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Abstract

The goal of this work is to build flexible video-language models that can generalize
to various video-to-text tasks from few examples. Existing few-shot video-language
learners focus exclusively on the encoder, resulting in the absence of a video-to-
text decoder to handle generative tasks. Video captioners have been pretrained
on large-scale video-language datasets, but they rely heavily on finetuning and
lack the ability to generate text for unseen tasks in a few-shot setting. We propose
VidIL, a few-shot Video-language Learner via Image and Language models,
which demonstrates strong performance on few-shot video-to-text tasks without the
necessity of pretraining or finetuning on any video datasets. We use image-language
models to translate the video content into frame captions, object, attribute, and
event phrases, and compose them into a temporal-aware template. We then instruct
a language model, with a prompt containing a few in-context examples, to generate
a target output from the composed content. The flexibility of prompting allows
the model to capture any form of text input, such as automatic speech recognition
(ASR) transcripts. Our experiments demonstrate the power of language models in
understanding videos on a wide variety of video-language tasks, including video
captioning, video question answering, video caption retrieval, and video future
event prediction. Especially, on video future event prediction, our few-shot model
significantly outperforms state-of-the-art supervised models trained on large-scale
video datasets. Code and processed data are publicly available for research purposes
at https://github.com/MikeWangWZHL/VidIL.

1 Introduction

One major gap between artificial intelligence and human intelligence lies in their abilities to generalize
and perform well on new tasks with limited annotations. Recent advances in large-scale pre-trained
generative language models [45, 6, 71, 24] have shown promising few-shot capabilities [72, 43, 63]
in understanding natural language. However, few-shot video-language understanding is still in its
infancy. A particular limitation of most recent video-language pretraining frameworks [28, 21, 61,
68, 67, 25, 64] is that they are encoder-only, which means they do not have the ability to generate
text from videos for purposes such as captioning [62, 57], question answering [60], and future
prediction [23]. Meanwhile, unified video-language models [35, 49] that are capable of language
decoding still rely heavily on finetuning using a large number of manually annotated video-text
pairs, therefore cannot adapt quickly to unseen tasks. Few-shot video-to-text decoding is challenging
because the natural language supervision for learning video-language representation is typically based
on subtitles and automatic speech recognition (ASR) transcripts [38, 68], which differ significantly
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from downstream tasks in terms of distribution and may have poor semantic alignment across vision
and text modalities.

We propose to address this problem by harnessing the few-shot power of frozen large-scale language
models, such as InstructGPT [40]. Our inspiration is derived from the fact that humans are excellent
visual storytellers [15], with the ability to piece together a coherent story from a few isolated images.
To mimic this, we propose VidIL, a few-shot Video-language Learner via Image and Language
models, to use image models to provide information about the visual content in the video (as well
as optionally use ASR to represent speech), and then we instruct language models to generate a
video-based summary, answer, or other target output for diverse video-language tasks.

Visual
Token
Level

Frame
Level


cake decorating, sugar paste, clay animation, play-doh ... 

a person holding a
green object in
their hand

a person cutting a
piece of paper with
a pair of scissors

Ours: a person is making a cake out of fondant and clay, and
then decorating it with doilies and leaves

Ground Truth 1: a woman makes realistic looking leaves and
flowers for a cake

Ground Truth 2: a woman creating a fondant baby and flower

Objects
Events

Frame
Captions

Video

Captions


Video
Level


Input

Video

Language Model

Image-Language Model

a person is putting
a green leaf on a
baby's head

Attributes
cutting mat, woman shaped cake, cake is made, flowered design ...

made of fondant, edging, rubbing, paper doilies, green goo

Figure 1: Multiple levels of information in videos.

The main challenge of understanding videos
is that, videos contain rich semantics and tem-
poral content at multiple granularities. Unlike
static images which depict objects, attributes
and events in a snapshot, the temporal dimen-
sion of videos further conveys the state changes
of the objects, actions, and events. For exam-
ple, in Figure 1, the individual frame captions
of the video clip only describe static visual fea-
tures such as "a person holding a green object
in hand". In contrast, a correct video-level de-
scription would be "a woman makes realistic
looking leaves and flowers for a cake", which
involves reasoning over a collection of objects
and events that occur at different timestamps in
the video clip, such as "cake decorating" and
"flowered design". Hence, to inform video-level
description and queries, we need to represent all
of this information and its temporal ordering.

To address the unique challenges of videos, we propose to decompose a video into three levels: the
video output, frame captions, and visual tokens (including objects, events, attributes). One major
benefit from this hierarchical video representation is that we can separate the visual and temporal
dimensions of a video. We leverage frozen image-language foundational models at lower levels to
collect salient visual features from the sparsely sampled frames. Specifically, we first leverage a
pretrained image-language contrastive model CLIP [44] to perform visual tokenization, based on
the similarity score between frames and tokens of objects, events and attributes. The tokenization is
done under the guidance of semantics role labeling [14], which provides us with candidate events
with involved objects and related attributes. Next, in order to capture the overall semantics at the
frame level, we employ the pretrained image captioner in the image-language model BLIP [26]
to obtain frame captions. Finally, we instruct a pretrained large language model using in-context
learning [40, 13, 51, 48] to interpret visual tokens and frame captions into the target textual output.
In detail, we temporally order visual tokens and frame captions using specially designed prompts
such as “First...Then...Finally”, to instruct the pretrained language model to track the changes of
objects, events, attributes and frame semantics along the temporal dimension.

Without pretraining or finetuning on any video datasets, we show that our approach outperforms
both video-language and image-language state-of-the-art baselines on few-shot video captioning and
question answering tasks. Moreover, on video-language event prediction, our approach significantly
outperform fully-supervised models while using only 10 labeled examples. We further demonstrate
that our generative model can benefit broader video-language understanding tasks, such as text-video
retrieval, via pseudo label generation. Additionally, we show that our model is highly flexible in
adding new modalities, such as ASR transcripts.

2 Related Work

2.1 Image-Language Models and Their Applications on Video-Language Tasks

Large-scale image-language pretraining models optimize image-text matching through contrastive
learning [44, 17] and multimodal fusion [65, 27, 58, 66, 34, 52, 8, 30, 73, 70, 18, 16]. Recently,

2



BLIP [26] proposes a bootstrapping image-language pretraining framework with a captioner and
a filterer which has shown promising performance on various image-language tasks. However,
video-language pretraining [25, 35, 28, 37, 3, 1, 42] is still hindered by noisy and domain-specific
video datasets [74, 22, 38]. Naturally, researchers start to explore transferring the rich knowledge
from image models to videos. Different from the traditional way of representing videos by 3D
dense features [12], recent work [21, 25] proves that sparse sampling is an effective way to represent
videos, which facilitates applying pre-trained image-language models to video-language tasks [36, 11].
Specifically, the image-language model BLIP [26] sets new state-of-the-art on zero-shot retrieval-style
video-language tasks, such as video retrieval and video question answering. However, for generation-
style tasks such as domain-specific video captioning, video-language model UniVL [35] still leads
the performance but highly rely on fine-tuning. In this work, we extend the idea of leveraging
image-language models to a wide variety of video-to-text generation tasks. We further connect image-
language models with language models which empowers our model with strong generalization ability.
We show that the knowledge from both image-language pretraining and language-only pretraining
can benefit video-language understanding in various aspects.

2.2 Unifying MultiModal Tasks with Language Models

Connecting different modalities with a unified representation has been paid much attention to
recently. Text-only generation models, such as T5 [46], has been extended to vision-language tasks
by text generation conditioned on visual features [9, 53, 50, 75, 55]. In order to fully leverage
the generalization power from pretained language models, [63] represents images using text in a
fully symbolic way. [33] includes more modalities such as video and audio, but requires annotated
video-text data to jointly training the language model with the video and audio tokenizer. In this work,
we propose a temporal-aware hierarchical representation for describing a video textually. To our
knowledge, we are the first work to leverage prompting a frozen language model for tackling few-shot
video-language tasks with a unified textual representation. Concurrent work Socratic [69] uses a
zero-shot language-based world-state history to represent long videos with given time stamps, while
our model can quickly adapt to different video and text distributions with few examples. Furthermore,
we show that by injecting temporal markers to the prompt we can make a pre-trained language model
understand fine-grained temporal dynamics in video events. Compared with the concurrent work
Flamingo [2], which requires dedicated vision-language post-pretraining, our framework does not
require to pretrain or finetune on any video data. Our framework is simple and highly modulated
where all the components are publicly available. Additionally, our framework is more flexible on
adding new modalities, e.g., automatic speech recognition, without the need for complex redesigning.

3 Method

We propose a hierarchical video representation framework which decomposes a video into three
levels, i.e., visual token level, frame level and video level. The motivation is to separate the spatial
and temporal dimension of a video in order to leverage image-language and language-only foundation
models, such as CLIP [44] and GPT-3 [6]. All three levels use a unified textual representation which
enables us to leverage the powerful few-shot ability from pretrained language models.

3.1 Frame Level: Image Captioning

Following [21] we first perform sparse sampling to obtain several video frames. Unless otherwise
specified, we sample 4 frames for frame level and 8 frames for visual token level. We then feed each
frame into a pre-trained image-language model to obtain frame level captions. An example can be
found in the blue part of Figure 2. In our experiments, we use BLIP [26], a recent image-language
framework containing both image-grounded encoder and decoder, for generating frame captions. We
follow [26] to do both captioning and filtering on each frame. However, as mentioned in Section 1,
videos contain rich semantics and temporal contents at multiple granularities. It is not enough to
generate video-level target text such as video captions solely based on frame captions. Thus, we
further perform visual tokenization for each frame to capture features at a finer granularity.

3



Input Video

Sparse
Sampling

Sampled Frames

Image-
Language

Model
Visual


Tokenization


Image-
Language

Model

Frame Caption
Generation 

and Filtering


Semantic Role Labeling

   ...  Attributes    EventsObjects

  Frm1: bath caddy, bath toy, toy chest, push & pull toy ...

  Frm2: adhesive bandage, band-aid, bady & toddler shoe ...
  FrmN: shoe care, adhesive bandage, snakebite ...

ASR

a boy in the tub with toys and
one getting his foot bandaged


bathtub


Temporal-Aware Few-shot Prompt


Answer the question based on the objects, events,
subtitle and frame captions. Example:


Frame Caption

Frm1: a toddler playing in a bathtub filled with toys

Frm2: a toddler playing in a bathtub with toys

Frm3: <filtered out>

FrmN: a boy sitting on the floor with his foot in a toilet


Output
Caption


 Output
Answer

Task
Instruction


Few-shot

Context


Objects: First, bath toy. Then, toddler. After that, adhesive bandage ...

Events: First, playing with bare feet. Then, child wearing sandal ...

Attributes: First, red toy. Then, diaper changing. After that, band aids ...

Frame Captions: First, a toddler playing in a bathtub filled with toys. Then, a toddler playing in a
bathtub with toys. Finally, a boy sitting on the floor with his foot in a toilet

Subtitle: <ASR Transcript>


Video Level


Target

Output

Language Model

Frame Level


 Task: Video Captioning


Visual Token Level


Task: Video Question Answering

Video Caption: 

<example caption> or None 


Video Caption: 

<example caption> or None 


Question: what is a little kid playing in with his toys?
Answer: <example answer> or None 


Question: what is a little kid playing in with his toys?
Answer: <example answer> or None 


Task

Query

Task


Query


Input Speech

Generate a video caption based on the objects,
events, subtitle and frame captions. Example:


Figure 2: Overview of VidIL framework. We represent a video in a unified textural representation
containing three semantic levels: visual token level, frame level, and video level. At visual token
level, we extract salient objects, events, attributes for each sampled frame. At frame level, we
perform image captioning and filtering. And at video level, we construct the video representation
by aggregating the visual tokens, frame captions and other text modalities such as ASR, using a
few-shot temporal-aware prompt. We then feed the prompt to a pre-trained language model together
with task-specific instructions to generate target text for a variety of video-language tasks. Examples
of the full prompt for different tasks can be found in Appendix B.

3.2 Visual Token Level: Structure-Aware Visual Tokenization

At this level, we aim to extract the textual representations of salient visual token types, such as
objects, events and attributes. We found that pre-defined classes for classification, such as those in
ImageNet [10], are far from enough for covering the rich semantics in open-domain videos. Thus,
instead of using classification-based methods for visual tokenization as in previous work [33, 63],
we adopt a retrieval-based visual tokenization approach by leveraging pre-trained contrastive image-
language models. Given a visual token vocabulary which contains all candidate object, event, and
attribute text phrases, we compute the image embedding of a frame and the text embeddings of the
candidate visual tokens using a contrastive multi-modal encoder, CLIP [44]. We then select top 5
visual tokens per frame based on the cosine similarity of the image and text embeddings. An example
of the extracted object tokens can be found in the green part of Figure 2.

Unlike in images where objects and attributes already cover most visual features, events are more
informative in videos. In order to discover events from video frames, we construct our own event
vocabulary by extracting event structures from Visual Genome [19] synsets2 using Semantic Role
Labeling. Specifically, we first select the phrases that contains at least one verb and one argument
as events. Then we remove highly similar events based on their sentence similarity using Sentence-
BERT [47] embeddings. For object vocabulary, we adopt OpenImage [20] full classes (∼20k), instead
of using the visually groundable subset (∼600) as in concurrent work [69]. We found that using large
but noisy vocabulary is more effective than using small but clean vocabulary in our retrieval-based
setting with CLIP. For attribute vocabulary, we adopt visual genome attribute synset. In Section 4.6,
we provide ablation study on the impact of different types of visual tokens. The statistics of visual
token vocabulary can be found in Appendix Table 8.

2We use the keys in Visual Genome [19] object synsets which contains frequent <verb,object> pairs.
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Objects: sun moving, night sky

Frame Captions: sun over an ocean, stars shining at night

Video Caption:

Objects: night sky, sun moving

Frame Captions: stars shining at night, sun over an ocean

Video Caption: 

Objects: First, sun moving. Then, night sky.

Frame Captions: First, sun over an ocean. Then, stars shining at night.

Video Caption: 

Objects: First, night sky. Then, sun moving.

Frame Captions: First, stars shining at night. Then, sun over an ocean.

Video Caption: 

Static 
Prompt

Temporal-
Aware

Prompt

Expected caption: Sunset Expected caption: Sunrise

change ordering of the objects and frame captions

 The sun is setting over the ocean and the stars are shining at night. The sun is setting over the ocean as the stars start to shine in the 

The sun is setting over the ocean, and the stars are shining at night. The stars are shining at night, and the sun is rising over the ocean.

generation:

generation:

night sky.

Figure 3: Temporal-aware prompt successfully distinguishes the Sunset and Sunrise scenario from
the temporal ordering change of objects and frame captions, while the static prompt fails.

3.3 Video Level: Temporal-Aware Few-shot Prompting

Once we obtain the textual representation from frame level and visual token level, the final step is
to put the pieces together to generate a video level target text. The goal is to build a model that
can be quickly adapted to any video-to-text generation task with only a few examples. To this
end, we propose to leverage large-scale pre-trained language models, such as GPT-3 [6], with a
temporal-aware few-shot prompt. As shown in Figure 2, our framework can be readily applied to
various video-to-text generation tasks, such as video captioning and video question answering, with a
shared prompt template. The proposed prompting strategy enables a language model to attend to the
lower level visual information as well as taking into account the temporal ordering.

Here, we use the video captioning task depicted in Figure 2 to illustrate the details. The few-shot
prompt consists of three parts: instruction, few-shot context, and task query. The instruction is
a concise description of the generation task, e.g., "Generate a video caption based on the
objects, events, attributes and frame captions. Example:", which is proved to be
effective in zero-shot and few-shot settings [6, 59]. The few-shot context contains the selected
in-context examples as well as the test video instance. Each video instance is represented by the
aggregated visual tokens3, e.g., "Objects: First, bath toy. Then,...", the frame cap-
tions, e.g., "Frame Captions: First, a toddler playing in a bathtub filled with
toys. Then,...", and the ASR inputs if available, e.g., "Subtitle:<ASR Transcript>".
Finally, the task query is a task-specific suffix indicating the target text format, e.g. "Video
Caption:". For in-context examples (omitted here for simplicity), the task query is followed by
ground truth annotation, while for the test instance, the generation starts at the end of the task query.

Formally, we denote the instruction line as t, few-shot context as c, the task query as q, and the target
text as y, where y = (y1, y2, ..., yL). The generation of the next target token yl can be modeled as:

yl = argmax
y

p(y|s, c,q, y<l) (1)

In order to capture the temporal dynamics between frames and visual tokens, we further propose to
inject temporal markers to the prompt. As shown in the few-shot context in Figure 2, each visual
token and frame caption is prefixed with a natural language phrase indicating its temporal ordering,
e.g., "First,","Then,", and "Finally,". We found adding the temporal marker can make the
language model condition on not only the literal but also the temporal information of the context. We
show an example in Figure 3, where we compare our temporal-aware prompt with a static prompt on
video captioning using InstructGPT. Again, the in-context examples are omitted here, which can be
found in Appendix B. In this example, the only difference between the two context is the ordering of
the visual tokens and the frame captions. For the context on the left, where "sun moving" appears
before "night sky", we are expected to see a story talking about sunset, while for the context on
the right, we are expected to see sunrise. We can see the static prompt generates captions about
sunset for both contexts, while the temporal-aware prompt can capture the temporal ordering correctly
and generate sunrise for the context on the right.

3To obtain video level visual tokens, the visual tokens extracted from each frame are further ranked and
ordered based on frequency and frame index. More details can be found in Appendix C.
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4 Experiments

4.1 Experimental Setup

To comprehensively evaluate our model, we show results on four video-language understanding
tasks in few-shot settings: video captioning, video question answering (QA), video-language event
prediction, and text-video retrieval. We compare our approach with state-of-the-art approaches on
five benchmarks, i.e, MSR-VTT [62], MSVD [7], VaTeX [57], YouCook2 [74], and VLEP [23]. The
statistics of the datasets can be found in Table 1. For more details please refer to Appendix C.

Table 1: Statistics of datasets in our experiments

Dataset Task Split Count
# train / # eval

MSR-VTT [62] Captioning; QA 6,513 / 2,990
MSR-VTT [62] Retrieval 7,010 / 1,000
MSVD [7] Question Answering 30,933 / 13,157
VaTeX v1.14 [57] Captioning; Retrieval 25,991 / 6,000
YouCook2 [74] Captioning 10,337 / 3,492
VLEP [23] Event Prediction 20,142 / 4,192

Implementation Details. We use CLIP-L/145

as our default encoder for visual tokenization.
We adopt BLIP captioning checkpoint6 fine-
tuned on COCO [32] for frame captioning. We
use InstructGPT [40] as our default language
model for generating text conditioned on the
few-shot prompt. To construct event vocabulary,
we use the semantic role labeling model from
AllenNLP7. The experiments are conducted on
2 NVIDIA V100 (16GB) GPUs. All few-shot
finetuning on baselines and semi-supervised training are performed on 2 Nvidia V100 16G GPUs.

In-context Example Selection. From our preliminary experiments, we find that the generation
performance is sensitive to the quality of in-context examples. For example, for QA tasks such
as MSVD-QA where the annotations are automatically generated, the <question, answer> pair in
randomly selected in-context examples can be only weakly-correlated with the video context. Thus,
instead of using a fixed prompt for each query, we dynamically filter out the irrelevant in-context
examples. Specifically, given a randomly sampled M-shot support set from the training set, we select
a subset of N-shots as in-context examples based on their SentenceBERT [47] similarities with text
queries. Furthermore, we reorder the selected examples in ascending order based on the similarity
score to account for the recency bias [72] in large language models. For QA tasks, we choose the
most relevant in-context examples by comparing with questions. While for captioning task, we
compare with frame captions. If not otherwise specified, we use M=10 and N=5, which we consider
as 10-shot training.

4.2 Few-shot Video Captioning

We report BLEU-4 [41], ROUGE-L [31], METEOR [5], and CIDEr [54] scores on three video caption-
ing benchmarks covering both open-domain (MSR-VTT, VaTeX) and domain-specific (YouCook2)
videos. We compare with both state-of-the-art video captioner (UniVL [35]) and image captioner
(BLIP [26]). In order to implement the BLIP baseline for few-shot video captioning, we extend the
approach used for text-video retrieval evaluation in [26] to video-language training. Specifically,
we concatenate the visual features of sampled frames and then feed them into the image-grounded
text-encoder to compute the language modeling loss. This is equivalent to stitching the sampled
frames into a large image and then feeding it to BLIP for image captioning. We found that this simple
approach results in very strong baselines.

As shown in Table 2, existing methods have strong bias on certain datasets. For example, UniVL
performs well on YouCook2 but fails on MSR-VTT and VaTeX, while BLIP performs the oppo-
site. This is because UniVL is pretrained on HowTo100M which favors instructional videos, i.e.,
YouCook2, while BLIP is pre-training on image-caption pairs which favors description-style captions,
i.e., MSR-VTT and VaTeX. On the contrary, our model performs competitively on both open-domain
and instructional videos, and significantly outperforms the baselines in the average CIDEr score
across all three benchmarks. This indicates that by leveraging language models, we can maintain
strong few-shot ability regardless of the video domain and or the target caption distribution.

5https://huggingface.co/openai/clip-vit-large-patch14
6https://github.com/salesforce/BLIP#finetuned-checkpoints
7https://docs.allennlp.org/models/main/models/structured_prediction/predictors/

srl/
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Table 2: 10-shot video captioning results. ♠ indicates concurrent work. The reported Flamingo [2]
results are using 16 shots. #VideoPT represents the number of videos used for pre-training. B-4, R-L,
M, C represents BLEU-4, ROUGE-L, METEOR and CIDEr. Avg C represents the average CIDEr
score across all available benchmarks. ASR indicates whether the model has access to the ASR
subtitles. BLIP and BLIPcap use the pretrained checkpoint and the finetuned checkpoint on COCO
captioning. All results are averaged over three random seeds.

Method #VideoPT ASR MSR-VTT Caption YouCook2 Caption VaTex Caption Avg CB-4 R-L M C B-4 R-L M C B-4 R-L M C
Few-shot

UniVL 1.2M No 2.1 22.5 9.5 3.6 3.3 25.3 11.6 34.1 1.7 15.7 8.0 2.1 13.3
BLIP 0 No 27.7 43.0 23.0 39.5 0.7 9.0 3.4 11.5 13.5 39.5 15.4 20.7 23.9
BLIPcap 0 No 21.6 48.0 22.7 30.2 3.7 8.6 3.8 9.4 20.7 41.5 17.4 28.9 22.8
VidIL(ours) 0 No 26.0 51.7 24.7 36.3 2.6 22.9 9.5 27.0 22.2 43.6 20.0 36.7 33.3
UniVL 1.2M Yes - - - - 4.3 26.4 12.2 48.6 2.7 17.7 10.2 3.4 26.0
VidIL(ours) 0 Yes - - - - 10.7 35.9 19.4 111.6 23.2 44.2 20.6 38.9 75.3
♠Flamingo-3B(16) 27M No - - - - - - - 73.2 - - - 57.1 -
♠Flamingo-80B(16) 27M No - - - - - - - 84.2 - - - 62.8 -
Fine-tuning

UniVL 1.2M No 42.0 61.0 29.0 50.1 11.2 40.1 17.6 127.0 22.8 38.6 22.3 33.4 70.2
UniVL 1.2M Yes - - - - 16.6 45.7 21.6 176.8 23.7 39.3 22.7 35.6 106.2

As discussed in Section 1, video captions describes the content in various semantic levels. The
N-gram based metric may not fairly reflect the models’ performance in capturing the video-caption
alignment. We further verifies this hypothesis in Section 4.5. Thus, in addition to the automatic
metrics, we include qualitative examples illustrated in Figure 4. More examples are in Appendix A.

Additionally, for most existing methods and also concurrent work, e.g., Flamingo [2], adding a new
modality often requires a dedicated model redesign and or retraining. However, the nature of our
framework, where we use a unified textual representation for each level, making it highly flexible for
incorporating new modalities. As shown in row 6 in Table, our model can effectively utilize extra
information from ASR to obtain significantly better few-shot performance on certain datasets such as
YouCook2.

Objects: First, interview. Then, cable
television. After that, television program.
Finally, sports commentator.
Events: ... Attributes: ... Frame Captions: ...


Ground Truths: 

UniVL: a man is playing a man with a man .
BLIP: a man in a suit and tie sitting on a couch
Ours:  an interview with a sports

2 men are discussing sports on a talk show
a man being interviewed on a tv show

Objects:... Events:... Attributes:... Captions:...
Subtitle: Now our sausages are pretty much
cooks going to take those out all the time. And
we're going to now, my cat gravy as source.

Ground Truth: 

UniVL: add the sausages to the pan
Ours:  take the sausages out of the pan 

Objects: ...  Events: ...  Attributes: First, tagging.
Then, woodburning. After that, wood burning.
Finally, turning on dial.  Frame Captions: First, a
piece of wood with words drink up written on it ...

MSR-VTT Caption YouCook2 Caption VaTex Caption

UniVL: you ' re ready to decorate your cake

BLIP: a person holding a string with a small object in 


remove sausages from pan

Ground Truth: Someone uses a wood burning
tool to burn a design into a slice of wood and
then begins to brush polyurethane unto it.

Ours: A person is making a sign that says "Drink 
Up" with a wood burning kit.

front of them

commentator
and add some gravy to the plate

Figure 4: Qualitative examples on video captioning. Grey boxes contains part of the video repre-
sentation from our model. Blue boxes contains caption generation from different models. Green
boxes contains ground truth annotations. Bold green text highlights the correct information that is
not captured in baseline outputs which can be reasoned from our visual tokens and frame captions.

4.3 Few-shot Video Question Answering

We compare the test accuracy of our approach with few-shot pretrained BLIP, BLIPV QA [26], and
concurrent work Flamingo [2] on two video question answering benchmarks, MSR-VTT_QA and
MSVD_QA. BLIPV QA represents finetuned BLIP on VQA [4] dataset, which is the previous SOTA
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on zero/few-shot video question answering. In order to have fairer comparison with BLIPV QA, we
reduce the shot number to 5 and report the average accuracy on three sets of randomly selected
5-shot examples. As shown in Table 3, our method outperforms previous SOTA by a large margin.
Comparing with concurrent work Flamingo, which is post-pretrained on a large number of video-text
data, our model is training-free and did not observe any video data. However, with only image-
language and language-only knowledge, our 5-shot model is able to beat 8-shot Flamingo-3B and
achieve on-par performance with 4-shot Flamingo-80B.

Table 3: Video QA results. BLIPV QA is finetuned on VQA [4]. ♠ in-
dicates concurrent work. PT, FT indicates pretraining and finetuning.

Method #videoPT #videoFT MSR-VTT MSVD
BLIP 0 0-shot 0.55 0.45
BLIP 0 5-shot 0.84 0.53
BLIPV QA [26] 0 0-shot 19.2 35.2
VidIL(ours) 0 5-shot 21.2 39.1
♠Flamingo-3B [2] 27M 4-shot 14.9 33.0
♠Flamingo-3B [2] 27M 8-shot 19.6 37.0
♠Flamingo-80B [2] 27M 4-shot 23.9 41.7
♠Flamingo-80B [2] 27M 8-shot 27.6 45.5

ALPRO [25] 2M full-shot 42.1 45.9

Table 4: Accuracy (%) on
VLEP hidden test set.

Method #videoFT Acc

VLEP [23] 20142 67.5
MERLOT [68] 20142 68.4
VidIL(ours) 10-shot 72.0

Human - 90.5

4.4 Few-shot Video-Language Event Prediction

In this section, we show that our model not only can answer questions about the video visual features
but also answering "What is more likely to happen next?". Given a video with associated subtitle
transcript as premise, the video-language event prediction (VLEP) task is to predict the most likely
future event. The original VLEP [23] paper formulates the problem as a binary classification problem
where the model will be chosen from two possible future event candidates. Instead, we formulate this
problem as another video-to-text generation problem to fit into our framework. Figure 5 depicts an
example with the same format as in Figure 2. Similar to the evaluation setting in QA, the generated
free-form text will first be mapped to one of the two candidate answers using SentenceBert [47], and
then calculate the accuracy. In Table 4, we report accuracy on the hidden test set of VLEP [23]. To
our surprise, our 10-shot model beats state-of-the-art fully-supervised baseline, i.e., MERLOT [68],
by a large margin (∼ 4%). This is showing that our model has strong few-shot ability not only in
video-language understanding but also in prediction. Since event prediction tasks rely heavily on
temporal ordering, we show that with the proposed temporal-aware prompting, language models can
be guided to capture temporal dynamics between historical and future events.

Frame Captions: First, a man in a black shirt is serving food. Then, a group of people in a kitchen preparing food ...

Dialogue: I took a portion of it, you can smell the onions. You can smell kind of a spice like cinnamon a little bit ...


Question: what is a little kid playing in with his toys? 

Answer: <example answer> or None 


Question: What is more likely to happen next? A: He puts the hot sauce on the food. B: The chef will serve the food.

Answer: The chef will serve the food. 


Predict what is more likely to happen next based on the frame captions and dialogue. Example:


Task

Query


Vlep Task

Query


Instruction


Few-shot

Context


 Task: Video Language Event Prediction (VLEP)


Figure 5: Prompt for VLEP task.

4.5 Semi-supervised Text-Video Retrieval

In addition to video-to-text generation tasks, we show that a broader range of video-language tasks
can benefit from our few-shot video captioner from a data perspective. Here, we consider a low-
budget semi-supervised setting where we only have a few labeled video-caption pairs and a large
amount of unlabeled videos. The idea is to leverage our video captioner to generate pseudo labels for
training any given vision-language models. As a case study, we evaluate on two text-video retrieval
benchmarks, i.e., MSR-VTT and VaTeX. We use greedy decoding to generate pseudo caption for
each video in the training set. We then train an identical base model, i.e., BLIP, using different pseudo
labeled data as well as ground truth annotations. We report Recall @ 1 and 5 for both video-to-text
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Table 5: Semi-supervised text-video retrieval with 10 labeled examples. Vlabel or Vunlabel are the
number of labeled and unlabeled videos, respectively. t_R1 and t_R denote video-to-text Recall@1
and 5. v_R1 and v_R5 denote text-to-video Recall@1 and 5.

Model Pseudo Label MSR-VTT Retrieval VaTex Retrieval
Vlabel/Vunlabel t_R1 t_R5 v_R1 v_R5 Vlabel/Vunlabel t_R1 t_R5 v_R1 v_R5

BLIP - - 33.2 57.2 40.5 62.8 - 28.2 53.4 34.0 58.6
BLIP UniVL 10 / 7010 33.1 57.3 33.6 57.7 10 / 22685 25.5 47.7 26.1 49.1
BLIP BLIP 10 / 7010 35.6 60.8 39.8 60.4 10 / 22685 26.3 50.5 29.3 53.6
BLIP BLIPcap 10 / 7010 35.3 58.0 39.1 63.3 10 / 22685 23.9 46.8 27.5 49.7
BLIP VidIL(ours) 10 / 7010 39.6 64.5 40.8 65.2 10 / 22685 33.3 59.1 33.7 59.5
BLIP Ground Truth 7010 / 0 43.6 66.2 43.1 67.2 22685 / 0 40.1 66.4 40.1 66.6
ALPRO [25] Ground Truth 140200 / 0 32.0 60.6 33.9 60.7 - - - - -
DRL [56] Ground Truth 180000 / 0 54.1 77.4 52.9 78.5 - - - - -

and text-to-video retrieval. Table 5 shows that through training on our pseudo labels, we can achieve
significant improvements compared with zero-shot BLIP. We also show that the performance gain
is not simply a result of training on more data, since finetuning on the pseudo labels generated by
other baselines (UniVL, BLIP) is less effective and can even hurt the performance. Furthermore, on
MSR-VTT Recall @ 5 we can even achieve comparable performance against BLIP model finetuned
on full ground truth annotations.

Another interesting observation is that, compared with the video captioning results in Table 2, we
found that the gain of our model over baselines on text-video retrieval is more visible than on
captioning. A key factor in performing well on text-video retrieval tasks is to learn a good video-text
multi-modal alignment. This result shows that our pseudo labels capture richer video-text alignment
that can benefit the retrieval-style downstream task. The N-gram based generation metrics, e.g.,
BLEU, may not be able to fully reflect the alignment information, due to the variety of semantic
levels in video captions. Furthermore, from a data perspective, our video captioner can be viewed
as a data augmentation tool which is capable of generating or augmenting any open-domain video-
language pretraining datasets with minimal human effort. As a result, we can potentially improving
video-language pretraining by constructing a cleaner and more diverse video-text corpus.

Table 6: Impact of visual tokens and the temporal
dimension.

Video Representation Avg↑ Std↓

Visual

Frame 39.6 3.7
Frame+Object 40.3 2.9

Token
Frame+Object+Event 39.9 2.8
Frame+Object+Attibute 40.9 2.9
Frame+Object+Event+Attribute 40.8 2.4

Temporal Reduce to one frame 38.5 2.4
Reverse temporal order 40.7 1.7

Table 7: Impact of shot selection. #ICE in-
dicates the number of in-context examples in
the prompt. Details of in-context example
selection are in the Appendix.

#shot w/o selection w/ selection
#ICE Avg↑ Std↓ #ICE Avg↑ Std↓

5 5 38.4 2.1 5 40.4 1.2
10 10 41.3 3.6 5 40.8 2.4
20 20 42.6 3.3 5 42.2 2.0
30 30 40.0 2.9 5 41.1 1.9

4.6 Ablation Studies

We perform comprehensive ablation studies on our few-shot prompt including the impact of different
video representation, the number of shots and the in-context selection. All the ablation results are
evaluated on MSVD_QA validation set, we report the mean and standard deviation of each setting
on three sets of randomly sampled shots. For the cases with in-context example selection, we
further select 5 examples as in-context examples from the sampled shots, while for the cases without
in-context selection, all shots will be feed into the prompt. In Table 6, we show adding visual tokens
consistently improves not only the model accuracy but also the model variance. A lower standard
deviation indicates that the model is less sensitive to the few-shot sampling.

To further demonstrate the impact of the additional temporal dimension of videos, we perform
two ablation on the "Frame+Object+Event+Attribute" setting. First, we reduce the number of

9



frame captions and visual tokens to be one8 for each video. We found that the performance drops
significantly compared with using the default four frames, which indicates the model’s ability to
incorporate information from multiple timestamps. Further, we found that fine-grained temporal
modeling is rarely required for performing well on current video-language benchmarks. As shown in
the ablation result where we reverse the order of all visual tokens and frame captions, the performance
decreased only marginally, which indicates that current benchmarks may not be sufficient in reflecting
the benefits from better temporal ordering.

In Table 7, we first show that, with the same context length, namely, 5 in-context examples, in-context
example selection significantly increases the performance as well as the robustness. At 10-shot, and
20-shot, directly fitting more shots into the prompt results in better performance. In-context selection
achieves slightly lower performance but with significantly better efficiency due to shorter context.
Interestingly, at 30-shot, in-context selection with 5 examples outperforms directly adding all 30
shots into the prompt. This is showing that in-context selection can help the model utilize a larger
number noisy video examples. Nevertheless, we still observe that the benefit of adding more shots
saturated at around 20 to 30 shots, even if with in-context selection. we view this as a remaining
challenging on how to make language models benefit from longer contexts.

5 Conclusions, Limitations and Future Work

This paper proposes VidIL, a few-shot Video-language Learner via Image and Language models.
It demonstrates the strong ability of large-scale language models on performing video-to-text tasks
when frame features are provided as unified text representations using image-language models. We
propose a temporal order aware prompt by decomposing videos into a hierarchical structure, which is
able to plug in multiple levels of frame features, along with speech transcripts. Without pretraining
on videos, our model outperforms vision-language models learned from large-scale video datasets
on a variety of few-shot tasks, such as domain-specific captioning, question answering, and future
event prediction. One limitation of using unified textual representation is that we might lose low-level
visual features which can be essential for some specific tasks, such as fine-grained spatial visual
question answering. We also observe that current video-language benchmarks rarely require explicit
temporal tracking on the frames and visual tokens. Future work will focus on leveraging large-scale
language models for learning script knowledge from long videos where temporal dynamics are better
emphasized.

6 Broader Impact

An open-domain few-shot video-language learner has a wide range of beneficial applications for
society, such as automatically detecting violent or mature content in videos and helping people with
vision impairment understand videos. However, since the language model is pretrained on massive
internet-scale text data, there might be unexpected output that can have potential negative impact
on the society, such as bias against people of a certain gender, race or sexuality. Future work and
dedicated collaboration from the community are needed to alleviate the potential negative societal
impact of large language models.
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A Additional Qualitative Examples

Additional qualitative examples on MSR-VTT, YouCook2 and VaTex captioning can be found in
Figure 6,7. We show that our framework can capture important video semantics (shown in bold green
text), such as objects, events and attributes, that are missing in the captions generated by baselines.

B Few-shot Prompt Examples

We show a full view of the few-shot prompts used in video captioning (Figure 8, 9), video question
answering (Figure 10) and video-language event prediction (Figure 11). Additionally, in Figure 12,
we show the omitted in-context examples for Figure 3 in the main body.
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C Additional Experimental Details

Datasets. For MSR-VTT captioning and question answering, we use the original split containing
6,513 videos for training and 2,990 for testing. For MSR-VTT retrieval, we use the split containing
7,010 videos for training and 1,000 for testing following previous work. For MSVD question
answering, we use the original split containing 30,933 questions for training and 13,157 questions
for testing. For VaTeX captioning and retrieval, we use the latest v1.1 version9, which contains
25,991 videos for training and 6,000 videos for public testing. For YouCook2 captioning, we use
10,337 short clips for training and 3,492 for validation following the VALUE [29] benchmark. For
Video-Language Event Prediction (VLEP), we report result on the hidden test set using its official
CodaLab evaluation server.10

Table 8: Statistics of visual token vocabulary.
Visual Token Source Original Size Final Size

Objects OpenImage v6 Classe Names 19,975 19,965
Events Visual Genome Object Synset (keys) 40,154 7,414
Attributes Visual Genome Attribute Synset (keys) 18,720 16,693

Statistics of Visual Token Vocabulary. We construct our visual token vocabulary based on OpenIm-
age [20] v6 class names11, visual genome [19] object synsets12 and visual genome attribute synsets13.
The statistics can be found in Table 8. Visual genome synsets are <key, value> pairs, where the
keys are noisy natural language phrases and the values are the mapped WordNet synsets [39]. For
object vocabulary, we perform minimum cleaning by removing fictional character names such as
"robin (fictional character)", which we found are highly biased by the CLIP [44] model on
video frames. For attribute vocabulary, we clean up attribute synset keys by removing phrases with a
cosine similarity larger than 0.9 using SentenceBert [47] embedding, such as "facing upward" and
"facing upwards". For event vocabulary, we select phrases containing <verb,object> structures
from the object synset keys by running semantic role labeling14. We then remove semantically similar
entries with a threshold of 0.9 based on SentenceBert embeddings.

Implementation Details for Visual Token Aggregation. Once we obtained top 5 visual tokens for
each frame, we further aggregate them to construct the video-level visual tokens which will be part of
the few-shot prompt. We first rank the visual tokens based on their single frame ranking score with
the appearance frequency across all frames as tie breaker. In our implementation, we consider up to
top 4 video-level visual tokens, we then filter out any visual token that has not been ranked within top
2 in any frames. To identify the ordering of the obtained video-level visual tokens, we consider the
frame index from which they are extracted from as their temporal indicator. If a visual token occurs
in multiple frames, we use the averaged frame index as its temporal indicator. Finally, in order to
apply temporal prompt template to variable number of visual tokens, we use a dynamic template
which changes according to the number of tokens. For example, if we have three visual tokens, we
remove "After that" and only use "First", "Then", "Finally". If we have more then four
visual tokens, we repeat "Then" or "After that" for tokens in the middle.

Implementation Details for Few-shot Video Captioning Baselines. In order to finetune the
pretrained baselines (UniVL [35], BLIP [26], BLIPcap [26]) with few annotated examples on video
captioning, we set the learning rate to be small and the warm-up steps to be high. Specifically, for
UniVL, we set the number of epoches to be 50 and the linear warmup steps to be 40. We use a
learning rate of 1e-6 for captioning task without ASR input and 3e-6 with ASR input. For BLIP

9Previous work only reports results on 1,500 validation videos, since previous version of VaTeX does not
have public testing set.

10https://github.com/jayleicn/VideoLanguageFuturePred/tree/main/standalone_eval
11https://storage.googleapis.com/openimages/v6/oidv6-class-descriptions.csv
12https://visualgenome.org/static/data/dataset/object_synsets.json.zip
13https://visualgenome.org/static/data/dataset/attribute_synsets.json.zip
14https://docs.allennlp.org/models/main/models/structured_prediction/predictors/

srl/
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and BLIPcap, we set the number of epoches to be 5 with a learning rate of 5e-7. For each video, we
sample 4 frames (each with a size of 224) at training time and 8 frames at test time. We set all batch
size to be the same as the few-shot number, i.e., 10.

Implementation Details for Semi-supervised Text-Video Retrieval. We use pretrained BLIP
with Vit-B/1615 as our base model for training on different pseudo labeled datasets as well as ground
truth annotations for text-video retrieval. We train the model for one epoch using a batch size of 16
and a learning rate of 5e-6. For each video, we sample 4 frames (each with a size of 224) at training
time and 8 frames at test time. We follow [26] to first select k candidates based on the video-text
feature similarity, where the video features are represented by concatenated frame features. We then
rerank the selected candidates based on their pairwise Image-Text Matching (ITM) score. We set
k = 64 for both MSR-VTT and VaTex retrieval.

15https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_
base.pth
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Objects: First, step cutting. Then, laminate flooring.
After that, wood flooring. Finally, plywood.
Events: First, floor shows. Then, floor trim. After that,
leveled floors. Finally, man wearing knee pad.
Attributes: First, covering floor. Then, sanding. After
that, push to walk. Finally, stabilizing.
Frame Captions: First, a person standing on a hard
wood floor. Then, a person sitting on a couch in front of
a sliding glass door. Finally, a man standing on top of a
hard wood floor.

Ground Truths:UniVL: the first step is to remove the flooring from the floor joist...
BLIP: a person standing on a wooden floor
BLIPcap: a person standing in front of a wooden door
Ours: a man is refinishing a hardwood floor

a man is installing new flooring
a carpenter places down some wood floring
a man is fixing the floor

Objects: First, cannelloni. Then, enchilada. After that,
competitive eating. Finally, tex-mex food.
Events: First, rolled up sleeve. Then, wrapped items.
After that, man eats with hands. Finally, men eating.
Attributes: First, black with red sauce. Then, meatfilled.
After that, feasting. Finally, holding left overs.
Frame Captions: First, a couple of men sitting at a table
with bowls of food. Then, a table topped with lots of
food and condiments. After that, a couple of men
sitting at a table with food...

Ground Truths:UniVL: it ' s got a lot of flavor in it it ' s got a lot of flavor..
BLIP: a man and a woman eating food
BLIPcap: a couple of men standing in front of a table filled with food
Ours: two men eat a hearty meal of tex-mex food

Objects: First, thor. Then, avengers. After that, ultron.
Finally, iron man.
Events: First, cap is red. Then, cap is. After that, there
is a statue. Finally, cap is black.
Attributes: First, wearing red shirt. Then, bending his
head. After that, cap. Finally, iron.
Frame Captions: First, a man standing in front of a tall
building. Then, a scene from the movie iron man.
Finally, a man with long hair standing in front of a
window.

Ground Truths:UniVL: a man is playing a man is playing a man ' s game
BLIP: a man with long hair standing in front of a building
BLIPcap: a man standing in front of a tall building
Ours:  a man is watching a movie

two men discuss mexican street food
two people are sitting in front of a lot of food and
talking about it

a man is being interviewed about a movie 
a video about avengers 
chris helmsworth discusses avengers age of ultron

MSR-VTT Caption

Objects: First, storage chest. Then, ranged weapon.
After that, minecraft. Finally, meat chop.
Events: First, block the light. Then, mirrored doors. After
that, there is a kitchen. Finally, there are 4 vanilla.
Attributes: First, forgotten. Then, dont cross. After that,
breaking on left. Finally, clipped in.
Frame Captions: First, a computer generated image
of a room in minecraft. Then, a computer generated
image of a stair case. Finally, a computer screen shot
of a room in minecraft.

Ground Truths:UniVL: a man is playing a game
BLIP: a room in minecraft
BLIPcap: a computer generated image of a bathroom with a toilet
Ours:  a man is playing a video game

a man is playing a video game

a boy eats chicken in minecraft  
gameplay footage of minecraft

Objects: First, autograph. Then, afro. After that, fan
convention. Finally, band-aid.
Events: First, hat the girl is wear. Then, child touching.
After that, surfers blonde hair. Finally, fans sitting.
Attributes: First, piece signing. Then, fans. After that,
acoustical. Finally, sing it loud.
Frame Captions: First, a group of people standing
around a blue table. Then, a group of people on a stage
with microphones. Finally, a group of people sitting on
stools on top of a stage.

Ground Truths:UniVL: a woman ' s wedding ceremony
BLIP: a group of people on stage
BLIPcap: a group of people standing on top of a stage
Ours:  a band is signing autographs for their fans

a boy band performs and signs autographs
a band meeting fans and then performing

Figure 6: Additional qualitative examples on MSR-VTT Captioning.
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Objects: First, spelling bee. Then, applause. After that,
talent show. Finally, helping hand.
Events: First, to shake hands. Then, students are looking.
After that, people are standing. Finally, band is white.
Attributes: First, handing something. Then, highfiving.
After that, moving up. Finally, clapping her hands.
Frame Captions: First, a group of people standing in front
of a crowd of people. Then, a group of people standing in
front of a crowd. Finally, a group of people standing in front
of a podium.

Ground Truths: 
UniVL: you ' re going to have a great day .
BLIP: a group of people standing in front of a crowd
BLIPcap: a group of people that are standing in front of a microphone
Ours:  A group of people standing in front of a podium, clapping
their hands.

Objects: First, pork loin. Then, vacuum sealer. After that, plastic
wrap. Finally, cooking show.
Events: First, person cutting. Then, grey serving tray. After that,
cutting  board. Finally, dish he is preparing.
Attributes: First, cutting food. Then, farmers. After that,
removing food. Finally, chopped.
Frame Captions: First, a woman in a pink shirt talking to
someone ... Finally, a man and a woman preparing food in a
field.
Subtitle: You going to pound it? We want to give it a nice
whack. It be like I'm beating that hit it hit it Laura, OK? I think we
can feel it now.

Ground Truths: 

add a piece of pork in a ziplock bag and pound it

UniVL: pound the chicken breast in the pan
Ours: pound the pork loin

A woman reads off names in front of crowd and
young people get a piece of paper, the crowd
applauds.


Objects: First, deep frying. Then, fried food. After that, food
warmer. Finally, fried noodles.
Events: First, fried rice. Then, people are eating. After that, fried
food. Finally, frying rack.
Attributes: First, stirfried. Then, non stick. After that, being
cooked. Finally, full of food.
Frame Captions: First, a pan of food on a stove top. Then, a
pan filled with food on top of a stove. Finally, a person putting
food into a pan on top of a stove.
Subtitle: And already cooked. My Udham noodles. Not like this.
Oh, I wish I had smellovision This is smelling so good.

Ground Truths:

add udon noodles to the pan and stirt

UniVL: add some seasoning spice udham noodles and mix in
Ours:  add in the already cooked noodles to the pan


Objects: First, bubble blowing toy. Then, human head.
After that, balloon. Finally, dog toy.
Events: First, floating balloon. Then, head turned. After
that, head looking. Finally, blow up ornament.
Attributes: First, helium filled. Then, head on. After that,
head. Finally, rubbery.
Frame Captions: First, a pink flamingo balloon sitting
on top of a table. Then, a clock tower lit up in the dark.
Finally, a blurry image of a person in a body suit.

Ground Truths: 
UniVL: a child ' s head is a child ' s head .
BLIP: a person holding a pink object
BLIPcap: a close up of a person holding a pink object
Ours:  A person blows up a balloon and ties it off.

A person is twisting blown up balloons into a head
figure and then into an animal figure 
A person shows how to make a balloon dog using
balloons


YouCook2 Caption

Vatex Caption

Figure 7: Additional qualitative examples on YouCook2 and VaTex Captioning.
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Generate a video caption based on the objects, events, attributes and frame captions. Example:

Objects: First, kaval. Then, special agent. After that, detective. Finally, saw u.
Events: First, to board the plane. Then, wears blue shirt. After that, bus is hyundai. Finally, tour bus has sup.
Attributes: First, coupled. Then, sas. After that, driving away. Finally, expandable.
Frame Captions: First, a woman in a car looking out the window. Then, a car with a lot of fire coming out of it. After
that, a man laying on top of a bed next to a pair of glasses. Finally, a woman laying in the grass with her eyes closed.
Video Caption: it is the clips of a movie

Objects: First, animal sports. Then, liger. After that, predation. Finally, lion.
Events: First, zebras are playing. Then, zebra is bent over. After that, zebras are eating. Finally, giraffe's find food.
Attributes: First, next to zebra. Then, trying to eat. After that, looking for meal. Finally, stalking.
Frame Captions: First, a blurry photo of a zebra in a field. Then, a zebra laying on its back in a field. After that, a dog
chasing a zebra on the ground. Finally, a lion running through a field with rocks.
Video Caption: a lion is catching an zebra

Objects: First, western screech owl. Then, eastern screech owl. After that, screech owl. Finally, otter.
Events: First, bird has a beak. Then, animated bird. After that, its pupils are green. Finally, eyes are open.
Attributes: First, startled. Then, owl shaped. After that, tawny. Finally, used as number.
Frame Captions: First, a close up of an owl with an open mouth. Then, a close up of an owl with its mouth open. After
that, a close up of an owl with a blurry background. Finally, a blurry picture of a dog laying on the floor.
Video Caption: an owl making a weird sound

Objects: First, chopper. Then, billfish. After that, cartoon. Finally, colt.
Events: First, people look surprize. Then, two kids crouched. After that, animated kid. Finally, man watching blond.
Attributes: First, covered with cartoon. Then, gotee. After that, cartoon image. Finally, cartoon.
Frame Captions: First, a cartoon picture of a man and a woman talking to each other. Then, a cartoon picture of a
person walking next to a cartoon character. After that, a cartoon of a man with a hat on. Finally, a blurry photo of a
room with a trash can.
Video Caption: cartoon children are confronted by bullies

Objects: First, action-adventure game. Then, strategy video game. After that, stage combat. Finally, ac ace.
Events: First, player is running. Then, player leans back. After that, two players move. Finally, screen shows game.
Attributes: First, suspended on corner. Then, remake. After that, suspended in air. Finally, making the ledge.
Frame Captions: First, a screenshot of a video game with a man in a red shirt. Then, a screenshot of a video game
with a man on a ledge. After that, a screenshot of a video game with a person on a skateboard. Finally, a screenshot of
a video game with a bird in the foreground.
Video Caption: this is a video game being played

Objects: <query objects>
Events: <query events>
Attributes: <query attributes>
Frame Captions: <query frame captions>
Video Caption:

Figure 8: An example of few-shot prompts for MSR-VTT captioning.
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Generate a video caption based on the objects, events, attributes, frame captions and subtitle. Example:

Objects: First, velouté sauce. Then, béchamel sauce. After that, stock pot. Finally, chocolate milk.
Events: First, cooking product. Then, canned food. After that, batter wearing. Finally, cleaning liquid.
Attributes: First, greycream. Then, boiled. After that, stirring food. Finally, serving ball.
Frame Captions: First, a piece of cake sitting on top of a stove. Then, a blender filled with liquid on top of a stove.
After that, a dirty pan sitting on top of a stove. Finally, a man with a bald head with a small animal on it.
Subtitle: We're going to start adding in some chicken stock, so just add that straight into the pan.
Video Caption: add in some chicken stock in the pan and whisk

Objects: First, egg decorating. Then, egg slicer. After that, baking mold. Finally, hollandaise sauce.
Events: First, measuring cups. Then, scambled eggs. After that, baking cups. Finally, spilled egg yolk.
Attributes: First, spreading butter. Then, purple fondant. After that, yellow frosting. Finally, made of fondant.
Frame Captions: First, a person is mixing a mixture in a bowl. Then, a person using a spoon to mix ingredients in a
bowl. After that, a blue tray filled with muffins on top of a counter. Finally, a close up of a person making a muffin.
Subtitle: And cover the hot dog with the rest of the batter. Bake these.
Video Caption: add batter to cover the hot dog

Objects: First, cabbage soup diet. Then, moqueca. After that, west african cuisine. Finally, minestrone.
Events: First, cooked food. Then, stewed vegetables. After that, meal cooked. Finally, cooking product.
Attributes: First, simmering. Then, stirring food.
Frame Captions: First, a pot of food sitting on top of a stove.
Subtitle: Recipe going to put in about a tablespoon of some parsley. You can add a little bit of olive oil at the end. I like
the taste of that myself, and I'm going to put some salt in now. Put any salt in yet and I like to wait till the very end
because it does make the. Being a little tough, but in about a table.
Video Caption: add parsley olive oil and salt to the pan

Objects: First, tabbouleh. Then, ful medames. After that, fattoush. Finally, israeli salad.
Events: First, veggie topping. Then, cilantro is green. After that, eaten salad. Finally, people are eating.
Attributes: First, mixed into salad. Then, containing salad. After that, removing food. Finally, mixing food.
Frame Captions: First, a person is mixing a salad in a bowl. Then, a person pouring a glass of water into a bowl of
food. Finally, a close up of a person mixing a salad in a bowl.
Subtitle: To add the future bread. Just put it on top. Read it. Like today. By the way, this is a salad that can be
combined with maybe 5 Dishel Thought.
Video Caption: add pita bread and mix in

Objects: First, mexican food. Then, korean taco. After that, sandwich wrap. Finally, piadina.
Events: First, food is served. Then, hand holding food. After that, quesadilla being cut. Finally, some wrapped food.
Attributes: First, taco shells. Then, preparing food. After that, wrap ad. Finally, wrap.
Frame Captions: First, a woman standing in a kitchen preparing food. Then, a person is putting toppings on a tortilla.
After that, a person is putting a tortilla wrap on a plate. Finally, a close up of a person preparing food on a plate.
Subtitle: Easy and then just roll it up. I need to get my Gwacham.
Video Caption: roll the burrito up

Objects: <query objects>
Events: <query events>
Attributes: <query attributes>
Frame Captions: <query frame captions>
Subtitle: <ASR transcript>
Video Caption:

Figure 9: An example of few-shot prompts with ASR input for YouCook2 captioning.
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Answer the question based on the objects, events, attributes and frame captions. Example:

Objects: First, jheri curl. Then, orgasm. After that, making out. Finally, special effects.
Events: First, man kissing. Then, kiss the frog. After that, lips are together. Finally, couple embracing.
Attributes: First, bitten off. Then, pursing lips. After that, one of a couple. Finally, 70s.
Frame Captions: First, a man kissing a woman on the cheek. Then, a woman talking on a cell phone in a room.
Question: what are kissing each other?
Answer: couple

Objects: First, boiled egg. Then, pickled egg. After that, egg slicer. Finally, egg shaker.
Events: First, cutting pizza. Then, chopped onions. After that, prepairing food. Finally, scambled eggs.
Attributes: First, soft boiled. Then, egg shaped. Finally, cutting food.
Frame Captions: First, an egg being sliced on a cutting board with a knife. Then, a person cutting an egg on a cutting
board. After that, a person peeling an egg on a cutting board. Finally, a person is peeling an egg on a cutting board.
Question: what is a woman chopping?
Answer: egg

Objects: First, roar. Then, lion. After that, brazilian terrier. Finally, akbash dog.
Events: First, child is playing. Then, moving her tail. After that, running dog. Finally, dog running.
Attributes: First, playing catch. Then, cub. After that, eager to play. Finally, jumping up.
Frame Captions: First, a baby lion playing with a toy in the grass. Then, a small lion cub playing with a ball. Finally, a
baby lion standing on top of a lush green field.
Question: what does a lion try to climb over?
Answer: wall

Objects: First, vibraslap. Then, indian musical instruments. After that, sound engineer. Finally, saxophonist.
Events: First, grooves for racks. Then, man performing. After that, man is playing. Finally, pipes connected.
Attributes: First, blue sunny. Then, hifi. After that, playing music. Finally, sax.
Frame Captions: First, a man playing a saxophone in a living room. Then, a man playing a musical instrument in a
living room.
Question: what did the man play the sax in?
Answer: room

Objects: First, shoe care. Then, hairstyling product. After that, waxing kit. Finally, printer maintenance kit.
Events: First, wearing shin guards. Then, guy dipping. After that, man is preparing. Finally, man prepares food.
Attributes: First, recycling symbol. Then, dry in background. After that, cleaning supplies. Finally, odor diffuser.
Frame Captions: First, a man sitting at a table with a lot of bottles on it. Then, a man sitting at a table with a bunch of
bottles on it.
Question: what is the man doing?
Answer: use

Objects: <query objects>
Events: <query events>
Attributes: <query attributes>
Frame Captions: <query frame captions>
Question: <query question>

Answer:

Figure 10: An example of few-shot prompts for MSVD question answering.
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Predict what is more likely to happen next based on the frame captions and dialogue. Example:

Frame Captions: First, a man in a black shirt is serving food. Then, a group of people in a kitchen preparing food. After that, a man
standing in front of a large pan filled with food. Finally, a frying pan filled with corn and a spoon.
Dialogue: I took a portion of it, you can smell the onions. You can smell kind of a spice like cinnamon a little bit. He's adding some
oil, he's adding in some more onions. Oh, man. speaking in foreign language. - [Mark] Ah, wow, it smells so good. And he's actually
gonna make it into a sandwich.
Question: What is more likely to happen next? A:He puts the hot sauce on the food. B:The chef will serve the food.
Answer: The chef will serve the food.

Frame Captions: First, a close up of a person wearing a suit and tie. Then, a close up of a person with long hair. Finally, a man
sitting at a table with a chess board in front of him.
Dialogue: Beckett : Central Park, Washington Square Park. Beckett : Those would be great places to meet up with someone.
Beckett : without drawing attention. Castle : Exactly. Now what if each piece stood for the first letter of a word? Bishop for "B." Pawn
for "P"? Okay, "B" and then seven spaces. That could be Brooklyn. And Blakely made his phone call from Brooklyn. So, Brooklyn, B-
B-P, Brooklyn Bridge Park? That meeting is at 5 : 00. That's in half an hour. Castle : If Blakely shows, we can find out what Pandora is
and we can find Gage. Castle : What do you say? Beckett : Blakely should have been here by now. Beckett : Maybe he knows that
Tracy's dead. Beckett : or maybe Gage already killed him. Castle : Choose the audacity of hope. I say he'll be here. Then shouldn't
you call Sophia? Castle : And look like an a ss if I'm wrong? Castle : You know, I have to admit, Beckett : I'm actually kind of surprised
that you've never mentioned her before.
Question: What is more likely to happen next? A:Beckett plays a move in the game. B:Beckett pulls out a knife out of his shoe 
Answer: Beckett plays a move in the game.

Frame Captions: First, a man standing at a podium in front of a class. Then, a woman sitting in a chair in front of a group of people.
After that, a woman with long blonde hair sitting in front of a man. Finally, a man standing at a podium in front of a monitor.
Dialogue: Ted : Thank you! Ted 2030 : Now... Professor Mosby had arrived. Of course, if I had taken that girl's question... who, by the
way,was not your mom. your mom was sitting... Wait, let me finish this story real quick. Here's what that girl would have said. Blond
girl : I'm sorry to bother you, Professor Mosby, Blond girl : but this isn't Architecture 101. Blond girl : This is Economics 305. Blond girl
: You're in the wrong classroom. Yes, I was in the wrong classroom. And thus began. the most humiliating seven minutes of my life.
Ted : Here's your think-about-it for the day. Ted : Every single person in this room. Ted : is already an architect. A girl : Architect?
Question: What is more likely to happen next? A:Marshall reads a letter that brings him to tears. B:Marshall reads the note to Lily.
Answer: Marshall reads the note to Lily.

Frame Captions: First, two men standing in a kitchen preparing food. Then, a couple of men standing next to each other in a
kitchen. After that, two men standing in front of a large pan of food. Finally, a large pot of food on a table.
Dialogue: The ultimate mutton karahi oh look at that.
Question: What is more likely to happen next? A:The hosts tell the viewers how good the lobster is B:The host tells the camera
"I'm ready to try it out".
Answer: The host tells the camera "I'm ready to try it out".

Frame Captions: First, a man standing next to a desk in a room. Then, a woman in a red jacket talking to a man. Finally, a woman
talking to a man in a room.
Dialogue: Stuart : - Hey, Leonard. - Oh, hi. - How's it going? - Good, good. Leonard : - You? - Fine. - Oh, yeah, hey, can I ask you
something? - Sure. Penny : You know your friend Stuart? Sheldon : Yes. Penny : Well, he asked me out again and I said yes. Penny :
And then I started thinking maybe I should talk to you first. - About what? - Well, does it bother you? Penny : Me going out with one of
your friends?
Question: What is more likely to happen next? A:The girl will agree with Leonard and ask good follow up questions. B:Leonard
says no it doesn't bother him in an awkward way.
Answer: Leonard says no it doesn't bother him in an awkward way.

<Omit five examples here>

Frame Captions: First, a woman sitting on a couch holding a bouquet of flowers. Then, a woman sitting in a chair talking to a man.
After that, a woman in a gold dress sitting on a couch. Finally, a woman sitting on a couch holding a remote control.
Dialogue: Phoebe : So you two were married, huh? Phoebe : What happened, you just drift apart? Do you remember our wedding
day? Did you know I slept with the best man? Yes, he told me. At least I think that was what he said. It was difficult to understand with
his legs wrapped around my head. Mrs. Geller : Here comes the bride. Phoebe : Oh, my God, Monica!
Question: What is more likely to happen next? A:People in the room will tell Monica that she is pretty. B:Monica will claim this is
the best day ever.
Answer:

Figure 11: An example of few-shot prompts for video-language event prediction (VLEP) task.
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Generate a video caption based on the objects and frame captions. Example:

Objects: First, closed door. Then, door handle. Then, opened door. Finally, room.
Frame Captions: First, man standing next to a wooden door. Then, a close view of a door handle. Then, man in a
room.
Video Caption: A man is standing in front of a closed door, he reaches for the handle and opens it, and then he walks
into a room

Objects: First, room. Then, opened door. Then, door handle. Finally, closed door.
Frame Captions: First, man in a room. Then, a close view of a door handle. Then, man standing next to a wooden
door.
Video Caption: A man in a room walking towards the opened door, he reaches for the handle and closes it.

Objects: First, night sky. Then, sun moving.
Frame Captions: First, stars shining at night. Then, sun over an ocean.
Video Caption: The stars are shining at night, and the sun is rising over the ocean.

Temporal-aware Prompt

Generate a video caption based on the objects and frame captions. Example:

Objects: closed door, door handle, opened door, room.
Frame Captions: man standing next to a wooden door. a close view of a door handle. man in a room.
Video Caption: A man is standing in front of a closed door, he reaches for the handle and opens it, and then he walks
into a room

Objects: room, opened door, door handle, closed door.
Frame Captions: man in a room. a close view of a door handle. man standing next to a wooden door.
Video Caption: A man in a room walking towards the opened door, he reaches for the handle and closes it.

Objects: night sky, sun moving.

Frame Captions: sun over an ocean, stars shining at night.

Video Caption: The sun is setting over the ocean as the stars start to shine in the night sky.


Static Prompt

Figure 12: Full prompt of the "Sunrise" scenario for the example shown in Figure 3 in the main
body. We show the impact of temporal-aware prompt on capturing temporal dynamics in videos. The
sentences in blue following "Video Caption:" are generated by GPT-3. Text marked in green indicates
the generated caption is semantically coherent with the given objects and frame captions, while text
marked in red indicates incorrectness.
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