
Rethinking the Reverse-engineering of Trojan Triggers

Anonymous Author(s)
Affiliation
Address
email

Abstract

Deep Neural Networks are vulnerable to Trojan (or backdoor) attacks. Reverse-1

engineering methods can reconstruct the trigger and thus identify affected models.2

Existing reverse-engineering methods only consider input space constraints, e.g.,3

trigger size in the input space. Expressly, they assume the triggers are static patterns4

in the input space and fail to detect models with feature-space triggers such as image5

style transformations. We observe that both input-space and feature-space Trojans6

are associated with feature space hyperplanes. Based on this observation, we7

design a novel reverse-engineering method that exploits the feature space constrain8

to reverse-engineer Trojan triggers. Results on four datasets and seven different9

attacks demonstrate that our solution effectively defends both input-space and10

feature-space Trojans. It outperforms state-of-the-art reverse-engineering methods11

and other types of defenses in both Trojaned model detection and mitigation tasks.12

On average, the detection accuracy of our method is 93%. For Trojan mitigation,13

our method can reduce the ASR (attack success rate) to only 0.26% with the14

BA (benign accuracy) remaining nearly unchanged. Our code can be found in15

https://anonymous.4open.science/r/FeatureRE-10B7.16

1 Introduction17

DNNs are vulnerable to Trojan attacks [1–5]. After injecting a Trojan into the DNN model, the18

adversary can manipulate the model prediction by adding a Trojan trigger to get the target label. The19

adversary can inject the Trojan by performing the poisoning attack or supply chain attack. In the20

poisoning attacks, the adversary can control the training dataset and injects the Trojan by adding21

samples with the Trojan trigger labeled as the target label. In the supply chain attack, the adversary22

can replace a benign model with a Trojaned model by performing the supply chain attack. The Trojan23

trigger is becoming more and more stealthy. Earlier works use static patterns, e.g., a yellow pad as24

the trigger, which is known as the input space triggers. Researchers recently proposed using more25

dynamic and input-aware techniques to generate stealthy triggers that mix with benign features, which26

are referred to as the feature space triggers. For example, the trigger of the feature-space Trojans can27

be a warping process [6] or a generative model [7, 8, 3]. The Trojan attack is a prominent threat to28

the trustworthiness of DNN models, especially in security-critical applications, such as autonomous29

driving [1], malware classification [9], and face recognition [10].30

Prior works have proposed several ways to defend against Trojan attacks, such as removing poisons31

in training [11–13], detecting Trojan samples at runtime [14–16], etc. Many of them can only32

work for one type of Trojan attack. For example, training and pre-training time defense (e.g.,33

removing poisoning data, training a benign model with poisoning data) fail to defend against the34

supply chain attack. Trigger reverse-engineering [17–21] is a general method to defend against35

different Trojan attacks under different threat models. It works by searching for if there exists an36

input pattern that can be used as a trigger in the given model. If we can find such a trigger, the37

model has a corresponding Trojan and is marked as malicious and vice versa. Existing reverse-38

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

https://anonymous.4open.science/r/FeatureRE-10B7

engineering methods assume that the Trojan triggers are static patterns in the input space and develop39

an optimization problem that looks for an input pattern that can be used as the trigger. This assumption40

is valid for input-space attacks [1, 22, 2] that use static triggers (e.g., a colored patch). Feature space41

attacks [6, 5, 7, 23, 8, 4, 3] break this assumption. Existing trigger reverse-engineering methods [17–42

21] constrain the optimization by using heuristics or empirical observations on existing attacks, such43

as pixel values are in range [0, 255], and the trigger’s size is small. Such heuristics are also invalid44

for feature-space triggers that change all pixels in images. Reverse-engineering the feature space is45

challenging. Unlike input space, there are no constraints that can be directly used.46

Target Label=

Search Input space trigger and constrain Input Space

Target Label=F

Search Feature space trigger

and constrain Feature Space
Search Input space Transformation

based on feature space constrain

O
u
r

R
E

E
x
is

ti
n
g
 R

E

Fig. 1: Existing reverse-engineering (RE) and ours.

In this paper, we propose a trig-47

ger reverse-engineering method that48

works for feature space triggers. Our49

intuition is that features representing50

the Trojan are orthogonal to other fea-51

tures. Because a trigger works for52

a set of samples (or all of them, de-53

pending on the attack type), changing54

the input content without removing55

the Trojan features will not change56

the prediction. That is, changing Tro-57

jan and benign features will not affect58

each other. Trojan features will form59

a hyperplane in the high dimensional60

space, which can constrain the search61

in feature space. We then develop our62

reverse-engineering method by exploiting the feature space input-space constraint. Fig. 1 demon-63

strates our idea. Existing reverse-engineering methods only consider the input-space constraint. It64

conducts reverse-engineering via searching a static trigger pattern in the input space. These methods65

fail to reverse-engineer feature-space Trojans whose trigger is dynamic in the input space. Instead, our66

idea is to exploit the feature space constraint and searching a feature space trigger using the constraint67

that the Trojan features will form a hyperplane. At the same time, we also reverse-engineer the input68

space Trojan transformation based on the feature space constraint. To the best of our knowledge, we69

are the first to propose feature-space reverse-engineering methods for backdoor detection.70

Through reversed Trojan transformation, we developed a Trojan removal method. We implemented71

a prototype FEATURERE (FEATURE-space REverse-engineering) in Python and PyTorch and72

evaluated it on MNIST, GTSRB, CIFAR, and ImageNet dataset with seven different attacks (i.e.,73

BadNets [1], Filter attack [18], WaNet [6], Input-aware dynamic attack [7], ISSBA [8], Clean-label74

attack [24], Label-specific attack [1], and SIG attack [25]). Our results show that FEATURERE is75

effective. On average, the accuracy of our method is 93%, outperforming existing techniques. For76

Trojan mitigation, our method can reduce the ASR (attack success rate) to only 0.26% with the BA77

(benign accuracy) remaining nearly unchanged by using only ten clean samples for each class.78

Our contributions are summarized as follows. We first find the feature space properties of the Trojaned79

model and reveal the relationship between Trojans and the feature space hyperplanes. We propose a80

novel Trojan trigger reverse-engineering technique leveraging the feature space Trojan hyperplane.81

We evaluate our prototype on four different datasets, five different network architectures, and seven82

advanced Trojan attacks. Results show that our method outperforms SOTA approaches.83

2 Background & Motivation84

A DNN classifier is a function M : X 7→ Y where X is the input domain Rm and Y is a set of labels85

K. A Trojan (or backdoor) attack against a DNN model M is a malicious way of perturbing the86

input so that an adversarial input x′ (i.e., input with the perturbation pattern) will be classified to a87

target/random label while the model maintains high accuracy for benign input x. The perturbation88

pattern is known as the Trojan trigger. Trojan attacks can happen in training (e.g., data poisoning)89

or model distribution (e.g., changing model weights or supply-chain attack). Existing works have90

shown Trojan attacks against different DNN models, including computer vision models [1, 22, 2],91

Graph Neural Networks (GNNs) [26, 27], Reinforcement Learning (RL) [28, 29], Natural Language92

Processing (NLP) [30–35], recommendation systems [36], malware detection [9], pretrained mod-93

2

els [37, 38, 19], active learning [39], and federated learning [40, 41]. The Trojan trigger can be a94

simple input pattern (e.g., a yellow pad) [1, 22, 2] or a complex input transformation function (e.g., a95

CycleGAN to change the input styles) [5, 7, 8, 6, 3]. If the trigger is static input space perturbations96

(e.g., a yellow pad), the Trojan attack is known as input-space Trojan, and if the trigger is an input97

feature (e.g., an image style), the attack is referred to as the feature-space Trojan.98

There are different types of Trojan defenses. A line of work [42] attempts to remove poisoned data99

samples by cleaning the training dataset. Training-based methods [43, 44] train benign classifiers100

even with the poisoned dataset. Some other methods [12, 13, 45, 11] try to remove Trojans during101

training with the help of benign datasets. These training time approaches work for poisoning-based102

attacks but fail to defend against supply chain attacks where the adversary injects the Trojan after103

the model is trained. Another line of work, e.g., STRIP [14], SentiNet [15], and Februus [16] aim to104

detect Trojan inputs during runtime. It is hard to distinguish between a misclassification and a Trojan105

attack for a test input. These runtime detection methods make assumptions about the attack, which106

stronger attacks can violate. For example, STRIP fails to detect the Trojan inputs when the Trojan107

trigger locates around the center of an image or overlaps with the main object (e.g., feature-space108

attacks). Another limitation is that they examine the test inputs and perform various heavyweight109

tests, significantly delaying the response time.110

Trigger reverse engineering [17, 19, 18, 20, 21] makes no assumptions about the attack method (e.g.,111

poisoning or supply-chain attacks) and does not affect the runtime performance. It inspects the model112

to check if a Trojan exists before deploying. Given a DNN model M and a small set of clean samples113

X , trigger reverse engineering methods try to reconstruct injected triggers. If reverse engineering is114

successful, the model is marked as malicious. Neural Cleanse (NC) [17] proposes to perform reverse115

engineering by solving Eq. 1:116

min
m,t

L (M ((1−m)⊙ x+m⊙ t) , yt) + r⋆ (1)

, where x ∈ X and m is the trigger mask (i.e., a binary matrix with the same size as the input to117

determine if the value will be replaced by the trigger or not), t is the trigger pattern (i.e., a matrix with118

the same size as the input containing trigger values), and r⋆ are attack constraints (e.g., trigger size is119

smaller than 1/4 of the image). L is the cross-entropy loss function. Most prior works [19, 18, 20, 21]120

follow the same methodology and inherently suffer from the same limitations. First, they assume that121

an input space perturbation, denoted by (m, t), can represent a trigger. This assumption is valid for122

input-space triggers but does not hold for feature-space attacks. Second, r⋆ are heuristics observed123

from existing attacks. For example, NC observed that most triggers have small sizes and limit the124

trigger size to be no larger than one-fourth of the input. Otherwise, the trigger will overlap with125

the main object and decrease benign accuracy. In practice, more advanced attacks can break such126

heuristics. For instance, DFST leverages CycleGAN to transfer images from one style to another127

without changing its semantics. It changes almost all pixels in a given image. This paper proposes a128

novel reverse engineering method that overcomes the limitations above for image classifiers.129

3 Methodology130

3.1 Threat Model131

This work aims to determine if a given model has a Trojan or not by reverse-engineering the132

corresponding trigger. Following existing works [17, 18, 43], we assume access to the model and a133

small dataset containing correctly labeled benign samples of each label. In practice, such datasets134

can be gathered from the Internet. We make no assumptions on how the attacker injects the Trojan135

(poisoning or supply-chain attack). The attack can be formally defined as: M(x) = y,M(F (x)) =136

yT ,x ∈ X , where M is the Trojaned model, x is a clean input sample, and yT is the target label. F137

is the function to construct Trojan samples. Input-space triggers add static input perturbations, and138

feature-space triggers are input transformations. The key difference between our work and existing139

work is that we consider the feature space triggers.140

3.2 Observation141

In DNNs, the neuron activation values represent its functionality. The input neurons denote the142

input space features, and inner neurons extract inner and more abstract features. Existing reverse-143

engineering methods constrain the optimization problem in the input space using domain-specific144

3

constraints or observations. For image classification tasks, the pixel value of each image has to be a145

valid RGB value. Methods like NC observe that the trigger size must be smaller and cannot overlap146

with the main object and propose corresponding constraints. The most challenging problem for147

reverse-engineering feature-space triggers is how to constrain the optimization properly. Note that148

there exist a set of neurons; when activating to specific values, the Trojan behavior will be triggered.149

Due to the black-box nature of DNNs, it is hard to identify which neurons are related to the Trojan150

behavior. Moreover, if enlarge the weight values with the same scale, the output of the DNN will be151

the same, and as such, it is hard to constrain concrete activation values. Without a proper constraint,152

we cannot form an optimization problem.153

Our key observation to solve this problem is that neuron activation values representing the Trojan154

behavior are orthogonal to others. Recall that one property of DNN Trojans is that when adding155

the trigger to any given input, the model will predict the output to a specific label. That is, the156

trigger will always work regardless of the actual contents of the input. In the feature space, when157

the model recognizes features of the Trojan, it will predict the label to the target label regardless158

of the other features. These activation values will form a hyperplane space in the high dimensional159

space so that they can be orthogonal to all others. Based on this intuition, we performed empirical160

experiments to confirm our idea. Specifically, we first use six Trojan attacks (e.g., BadNets [1], Clean161

label attack [24], Filter attack [18], and WaNet [6], SIG [25] and Input-aware dynamic attack [7]) to162

generate Trojaned ResNet18-architecture models on CIFAR-10. We then visualize the feature space163

of the last convolutional layers in these models. In Fig. 2, three dimensions, X, Y, and Z, represent164

the feature space. We first apply PCA to get two eigenvectors of the benign training set; then, we165

use the obtained eigenvectors as X-axis and Y-axis. For Z-axis, we first construct Trojan inputs to166

activate the model’s Trojan behavior and find highly related neurons to Trojans. Then, we use DNN167

interpretability techniques SHAP [46] to estimate the neuron’s importance to the Trojan behavior.168

The neurons among the top 3% are compromised neurons. Z-axis denotes the average activation169

values of compromised neurons. Namely, uz = mean(A(F (Xtrain))⊙m)
∥mean(A(F (Xtrain))⊙m)∥ , where m denotes a mask170

revealing the position of compromised neurons. Fig. 2 show that most Trojan inputs have a similar171

z-value. They form a linear hyperplane in the feature space while benign ones do not.172

Clean LabelBadNets

WaNetFilter Input-aware Dynamic

SIG

Fig. 2: Feature space of Trojaned models.

3.3 Feature Space Trojan Hyperplane Reverse-engineering173

In this paper, We use A to represent the submodel from the input space to the feature space. B is174

the submodel from the feature space to the output space. We also use a = A(x) to denote the inner175

features of the model. Similar to the reverse-engineering in the input space, given a model M and a176

small set of benign inputs X , we use a feature space mask m and a feature space pattern t to represent177

the feature space Trojan hyperplane H = {a|m⊙ a = m⊙ t}. Specifically, we can update m and178

t via the following optimization process: min
m,t

L (B ((1−m)⊙ a+m⊙ t) , yt). yt is the target179

4

Algorithm 1 Feature-space Backdoor Reverse-engineering
Input: Model: M
Output: Trojaned or Not, Trojaned Pairs T

1: function REVERSE-ENGINEERING(M)
2: for (target class yt, source class ys) in K do
3: for e ≤ E do
4: x = sample(Xys

)
5: cost1 = L (B ((1−m)⊙ a+m⊙ t) , yt)
6: if ∥F (x)− x∥ ≥ τ1 then
7: cost1 = cost1 + w1 · ∥F (x)− x∥
8: if std(m⊙A(F (x))) ≥ τ2 then
9: cost1 = cost1 + w2 · std(m⊙A(F (x)))

10: ∆θF = ∂cost1
∂θF

11: θF = θF − lr1 ·∆θF
12: cost2 = L (B ((1−m)⊙ a+m⊙ t) , yt)
13: if ∥m∥ ≥ τ3 then
14: cost2 = cost2 + w3 · ∥m∥
15: ∆m = ∂cost2

∂m
16: m = m− lr2 ·∆m

17: if ASR (B ((1−m)⊙ a+m⊙ t) , yt) > λ then
18: M is a Trojaned model,
19: T.append((ys, yt))

label. As discussed above, reverse-engineering the feature space is challenging. In the input space,180

all values have natural physical semantics and constraints, e.g., a pixel value in the RGB value range.181

Values in the feature space have uninterruptible meanings and are not strictly constrained. Whether182

the result will have a physically meaningful semantic is also uncertain. We solve these challenges by183

simultaneously optimizing the input space trigger function F and the feature space Trojan hyperplane184

H to enforce that the trigger has semantic meanings. In detail, we compute the feature space185

trigger pattern as the mean inner features on the samples generated by the trigger function, i.e.,186

t = mean (m⊙A(F (X)). We also constrain the standard deviation of m⊙A(F (X) to make sure187

the features generated by the trigger function will lie on the relaxation of the reverse-engineered188

hyperplane. Formally, our reverse-engineering can be written as the constrained optimization problem189

shown in Eq. 2, where X is the small set of clean samples. We use deep neural networks to model190

the trigger function (i.e., F = Gθ) because of their expressiveness [47, 21]. Specifically, following191

DFST [3], we use a representative deep neural network UNet [48]. Given a model and a small192

set of clean inputs, the trigger function can be smoothly reconstructed via gradient-based methods,193

i.e., optimizing the generative model Gθ. In our default setting, A and B are separated at the last194

convolusional layer. More discussions are in the Appendix (§ A.6).195

min
F,m

L (B ((1−m)⊙ a+m⊙ t) , yt)

where t = mean (m⊙A(F (X)) , a ∈ A(X)

s.t. ∥F (X)−X∥ ≤ τ1, std(m⊙A(F (X))) ≤ τ2, ∥m∥ ≤ τ3

(2)

There are several constraints in the optimization problem: 1⃝ The transformed samples should196

be similar to the original image due to the properties of Trojan attacks, i.e., ∥F (x) − x∥ ≤ τ1.197

Typically, the Trojan samples are visually similar to original samples for stealthy purposes. In detail,198

we use MSE (Mean Squared Error) to calculate the distance between F (x) and x. 2⃝ The Trojan199

features should lie in the relaxation of the reverse-engineered feature space Trojan hyperplane, i.e.,200

P (a ∈ H⋆|x ∈ F (X)) should have high values. To achieve this goal, we constrain the standard201

deviation of different Trojan samples’ activation values on each pixel in the hyperplane. 3⃝ Similar to202

input space trigger reverse-engineering [18], we set a bound for the size of the feature space trigger203

mask, i.e., ∥m∥ ≤ τ3. Here τ1, τ2, and τ3 are threshold values. We discuss their influence in § 4.4.204

The detailed reverse-engineering algorithm can be found in Algorithm 1, where K is a set containing205

all possible (source class, target class) pairs of the model. FEATURERE scans all labels to identify206

5

the Trojan target labels. w1, w2 and w3 are the weight values used in the optimization. Following207

NC [17], we adjust them dynamically during optimization to make sure the reverse-engineered Trojan208

satisfies the constraints. E is the maximal epoch number. In lines 5-11, it optimizes the trigger209

function F and then the mask m of the feature space hyperplane in lines 12-16. In the end, we210

determine the reverse-engineering is successful and the label yt is a Trojan target label if the attack211

success rate of the reversed Trojan is above a threshold value λ (80% in this paper).212

3.4 Trojan Mitigation213

After we reverse-engineered the Trojans, we can mitigate it by breaking the reverse-engineered214

feature space Trojan hyperplane. Based on our observation, the neurons in the feature space Trojan215

hyperplane are highly related to the Trojan behaviors. Thus, we can mitigate the Trojans by breaking216

the hyperplane. Inspired by Zhao et al. [49], we can break it by flipping the neurons on it. Our217

neuron-flip process can be written as Eq. 3, where m is the reverse-engineered feature space mask, a218

is the inner features. ai is the activation value on the ith neuron.219

Flip(a) =

{
−ai, when ai in m

ai, when ai not in m
(3)

The mitigated model M′(x) = B (Flip(A(x))), where A and B are submodels of the model.220

4 Experiments and Results221

We first introduce our experiment setup (§ 4.1). We then evaluate the effectiveness of FEATURERE on222

Trojan detection (§ 4.2) and mitigation tasks (§ 4.3). We also evaluate the robustness of FEATURERE223

against different settings and the impacts of configurable parameters in FEATURERE (§ 4.4).224

4.1 Experiment Setup.225

We implement FEATURERE with python 3.8 and PyTorch. All experiments are conducted on a226

Ubuntu 18.04 machine equipped with 64 CPUs and six GeForce RTX 6000 GPUs.227

Table 1: Overview of datasets.

Dataset Sample Size #Train Classes

MNIST 32*32*1 60000 10
GTSRB 32*32*3 39209 43

CIFAR-10 32*32*3 50000 10
ImageNet 224*224*3 100000 200

Datasets and Models. We use four publicly available228

datasets to evaluate FEATURERE, including MNIST [50],229

GTSRB [51], CIFAR-10 [52] and ImageNet [53]. We230

summarize our datasets in Table 1. We show the dataset231

names, the size of each input sample, the number of sam-232

ples and the number of classes in each column. De-233

tails of the datasets can be found in Appendix. For234

model architectures, we use LeNet5 [50], Preact ResNet18235

(PRN18) [54], ResNet18 [55], a VGG-style network236

specified in ULP [44], and a model consists of 4 convolutional layers and 2 dense layers237

used in Xu et al. [43]. These datasets and models are widely used in Trojan-related re-238

searches [1, 2, 17, 18, 56, 14, 3, 43].239

Evaluation Metrics. We measure the effectiveness of the Trojan detection task by collecting the240

detection accuracy (Acc). Given a set of models consist of benign and Trojaned models, the Acc241

is the number of correctly classified models over the number of all models. We also show detailed242

number of True Positives (TP, i.e., correctly detected Trojaned models), False Positives (FP, i.e.,243

benign models classified as Trojaned models), False Negatives (FN, i.e., Trojaned models classified244

as benign models) and True Negatives (TN, i.e., correctly classified benign models). For the Trojan245

mitigation task, we evaluate the benign accuracy (BA) and attack success rate (ASR) [57]. BA is the246

number of correctly classified clean inputs over the number of all clean samples. ASR is defined as247

the number of Trojan samples that successfully attack models over the number of all Trojan samples.248

Baselines and Attack Settings. We evaluate the performance of FEATURERE on Trojan detection,249

and compare the results with four reverse-engineering based Trojan detection methods (i.e., ABS [18],250

DeepInspect [21], TABOR [20], and K-arm [19]) and two classification based methods (i.e., ULP [44]251

and Meta-classifier [43]). For Trojan mitigation task, we compare FEATURERE with two advanced252

mitigation methods (i.e., NAD [58] and I-BAU [59]). We use the default parameter settings described253

6

Table 2: Comparison to reverse-engineering methods.

Dataset Network Attack ABS DeepInspect TABOR K-arm FEATURERE

TP FP FN TN Acc TP FP FN TN Acc TP FP FN TN Acc TP FP FN TN Acc TP FP FN TN Acc

MNIST LeNet5 WaNet 7 2 3 8 75% 4 0 6 10 70% 3 2 7 8 55% 5 0 5 10 75% 9 1 1 9 90%

GTSRB PRN18 WaNet 5 0 5 10 75% 5 1 5 9 70% 2 2 8 8 50% 4 0 6 10 70% 8 0 2 10 90%

CIFAR-10 ResNet18

BadNets 18 0 2 20 95% 20 2 0 18 95% 20 3 0 17 93% 20 0 0 20 100% 20 1 0 19 98%
Filter 13 0 7 20 83% 6 2 14 18 60% 5 3 15 17 55% 0 0 20 20 50% 18 1 2 19 93%

WaNet 11 0 9 20 78% 11 2 9 18 73% 3 3 17 17 50% 9 0 11 20 73% 18 1 2 19 93%
IA 3 0 17 20 58% 4 2 16 18 55% 3 3 17 17 50% 2 0 18 20 55% 19 1 1 19 95%

Table 3: Comparison to ULP.

Network Attack ULP Ours

TP FP FN TN Acc TP FP FN TN Acc

VGG WaNet 1 0 19 20 0.53 17 0 3 20 93%

Table 4: Comparison to Meta-classifier.

Network Attack Meta Classifier Ours

TP FP FN TN Acc TP FP FN TN Acc

4Conv+2FC WaNet 16 4 4 16 0.80 18 0 2 20 95%

in the original papers of our baseline methods. To understand the performance of FEATURERE254

and existing methods against various attack settings, we evaluate them against BadNets [1], Filter255

Trojans [18], WaNets [6], IA (Input-dependent dynamic Trojans) [7], Clean-label [24], SIG [25]256

and ISSBA (Invisible sample-specific Trojans) [8] attacks. These attacks are state-of-the-art attack257

methods and are widely evaluated in Trojan defense papers [17, 18, 60, 59] If not specified, we use258

an all-to-one (i.e., single-target) setting for all attacks. Label-specific setting is discussed in § 4.4.259

4.2 Effectiveness on Trojan Detection260

To measure the effectiveness on the Trojan detection task, we generate a set of benign and Trojaned261

models, and then use FEATURERE and existing Trojan detection methods to classify each model. We262

collect the Acc, TP, FP, FN and TN results of each method and compare them. Specifically, we first263

evaluate the performance of FEATURERE and compare the results with four state-of-the-art reverse-264

engineering based detection methods. We generate 20 Trojaned models as well as 20 benign models265

on CIFAR-10 dataset for each attack (i.e., BadNets, Filter Trojan, WaNet and Input-aware dynamic266

Trojan attack). For MNIST and GTSRB dataset, we train 10 Trojaned and 10 benign LeNet5 [50]267

models on each dataset. We then compare FEATURERE with two state-of-the-art classification268

based detection methods. Similarly, we generate 10 benign and 10 Trojaned models, and use Trojan269

detection methods to classify these models. Notice that, in all Trojan detection tasks, we assume the270

defender can only access 10 clean samples for each class, which is a common practice. [17, 19, 18]271

The comparison results of reverse-engineering based methods are shown in Table 2. The results of272

two classification based methods are demonstrated in Table 3 and Table 4. In each table, we show the273

detailed settings, including dataset names, network architectures, and attack settings.274

Comparison to Reverse-engineering based methods. From the results in Table 2, we observe275

that FEATURERE achieves the best detection results compared with other methods. The average276

Acc of FEATURERE is 93%, which is 17%, 23%, 35% and 23% higher than those of other defense277

methods. The results show the benefit of FEATURERE. When looking into the generalization of278

Trojan detection methods, we find that FEATURERE can achieve excellent results on both input-space279

Trojans (i.e., BadNets) and feature-space Trojans (i.e., Filter, WaNet and IA attacks). However, the280

performance of existing reverse-engineering methods on feature-space Trojans (i.e., Filter, WaNet281

and IA attacks) is significantly worse than the performance on static Trojans. FEATURERE archives282

94% average Acc but the Acc of TABOR on feature-space Trojans are only 53%, 50% and 50%,283

respectively. Moreover, FEATURERE has 15.33 TP on average, but existing methods only have284

7.87 TP. FEATURERE can generalize better than existing work because FEATURERE considers both285

feature and input space constraints. Existing methods, on the contrary, only consider the input space286

constraints. They can not detect feature-space Trojans whose trigger is complex and input-dependent,287

and directly classify many Trojaned models with feature-space Trojans as benign.288

Comparison to classification based methods. When comparing FEATURERE with classification289

based methods, we notice that FEATURERE has better Acc, more TPs and TNs than classification290

based methods ULP and Meta-classifier. As demonstrated in Table 3 and Table 4, the Acc of291

7

Table 5: Results on Trojan mitigation task (10 clean samples for each class are used).

Dataset Network Attack Undefended NAD I-BAU Ours

BA ASR BA ASR BA ASR BA ASR

MNIST LeNet5 WaNet 99.22% 94.52% 65.87% 48.21% 94.87% 0.22% 99.20% 0.63%

GTSRB PRN18 WaNet 99.02% 99.70% 70.35% 62.76% 91.74% 0.86% 98.42% 0.00%

CIFAR-10 ResNet18
Filter 91.30% 98.98% 81.66% 28.23% 87.45% 18.22% 91.26% 0.29%

WaNet 91.84% 98.17% 83.60% 27.52% 87.52% 6.84% 91.79% 0.04%
IA 91.62% 92.44% 84.03% 34.00% 86.88% 10.33% 91.43% 0.38%

FEATURERE is 0.93 and 0.95, which is 0.40 and 0.15 higher than those of ULP and Meta-classifier.292

Overall, the results indicate that FEATURERE is more effective than classification based methods293

when detecting Trojaned models. Different from FEATURERE, which directly inspects models via294

analyzing its inherent feature space properties, classification based methods highly depend on the295

external trained dataset. Therefore, their results are not as precise as FEATURERE.296

4.3 Effectiveness on Trojan Mitigation297

We evaluate the effectiveness of FEATURERE on Trojan mitigation and compare the results with298

state-of-the-art methods NAD and I-BAU. We use the Trojaned models generated by three attacks (i.e.,299

Filter attack, WaNet and IA) and report their average BA and ASR after Trojan mitigation. We also300

show the average BA and ASR of undefended Trojaned models. For all methods, the defenders can301

access 10 clean samples for each class to conduct Trojan mitigation. We show the results in Table 5.302

We find that FEATURERE is the most effective method for Trojan mitigation among all methods.303

Compared to state-of-the-art Trojan mitigation methods, FEATURERE archives the lowest average304

ASR and the highest average BA. On the one hand, using FEATURERE can decrease the average305

ASR from 96.76% to 0.26%. Other methods can only decrease the average ASR to 40.14% and306

7.29%. The results show the advantages of FEATURERE on Trojan mitigation. On the other hand, the307

BA with FEATURERE is similar to undefended models. But the BA of other methods is significantly308

lower than that of undefended models. By breaking the feature space hyperplane, FEATURERE can309

successfully mitigate Trojans with minimal BA loss. Other methods, which cannot find Trojan-related310

features, cannot achieve good results.311

4.4 Ablation Study312

In this section, we evaluate the resistance of FEATURERE to various Trojan attack settings and large313

datasets. We also evaluate the impacts of configurable parameters in FEATURERE, including the314

constrain values used in Eq. 2 and the number of used clean samples. By default, the attack used for315

measuring the impacts of configurable parameters is IA. We use 20 benign ResNet models and 20316

Trojaned ResNet models on CIFAR-10 to test the detection results. Notice that we only evaluate the317

performance on the Trojan detection task. Due to the page limits, we include the ablation study on318

Trojan mitigation in Appendix.319

Table 6: Resistance to more attacks.

Dataset Network Attack TP FP FN TN Acc

CIFAR-10 ResNet18
LS 9 1 1 9 90%
CL 8 1 2 9 85%
SIG 10 1 0 9 95%

ImageNet ResNet18 ISSBA 4 0 1 5 90%

Resistance to various attack and dataset settings.320

To evaluate if our method is resistant to more Tro-321

jan attacks, we train 20 Trojaned ResNet18 models322

on CIFAR-10 for Label-specific attack (LS), Clean-323

label attack (CL) and SIG attack (SIG). For the label-324

specific attack, we consider the all-to-all attack set-325

ting, i.e., the target label yT = η(y) = y+1, where η326

is a mapping and y is the correct label of the sample.327

In addition, we generate five benign models and five328

Trojaned models with ISSBA attacks on ImageNet to329

evaluate if our method is compatible with large-scale datasets. We summarize the results in Table 6.330

In Table 6, we find that FEATURERE is compatible with evaluated Trojan attacks, showing the331

generalization of our reverse-engineering based method. We also observe that our method has high332

Acc on the ImageNet dataset with ISSBA [8]. Thus, our method is also applicable to large datasets.333

8

Influence of constrain values. As shown in Eq. 2, there are three constrain values (τ1, τ2, τ3) in our334

constrained optimization process. By default, τ1 = 0.15, τ2 = 0.25 and τ3 = 5%. We evaluate their335

influences. For τ1, we calculate input space perturbations on the preprocessed inputs, and the details336

of the preprocessing can be found in Appendix (§ A.2). We vary τ1 from 0.05 to 0.35, change τ2337

from 0.10 to 0.50, and tune τ3 from 3% of the whole feature space to 10% of the whole feature space.338

The results under different hyperparameter settings are shown in Table 7.339

From the results, we observe that the performance of FEATURERE is insensitive to these three340

hyperparameters. In detail, when we vary τ1, τ2 and τ3, the Acc is stable. In all cases, our method341

always achieves over 90% detection accuracy. The results further show the robustness of FEATURERE.342

We also find that, when the value of all hyperparameters becomes lower, FEATURERE has more FN.343

On the contary, when its value is larger, more FP will be produced. This is understandable because344

lower constrain values mean a stricter criterion for a successful reverse-engineering.345

Table 7: Influence of hyperparameters.

Metric τ1 τ2 τ3

0.05 0.15 0.35 0.10 0.25 0.50 3% 5% 10%

TP 18 19 20 17 19 19 17 19 19
FP 0 1 3 1 1 2 0 1 2
FN 2 1 0 3 1 1 3 1 1
TN 20 19 17 19 19 18 20 19 18
Acc 0.95 0.95 0.93 0.90 0.95 0.93 0.93 0.95 0.93

Fig. 3: Effects of clean set size.

346

Number of clean reference samples. Our threat model and existing work assume the defender can347

access a set of clean samples for defense. To investigate the influences of the number of used clean348

samples in Trojan detection, we choose the number from 1 to 100 in each class and report the Acc349

results. The results are shown in Fig. 3.350

From the results, we notice that the Acc decreases significantly when we use less than 10 samples351

for each class. This is because the number of used sample affects the optimization process. When352

the number of used samples is too small, the optimization process might be problematic, e.g., it353

encounters overfitting problem. When the number of used samples is larger than 10, FEATURERE354

achieves high detection accuracy (i.e., above 95%) and the Acc will not change significantly when355

the number of used samples keeps increasing. The reason is using more data makes the optimizing356

process converge and finally arrives a stable state. Note that requiring hundreds clean samples is357

common for reverse-engineering based methods [17, 18, 20] and other types of defenses [58–60, 14].358

FEATURERE only requires 10 clean samples for each class, which is more efficient.359

5 Discussion360

Limitations of our method. Similar to most existing Trojaned model detection and mitigation361

methods [17–21, 58, 56], our method requires a small set of clean samples. In the real world, these362

samples can be obtained from the Internet.363

Ethics. This paper proposes a technique to detect and remove Trojans in DNN models. We believe it364

will help improve the security of DNNs and be beneficial to society.365

6 Conclusion366

In this paper, we find relationships between feature space hyperplane and Trojans in DNNs. More367

over, we propose a new Trojaned DNN detection and mitigation method based on our findings.368

Compared to the state-of-the-art methods, our method has better performance in both detection and369

mitigation tasks.370

9

References371

[1] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in372

the machine learning model supply chain. arXiv preprint arXiv:1708.06733, 2017.373

[2] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and374

Xiangyu Zhang. Trojaning attack on neural networks. 2017.375

[3] Siyuan Cheng, Yingqi Liu, Shiqing Ma, and Xiangyu Zhang. Deep feature space trojan attack376

of neural networks by controlled detoxification. arXiv preprint arXiv:2012.11212, 2020.377

[4] Khoa Doan, Yingjie Lao, Weijie Zhao, and Ping Li. Lira: Learnable, imperceptible and robust378

backdoor attacks. In Proceedings of the IEEE/CVF International Conference on Computer379

Vision, pages 11966–11976, 2021.380

[5] Ahmed Salem, Rui Wen, Michael Backes, Shiqing Ma, and Yang Zhang. Dynamic backdoor381

attacks against machine learning models. arXiv preprint arXiv:2003.03675, 2020.382

[6] Anh Nguyen and Anh Tran. Wanet–imperceptible warping-based backdoor attack. arXiv383

preprint arXiv:2102.10369, 2021.384

[7] Anh Nguyen and Anh Tran. Input-aware dynamic backdoor attack. arXiv preprint385

arXiv:2010.08138, 2020.386

[8] Yuezun Li, Yiming Li, Baoyuan Wu, Longkang Li, Ran He, and Siwei Lyu. Invisible backdoor387

attack with sample-specific triggers. In Proceedings of the IEEE/CVF International Conference388

on Computer Vision, pages 16463–16472, 2021.389

[9] Giorgio Severi, Jim Meyer, Scott Coull, and Alina Oprea. {Explanation-Guided} backdoor390

poisoning attacks against malware classifiers. In 30th USENIX Security Symposium (USENIX391

Security 21), pages 1487–1504, 2021.392

[10] Esha Sarkar, Hadjer Benkraouda, and Michail Maniatakos. Facehack: Triggering backdoored393

facial recognition systems using facial characteristics. arXiv preprint arXiv:2006.11623, 2020.394

[11] Min Du, Ruoxi Jia, and Dawn Song. Robust anomaly detection and backdoor attack detection395

via differential privacy. arXiv preprint arXiv:1911.07116, 2019.396

[12] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Edwards, Taesung397

Lee, Ian Molloy, and Biplav Srivastava. Detecting backdoor attacks on deep neural networks by398

activation clustering. arXiv preprint arXiv:1811.03728, 2018.399

[13] Brandon Tran, Jerry Li, and Aleksander Madry. Spectral signatures in backdoor attacks. arXiv400

preprint arXiv:1811.00636, 2018.401

[14] Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith C Ranasinghe, and Surya Nepal.402

Strip: A defence against trojan attacks on deep neural networks. In Proceedings of the 35th403

Annual Computer Security Applications Conference, pages 113–125, 2019.404

[15] Edward Chou, Florian Tramèr, Giancarlo Pellegrino, and Dan Boneh. Sentinet: Detecting405

physical attacks against deep learning systems. 2018.406

[16] Bao Gia Doan, Ehsan Abbasnejad, and Damith C Ranasinghe. Februus: Input purification407

defense against trojan attacks on deep neural network systems. In Annual Computer Security408

Applications Conference, pages 897–912, 2020.409

[17] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and410

Ben Y Zhao. Neural cleanse: Identifying and mitigating backdoor attacks in neural networks.411

In 2019 IEEE Symposium on Security and Privacy (SP), pages 707–723. IEEE, 2019.412

[18] Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing Ma, Yousra Aafer, and Xiangyu Zhang.413

Abs: Scanning neural networks for back-doors by artificial brain stimulation. In Proceedings414

of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pages415

1265–1282, 2019.416

10

[19] Guangyu Shen, Yingqi Liu, Guanhong Tao, Shengwei An, Qiuling Xu, Siyuan Cheng, Shiqing417

Ma, and Xiangyu Zhang. Backdoor scanning for deep neural networks through k-arm optimiza-418

tion. arXiv preprint arXiv:2102.05123, 2021.419

[20] Wenbo Guo, Lun Wang, Xinyu Xing, Min Du, and Dawn Song. Tabor: A highly accu-420

rate approach to inspecting and restoring trojan backdoors in ai systems. arXiv preprint421

arXiv:1908.01763, 2019.422

[21] Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz Koushanfar. Deepinspect: A black-box trojan423

detection and mitigation framework for deep neural networks. In IJCAI, pages 4658–4664,424

2019.425

[22] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on426

deep learning systems using data poisoning. arXiv preprint arXiv:1712.05526, 2017.427

[23] Junyu Lin, Lei Xu, Yingqi Liu, and Xiangyu Zhang. Composite backdoor attack for deep428

neural network by mixing existing benign features. In Proceedings of the 2020 ACM SIGSAC429

Conference on Computer and Communications Security, pages 113–131, 2020.430

[24] Alexander Turner, Dimitris Tsipras, and Aleksander Madry. Label-consistent backdoor attacks.431

arXiv preprint arXiv:1912.02771, 2019.432

[25] Mauro Barni, Kassem Kallas, and Benedetta Tondi. A new backdoor attack in cnns by training433

set corruption without label poisoning. In 2019 IEEE International Conference on Image434

Processing (ICIP), pages 101–105. IEEE, 2019.435

[26] Zhaohan Xi, Ren Pang, Shouling Ji, and Ting Wang. Graph backdoor. In 30th USENIX Security436

Symposium (USENIX Security 21), pages 1523–1540, 2021.437

[27] Zaixi Zhang, Jinyuan Jia, Binghui Wang, and Neil Zhenqiang Gong. Backdoor attacks to graph438

neural networks. In Proceedings of the 26th ACM Symposium on Access Control Models and439

Technologies, pages 15–26, 2021.440

[28] Panagiota Kiourti, Kacper Wardega, Susmit Jha, and Wenchao Li. Trojdrl: evaluation of441

backdoor attacks on deep reinforcement learning. In 2020 57th ACM/IEEE Design Automation442

Conference (DAC), pages 1–6. IEEE, 2020.443

[29] Lun Wang, Zaynah Javed, Xian Wu, Wenbo Guo, Xinyu Xing, and Dawn Song. Backdoorl:444

Backdoor attack against competitive reinforcement learning. arXiv preprint arXiv:2105.00579,445

2021.446

[30] Xiaoyi Chen, Ahmed Salem, Dingfan Chen, Michael Backes, Shiqing Ma, Qingni Shen,447

Zhonghai Wu, and Yang Zhang. Badnl: Backdoor attacks against nlp models with semantic-448

preserving improvements. In Annual Computer Security Applications Conference, pages449

554–569, 2021.450

[31] Alvin Chan, Yi Tay, Yew-Soon Ong, and Aston Zhang. Poison attacks against text datasets with451

conditional adversarially regularized autoencoder. arXiv preprint arXiv:2010.02684, 2020.452

[32] Wenkai Yang, Lei Li, Zhiyuan Zhang, Xuancheng Ren, Xu Sun, and Bin He. Be careful about453

poisoned word embeddings: Exploring the vulnerability of the embedding layers in nlp models.454

arXiv preprint arXiv:2103.15543, 2021.455

[33] Fanchao Qi, Yangyi Chen, Xurui Zhang, Mukai Li, Zhiyuan Liu, and Maosong Sun. Mind456

the style of text! adversarial and backdoor attacks based on text style transfer. arXiv preprint457

arXiv:2110.07139, 2021.458

[34] Wenkai Yang, Yankai Lin, Peng Li, Jie Zhou, and Xu Sun. Rethinking stealthiness of backdoor459

attack against nlp models. In Proceedings of the 59th Annual Meeting of the Association for460

Computational Linguistics and the 11th International Joint Conference on Natural Language461

Processing (Volume 1: Long Papers), pages 5543–5557, 2021.462

[35] Fanchao Qi, Mukai Li, Yangyi Chen, Zhengyan Zhang, Zhiyuan Liu, Yasheng Wang, and463

Maosong Sun. Hidden killer: Invisible textual backdoor attacks with syntactic trigger. arXiv464

preprint arXiv:2105.12400, 2021.465

11

[36] Shijie Zhang, Hongzhi Yin, Tong Chen, Zi Huang, Quoc Viet Hung Nguyen, and Lizhen Cui.466

Pipattack: Poisoning federated recommender systems formanipulating item promotion. arXiv467

preprint arXiv:2110.10926, 2021.468

[37] Yuanshun Yao, Huiying Li, Haitao Zheng, and Ben Y Zhao. Latent backdoor attacks on deep469

neural networks. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and470

Communications Security, pages 2041–2055, 2019.471

[38] Jinyuan Jia, Yupei Liu, and Neil Zhenqiang Gong. Badencoder: Backdoor attacks to pre-trained472

encoders in self-supervised learning. arXiv preprint arXiv:2108.00352, 2021.473

[39] Jose Rodrigo Sanchez Vicarte, Gang Wang, and Christopher W Fletcher. {Double-Cross}474

attacks: Subverting active learning systems. In 30th USENIX Security Symposium (USENIX475

Security 21), pages 1593–1610, 2021.476

[40] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly Shmatikov. How477

to backdoor federated learning. In International Conference on Artificial Intelligence and478

Statistics, pages 2938–2948. PMLR, 2020.479

[41] Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. Dba: Distributed backdoor attacks against480

federated learning. In International Conference on Learning Representations, 2019.481

[42] Yiming Li, Tongqing Zhai, Baoyuan Wu, Yong Jiang, Zhifeng Li, and Shutao Xia. Rethinking482

the trigger of backdoor attack. arXiv preprint arXiv:2004.04692, 2020.483

[43] Xiaojun Xu, Qi Wang, Huichen Li, Nikita Borisov, Carl A Gunter, and Bo Li. Detecting ai484

trojans using meta neural analysis. arXiv preprint arXiv:1910.03137, 2019.485

[44] Soheil Kolouri, Aniruddha Saha, Hamed Pirsiavash, and Heiko Hoffmann. Universal litmus486

patterns: Revealing backdoor attacks in cnns. In Proceedings of the IEEE/CVF Conference on487

Computer Vision and Pattern Recognition, pages 301–310, 2020.488

[45] Jonathan Hayase, Weihao Kong, Raghav Somani, and Sewoong Oh. Defense against backdoor489

attacks via robust covariance estimation. In International Conference on Machine Learning,490

pages 4129–4139. PMLR, 2021.491

[46] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions.492

Advances in neural information processing systems, 30, 2017.493

[47] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are494

universal approximators. Neural networks, 2(5):359–366, 1989.495

[48] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for496

biomedical image segmentation. In International Conference on Medical image computing and497

computer-assisted intervention, pages 234–241. Springer, 2015.498

[49] Yue Zhao, Hong Zhu, Kai Chen, and Shengzhi Zhang. Ai-lancet: Locating error-inducing499

neurons to optimize neural networks. In Proceedings of the 2021 ACM SIGSAC Conference on500

Computer and Communications Security, pages 141–158, 2021.501

[50] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning502

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.503

[51] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. Man vs. computer:504

Benchmarking machine learning algorithms for traffic sign recognition. Neural networks, 32:505

323–332, 2012.506

[52] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.507

2009.508

[53] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng509

Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual510

recognition challenge. International journal of computer vision, 115(3):211–252, 2015.511

12

[54] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual512

networks. In European conference on computer vision, pages 630–645. Springer, 2016.513

[55] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image514

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,515

pages 770–778, 2016.516

[56] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: Defending against517

backdooring attacks on deep neural networks. In International Symposium on Research in518

Attacks, Intrusions, and Defenses, pages 273–294. Springer, 2018.519

[57] Akshaj Kumar Veldanda, Kang Liu, Benjamin Tan, Prashanth Krishnamurthy, Farshad Khorrami,520

Ramesh Karri, Brendan Dolan-Gavitt, and Siddharth Garg. Nnoculation: broad spectrum and521

targeted treatment of backdoored dnns. arXiv preprint arXiv:2002.08313, 2020.522

[58] Yige Li, Nodens Koren, Lingjuan Lyu, Xixiang Lyu, Bo Li, and Xingjun Ma. Neural at-523

tention distillation: Erasing backdoor triggers from deep neural networks. arXiv preprint524

arXiv:2101.05930, 2021.525

[59] Yi Zeng, Si Chen, Won Park, Z Morley Mao, Ming Jin, and Ruoxi Jia. Adversarial unlearning526

of backdoors via implicit hypergradient. arXiv preprint arXiv:2110.03735, 2021.527

[60] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Anti-backdoor528

learning: Training clean models on poisoned data. Advances in Neural Information Processing529

Systems, 34, 2021.530

[61] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint531

arXiv:1412.6980, 2014.532

[62] Yingqi Liu, Guangyu Shen, Guanhong Tao, Zhenting Wang, Shiqing Ma, and Xiangyu Zhang.533

Complex backdoor detection by symmetric feature differencing. 2022.534

[63] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Univer-535

sal adversarial perturbations. In Proceedings of the IEEE conference on computer vision and536

pattern recognition, pages 1765–1773, 2017.537

[64] Bolei Zhou, Yiyou Sun, David Bau, and Antonio Torralba. Interpretable basis decomposition538

for visual explanation. In Proceedings of the European Conference on Computer Vision (ECCV),539

pages 119–134, 2018.540

[65] David Bau, Jun-Yan Zhu, Hendrik Strobelt, Agata Lapedriza, Bolei Zhou, and Antonio Torralba.541

Understanding the role of individual units in a deep neural network. Proceedings of the National542

Academy of Sciences, 117(48):30071–30078, 2020.543

[66] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale544

image recognition. arXiv preprint arXiv:1409.1556, 2014.545

[67] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint546

arXiv:1605.07146, 2016.547

Checklist548

1. For all authors...549

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s550

contributions and scope? [Yes]551

(b) Did you describe the limitations of your work? [Yes] See § 5.552

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See § 5.553

(d) Have you read the ethics review guidelines and ensured that your paper conforms to554

them? [Yes] See § 5.555

2. If you are including theoretical results...556

(a) Did you state the full set of assumptions of all theoretical results? [N/A]557

13

(b) Did you include complete proofs of all theoretical results? [N/A]558

3. If you ran experiments...559

(a) Did you include the code, data, and instructions needed to reproduce the main experi-560

mental results (either in the supplemental material or as a URL)? [Yes] See Abstract,561

§ 4, and Appendix.562

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they563

were chosen)? [Yes] See § 4 and Appendix.564

(c) Did you report error bars (e.g., with respect to the random seed after running experi-565

ments multiple times)? [No]566

(d) Did you include the total amount of compute and the type of resources used (e.g., type567

of GPUs, internal cluster, or cloud provider)? [Yes] See § 4.568

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...569

(a) If your work uses existing assets, did you cite the creators? [Yes] See § 4.570

(b) Did you mention the license of the assets? [Yes] See Appendix.571

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]572

See Abstract.573

(d) Did you discuss whether and how consent was obtained from people whose data you’re574

using/curating? [Yes] See Appendix.575

(e) Did you discuss whether the data you are using/curating contains personally identifiable576

information or offensive content? [Yes] See Appendix.577

5. If you used crowdsourcing or conducted research with human subjects...578

(a) Did you include the full text of instructions given to participants and screenshots, if579

applicable? [N/A]580

(b) Did you describe any potential participant risks, with links to Institutional Review581

Board (IRB) approvals, if applicable? [N/A]582

(c) Did you include the estimated hourly wage paid to participants and the total amount583

spent on participant compensation? [N/A]584

14

A Appendix585

Roadmap: More details of Algorithm 1 is introduced in § A.1. Then, we present more details of the586

datasets (§ A.2) and attacks (§ A.3) used in the experiments. We also perform an ablation study for587

the Trojan mitigation task in § A.4. In § A.5, we visualize our reversed Trojan. In § A.6, we discuss588

how to split the model. The adaptive attack can be found in § A.7. We also show the generalization589

(§ A.8) and the efficiency (§ A.9) of FEATURERE. Finally, we discuss the findings in the evaluation590

(§ A.10).591

A.1 More details of Algorithm 1592

In this section, we discuss more details of our Reverse-engineering Algorithm (Algorithm 1 in the593

main paper). Given a model M and a small set of clean samples X , the output of the algorithm is a594

flag indicating if the model is Trojaned, and Trojaned label pairs denoting the source label and the595

target label of the detected Trojans.596

In line 2, we iterate (source label, target label) pair from possible pairs K. E in line 3 means the597

maximal optimization epoch number for each pair. It is set to 400 in this paper. In line 4, we randomly598

sample a batch of inputs from the samples in source classes. The batch size is set to 128 by default.599

In lines 5 to Line 11, we optimize the parameters of the input space transformation F , which is600

represented by a UNet [48] model in our implementation. In line 5, we calculate the loss value601

specified in Eq. 1 (in the main paper), where a = A(x) is the inner feature on clean samples. By602

default, A is the submodel from the input layer to the penultimate layer, and B is the submodel from the603

penultimate layer to the output layer. m is the feature space trigger mask. t = mean (m⊙A(F (X))604

is the feature space trigger pattern. L is the cross-entropy loss calculating the distance between the605

target label and the output of the model under inner features with feature space Trojans. In line 6, if606

the input space MSE (Mean Square Error) distance for original inputs x and the transformed inputs607

F (x) is larger than a threshold value τ1 (i.e., 0.15), then the regularization item w1 · ∥F (x)− x∥608

will be added. Note that we calculate input space distance on the preprocessed inputs, and the details609

of the preprocessing are in § A.2. Following NC [17], the weight value w1 is adjusted dynamically to610

make the reverse-engineering satisfy the constrain (i.e., ∥F (x)− x∥ ≤ τ1). w2 in line 9 and w3 in611

line 14 are also adjusted dynamically. In lines 8-9, similarly, we add the regularization item for the612

standard deviation of different Trojan samples’ activation values on each pixel in the hyperplane. The613

default value for τ2 is 0.25. Lines 10-11 are the standard backward propagation process to update the614

parameters of the input space transformation function F based on the gradients. The optimizer used615

to optimize F is Adam [61]. The value of learning rate lr1 is 1e-3. In each epoch, we optimize both616

the input space transformation function F and the feature space mask m.617

Lines 12-16 describes the process for optimizing m. Similar to line 5, we calculate the cross-entropy618

loss between the target label and the output of the model under inner features with feature space619

Trojans in line 12. In lines 13-14, we add the regularization item for the size of the feature space620

Trojan hyperplane. The default value for τ3 is 5% of the whole feature space. Lines 15-16 describe621

the process of updating feature space mask m via gradients. The value of learning rate lr2 in line 16622

is 1e-1. The optimizer used is Adam [61].623

In line 17, we check if the Trojan is successfully reverse-engineered. In detail, we calculated the ASR624

(attack success rate) on inner features with feature space Trojans (i.e., (1−m)⊙ a+m⊙ t). We625

flag that reverse-engineering is successful if the ASR is above a threshold value λ (i.e., 0.8). If the626

Trojan is successfully reverse-engineered, we flag the model as a Trojan model and label the (source627

class, target class) pair as Trojaned pair. Besides the details above, we also use K-arm scheduler [19]628

to speed up the reverse engineering. Lastly, we use Liu et al. [62] to distinguish the Injected Trojans629

and UAPs (Universal Adversarial Patterns) [63].630

A.2 Details of Datasets631

In this section, details of the datasets used in the experiments are discussed. We also provide the632

details of the preprocessing for each dataset. All datasets are open-sourced. The license for all633

datasets is the MIT license. They do not contain any personally identifiable information or offensive634

content.635

15

Table 8: Details of Mean and Std value on each dataset.

Dataset Mean Std

MNIST [0.1307] [0.3081]
CIFAR-10 [0.4914, 0.4822, 0.4465] [0.2023, 0.1994, 0.2010]
GTSRB [0.3403, 0.3121, 0.3214] [0.2724, 0.2608, 0.2669]

ImageNet [0.4850, 0.4560, 0.4060] [0.2290, 0.2240, 0.2250]

MNIST [50]. This dataset is used for classifying hand-written digits. It contains 60000 training636

samples in 10 classes. The number of samples in the test set is 10000.637

GTSRB [51] This dataset is built for traffic sign classification tasks. The number of classes is 43.638

The sample numbers for the training set and test set are 39209 and 12630, respectively.639

CIFAR10 [52] This dataset is used for recognizing general objects, e.g., dogs, cats, and planes. It has640

50000 training samples and 10000 training samples. This dataset has 10 classes.641

ImageNet [53] This dataset is also a general object classification benchmark. Note that we use a642

subset (containing 200 classes) of the original ImageNet dataset specified in ISSBA [8]. The subset643

has 100000 training samples and 10000 test samples.644

Following standard convention on the image classification task, we scale the inputs to the range [0,1]645

and use mean-std normalization to preprocess the images. In detail, the preprocessing can be written646

as x′ =
(x
255−Mean)

Std , where x′ is the normalized input and x is the original inputs. The Mean value647

and Std (Standard Deviation) value for each channel on different datasets are summarized in Table 8.648

A.3 Details of Attacks649

In this section, we discuss the details of the used attacks. By default, the attacks are in an all-to-one650

(i.e., single-target) setting, and the target label is randomly selected when we generate Trojaned651

models.652

BadNets [1]. This attack uses a fixed pattern (i.e., a patch or a watermark) as Trojan triggers, and it653

generates Trojan inputs by simply pasting the pre-defined trigger pattern on the input. It compromised654

the victim models by poisoning the training data (i.e., injecting Trojan samples and modifying their655

labels to target labels). In our experiments, we use a 3*3 yellow patch located at the left-upper corner656

as Trojan trigger. The poisoning rate we used is 5%. The attack can be all-to-one (i.e., single-target)657

and all-to-all (i.e., label-specific). For an all-to-one attack, all Trojan samples have the same target658

label. For label-specific attacks, the samples in different original classes have different target labels.659

In our experiment, the target label for label-specific attack is yT = η(y) = y + 1, where η is a660

mapping and y is the correct label of the sample.661

Filter Attack [18]. This attack exploits image filters as triggers and creates Trojan samples by662

applying selected filters on images. Similar to BadNets, the Trojans are injected with poisoning.663

Following ABS [18], we use a 5% poisoning rate and apply the Nashville filter from Instagram as the664

Trojan trigger.665

WaNet [6]. This method achieves Trojan attacks via image warping techniques. The trigger transfor-666

mation of this attack is an elastic warping operation. Different from BadNets and Filter Attack, in667

this attack, the adversary needs to modify the training process of the victim models to make the attack668

more resistant to Trojan defenses. It is stealthy to human inspection, and it can also bypass many669

existing Trojan defense mechanisms [14, 12, 56, 17]. In our experiments, the wrapping strength and670

the grid size are set to 0.5 and 4, respectively.671

Input-aware Dynamic Attack [7]. This attack generates Trojan triggers via a trained generator672

network. The trigger generator is trained on a diversity loss so that two different input images do not673

share the same trigger. Similar to WaNet [6], the attacker needs to control the training process.674

SIG [25]. This method uses superimposed sinusoidal signals as Trojan triggers. In this attack, the675

attacker can only poison a set of training samples but can not control the full training process. We set676

the poisoning rate as 5%. The frequency and the magnitude of the backdoor signal in our experiments677

are 6 and 20, respectively.678

16

Table 9: Influence of hyperparameters on Trojan mitigation task.

Metric τ1 τ2 τ3

0.05 0.15 0.35 0.10 0.25 0.50 1% 2% 3% 4% 5% 6% 7%

BA 91.77% 91.79% 91.79% 91.76% 91.79% 91.80% 91.92% 91.87% 91.85% 91.82% 91.79% 91.65% 90.08%
ASR 0.02% 0.04% 0.08% 0.02% 0.04% 0.08% 57.75% 0.50% 0.06% 0.06% 0.04% 0.00% 0.00%

Table 10: Effects of clean set size on Trojan mitigation task.

Samples Per Class BA ASR

5 91.03% 0.08%
10 91.79% 0.04%
50 91.66% 0.02%
100 91.66% 0.06%

Clean Label Attack [24]. This attack poisons the datasets without manipulating the label of poisoning679

samples so that the attack is more stealthy. The poisoning samples are generated by a trained GAN.680

In our experiments, we set the poisoning rate as 5%.681

ISSBA [8]. This attack utilizes an encoder-decoder network to generate sample-specific triggers.682

The generated triggers are invisible noises. The generated noises also contain the information of a683

representative string of the target label. The threat model of this attack is that the attacker can only684

poison the training data, but can not control other components in training (e.g., the loss function).685

Following the original paper, we poison 10% training data in our experiments.686

A.4 Ablation Study on Trojan Mitigation687

In this section, we study the performance of FEATURERE under different constrain values and688

different numbers of used clean samples. The attack used in this section is WaNet [6].689

Influence of constrain values. To investigate the influence constrain values (i.e., τ1, τ2, and τ3) on690

the Trojan mitigation performance, We vary τ1 from 0.05 to 0.35, change τ2 from 0.10 to 0.50, and691

tune τ3 from 1% of the whole feature space to 7% of the whole feature space. We collect the BA692

and ASR of the mitigated models and report them in Table 9. The results show that the mitigation693

performance of FEATURERE is not sensitive to τ1 and τ2. For τ3, when the size of the Trojan694

hyperplane is extremely small (e.g., 1% of the feature space), the ASR is high. This is understandable695

because breaking an extremely small feature space Trojan hyperplane means flipping a very small696

number of neurons, and it is not enough to completely remove the Trojans in the model. Therefore,697

we set the default value of the hyperplane’s size as 5% of the feature space.698

Number of clean reference samples. To understand the influence of clean set size on the Trojan699

mitigation task, we vary the number of used clean samples from 5 per class to 100 per class and700

report the BA and ASR of mitigated model. The results in Table 10 demonstrate that the performance701

of FEATURERE is robust when the number of used samples changes.702

A.5 Visualization of Reverse-Engineered Trojans703

To understand our method and study if it can reverse-engineer Trojans accurately, we visualize the704

inputs and inner features of clean samples, real Trojan samples, and reversed Trojan samples on nine705

randomly selected samples in Fig. 4. The model is ResNet18 injected with Filter Trojan [18] and706

Blend Trojan [22]. In the feature space, the reverse-engineered Trojan is close to the real Trojan,707

demonstrating the effectiveness of our reverse-engineering method.708

Table 11: Accuracy on different split position.

Attack 9th 11th 13th 15th Last

BadNets 88% 93% 98% 98% 98%
Filter 88% 85% 90% 95% 93%

WaNet 85% 88% 85% 93% 93%
IA 85% 85% 85% 90% 95%

Table 12: Results on BadNets and Adaptive Attack.

Attack BA ASR Detection Accuracy

BadNets 94.34% 99.98% 98%
Adaptive 87.36% 93.67% 65%

709

710

17

Original Real Trojan Reversed Trojan

In
p

u
t

S
p
ac

e
F

ea
tu

re
 S

p
ac

e
In

p
u

t
S

p
ac

e
F

ea
tu

re
 S

p
ac

e

F
il

te
r

B
le

n
d

Original Real Trojan Reversed Trojan

Fig. 4: Visualization of the input space and the feature space for original inputs, real Trojan inputs,
and reverse-engineered Trojan inputs.

A.6 Discussion for Model Split711

As we discussed in § 3, our method split the model M into two sub-models A and B. In this section,712

we discuss the influence of using different split positions. Table 11 shows the results of using different713

A and B on the ResNet18 model and CIFAR-10 dataset. In detail, we report the results of splitting the714

model at the 9th, 11th, 13th, 15th, and the last convolutional layer. The average detection accuracy for715

splitting at the 9th layer, 11th layer, 13th layer, 15th layer, and last layer is 86.50%, 87.75%, 89.50%,716

94.00%, and 94.75%, respectively. As we can see, the performance of splitting at later layers is higher717

than the performance of splitting at earlier layers.718

In our current implementation, we set A(x) as the sub-model from the input layer to the last719

convolution layer and B(x) as the rest. The relationship between the input and the output of a720

convolutional layer Ln is xn+1 = Ln(xn) = σ(WT
n xn + bT

n), where xn and xn+1 are the inputs721

and outputs of layer n, Wn and bn are weights and bias values, and σ is the activation function.722

Based on existing literatures [64, 65], the features in the deeper CNN layers are more disentangled723

than that of earlier layers. Thus, if the orthogonal phenomenon happens in a layer Ln, it will exist724

for all its subsequent layers, e.g., Ln+1. If the orthogonal phenomenon does not happen, the layer725

without this phenomenon will mix benign and backdoor features, leading to low benign accuracy or726

18

attack success rate. The results in Table 12 confirm our analysis. Thus, a successful backdoor attack727

will lead to the orthogonal phenomenon in the last convolution layer.728

A.7 Adaptive Attack729

Our threat model assumes that the attacker can control the training process of the Trojan model. In730

this section, we discuss the potential adaptive attacker that knows our defense strategy and tries to731

bypass FEATURERE via modifying the training process. Our observation is that the neuron activation732

values representing the Trojan behavior are orthogonal to others. One possible adaptive attack is733

breaking such orthogonal relationships during the Trojan injection process. We design an adaptive734

attack that adds one loss term to push the Trojan features to be not orthogonal to benign features.735

This attack can be formulated as: L = Lce + Ladv , where Lce is the standard classification loss and736

the Ladv is defined as:737

Ladv = sim(B(m⊙ a+ (1−m)⊙ t),B(m⊙ a′ + (1−m)⊙ t)) (4)

Here, sim is the cosine similarity; a and a′ are the features of different benign samples; m and t are738

the feature-space mask and pattern of the compromised neurons obtained via SHAP [46]. The loss739

term Ladv tries to enforce the Trojan features being not orthogonal to the benign ones. We conduct740

this adaptive attack on the CIFAR-10 dataset and ResNet18 model. The results can be found in741

Table 12. The detection accuracy of FEATURERE under adaptive attack drops to 65%. Meanwhile,742

the average BA/ASR of the adaptive attack and BadNets (native training) is 87.36%/94.34% and743

93.67%/99.98%, respectively. The adaptive attack can reduce the detection accuracy of our method.744

Both the BA and ASR of the adaptive attack are lower than those of native training. The results745

confirm our analysis in § A.6: the model without the “orthogonal phenomenon” will mix benign and746

Trojan features, leading to low benign accuracy or attack success rate.747

A.8 Generalization748

Performance on mitigation task for more attacks. To measure the effectiveness of FEATURERE on749

Trojan mitigation task, we use more Trojan attacks and report BA and ASR of our method. Besides750

the results of BadNets [1], Filter [18], WaNet [6] and IA [7] in Table 5, in Table 13, we also show751

the BA and ASR on LS [1], CL [24] and SIG [25]. The dataset and the model used is CIFAR-10752

and ResNet18, respectively. For LS, CL, and SIG, the ASR of FEATURERE is 1.15%, 2.62%, and753

1.22%, which are 80.01, 33.18, and 81.22 times lower than that of undefended models. As can be754

observed, FEATURERE can effectively reduce the ASR while keeping the BA nearly unchanged.755

Thus, FEATURERE is robust to different attacks on mitigation task.756

Table 13: Mitigation Results for More Attacks.

Attack Undefended Ours

BA ASR BA ASR

LS 93.66% 92.02% 92.86% 1.15%
CL 93.51% 86.94% 92.94% 2.62%
SIG 93.73% 99.09% 93.47% 1.22%

Table 14: Detection Accuracy on More Models.

Attack VGG16 ResNet18 PRN18

BadNets 95% 95% 100%
Filter 90% 90% 95%

WaNet 90% 95% 90%
IA 90% 90% 90%
LS 85% 90% 85%
CL 80% 85% 85%
SIG 95% 95% 90%

757

758

Generalization to different models. To understand the generalization of FEATURERE to different759

model architectures, we evaluate its detection accuracy on BadNets [1], Filter [18], WaNet [6], IA [7],760

LS [1], CL [24], and SIG [25] attacks using VGG16 [66], ResNet18 [55], and Preact-ResNet18761

(PRN18) [54]. The results are summarized in Table 14. In Table 15, we also report FEATURERE’s762

performance on a larger model (i.e., Wide-ResNet34 [67]). In all settings, the detection accuracy763

is above 80%, and the average detection accuracy on VGG16, ResNet18, and PRN18 is 89.26%,764

91.43%, and 90.71%, respectively. FEATURERE achieves high detection accuracy on all different765

models, demonstrating it is generalizable to different model architectures and larger models.766

19

Generalization to large input size. To see if FEATURERE can generalize to large datasets, we report767

its accuracy on the ImageNette1 dataset under different attacks. The input size of ImageNette is 3 ×768

224 × 224. The model architecture used here is Wide-ResNet34 [67]. For each attack, we have 5769

Trojaned models. We also train 5 benign models. The results are in Table 15. For all different attacks,770

the detection accuracy of FEATURERE is above 80%. The average detection accuracy on a large771

input size is 91.43%. Thus, our method can generalize to large input sizes.772

Table 15: Detection Accuracy on Large Input Size.

Attack TP FP FN TN Acc

BadNets 5 0 0 5 100%
Filter 4 0 1 5 90%

WaNet 4 0 1 5 90%
IA 5 0 0 5 100%
LS 3 0 2 5 80%
CL 3 0 2 5 80%
SIG 5 0 0 5 100%

A.9 Efficiency773

In this section, we measure the efficiency of FEATURERE. Like existing reverse-engineering meth-774

ods [17, 20, 21], FEATURERE scans all labels. We optimize this process with a K-arm scheduler [19],775

which uses the Multi-Arm Bandit to iteratively and stochastically select the most promising labels776

for optimization. We measure the average runtime on the CIFAR-10 and ImageNet datasets. The777

model used is ResNet18. The running time on CIFAR-10 and ImageNet are 530.8s and 8934.5s,778

respectively.779

A.10 Discussions780

One finding we have is that using later layers to conduct the reverse-engineering is relatively better781

than using earlier layers (more results and details can be found in § A.6). We also found that782

FEATURERE’s performance under the clean-label attack is relatively worse than that of other attacks.783

We suspect this is because the benign and Trojan features of the clean-label attack are highly mixed.784

As a consequence, the clean label attack has lower ASR than other attacks. For example, the ASR of785

the clean-label attack and BadNets are 86.94% and 100.00%, respectively.786

1https://github.com/fastai/imagenette

20

	Introduction
	Background & Motivation
	Methodology
	Threat Model
	Observation
	Feature Space Trojan Hyperplane Reverse-engineering
	Trojan Mitigation

	Experiments and Results
	Experiment Setup.
	Effectiveness on Trojan Detection
	Effectiveness on Trojan Mitigation
	Ablation Study

	Discussion
	Conclusion
	Appendix
	More details of Algorithm 1
	Details of Datasets
	Details of Attacks
	Ablation Study on Trojan Mitigation
	Visualization of Reverse-Engineered Trojans
	Discussion for Model Split
	Adaptive Attack
	Generalization
	Efficiency
	Discussions

