size increases can indeed be held. Our other findings remain consistent (source language
neutralization and DD on word level).

6 RELATED WORK

Many related work have already been mentioned in our analyses in passing. One main point, however,
that we find pertinent to emphasize is the (ir-)relevance of linguistic typology in multilingual NLP.
Many recent work have advocated its relevance (Gerz et al., 2018b; Clark et al., 2020; Joshi et al.,
2020). However, not many researchers are aware of how the modeling of many of these word-based
symbolic concepts could bias NLP systems due to the modeling of a notion of “word” that is not
crosslinguistically consistent and that we could be doing a disservice to many other languages. That
basic data statistics being the driver of success in performance in multilingual modeling has so far
only been explicitly argued for in Mielke et al. (2019). We go beyond their work in monolingual LMs
to study CLMs and evaluate also in relation to data size, representation granularity and quantitative
and qualitative fairness. We make a finer distinction demarcating when linguistic typological concepts
could be relevant (possibly on word level and when they are being explicitly modeled) and when
they are not. To the best of our knowledge, there has been no prior work on demonstrating the
neutralization of source language instances through statistical comparisons, a numerical analysis on
DD for sequence-to-sequence models, the meta phenomenon of a sample-wise non-monotonicity
(erraticity) being related to length, or the connection between effects of data statistics and modification
in architectural depth. Other related work can be found in Appendix P.

7 CONCLUSION

Machine learning has enabled greater diversity in NLP (Joshi et al., 2020). Fairness, in the elimination
of disparity, does not require big data. It will take everyone’s effort to mitigate the bias in ourselves
and to support fairness in modeling instead of sticking to a convenient standard that serves only
languages that have been dominant in our academic tradition or engineering practice. Resources
can be invested in e.g. building character encoding that complement languages’ statistical profiles
(considering the basis of many things multilingual goes back to the Multilingual Plane), finer-grained
science for NLP (e.g. studying the relation between data transform and algorithm/hyperparameter
adjustment, alignment of elements between logographic and (phonetic) alphabetic scripts), decompo-
sition analyses for characters, better compression schemes, as well as the creation and curation of
multitexts and stylistic/multimodal contrast sets that are non-artificial, because we need to understand
the diversity of the natural statistical profiles/behaviors of the world’s languages, in raw (not pretok-
enized) form, also for the purpose of evaluation and education in a statistical science for NLP beyond
the explicit modeling of word-based concepts.
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