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Abstract

Our goal is to deliver a new task and leader-001
board to stimulate research on question answer-002
ing and pre-trained language models (PTLMs)003
to understand a significant instructional docu-004
ment, e.g., an introductory college textbook or005
a manual. PTLMs have shown significant suc-006
cess in many question-answering tasks, given007
significant supervised training for the task,008
but much less so in zero-shot settings. The009
task includes two introductory college texts010
in the social sciences (American Government011
2e) and humanities (U.S. History), hundreds012
of true-false questions based on review ques-013
tions written by the textbook authors, valida-014
tion/development tests based on the first eight015
chapters of the textbooks, blind tests based on016
the remaining textbook chapters, and baseline017
results given state-of-the-art PTLMs.018

Since the questions are balanced, random per-019
formance should be ~50%. T5, fine-tuned with020
BoolQ, is only slightly better, suggesting that021
the textbook’s content is not pre-represented022
in the PTLM. Taking the exam closed book,023
but having read the textbook (i.e., adding the024
textbook to T5’s pre-training), yields at best025
minor improvement (56%), suggesting that the026
PTLM may not have “understood” the textbook027
(or perhaps misunderstood the questions). Per-028
formance is better (~60%) when the exam is029
taken open-book (i.e., allowing the machine to030
automatically retrieve a paragraph and use it to031
answer the question).032

1 Introduction033

Question answering (QA) is a yardstick for measur-034

ing machine understanding performance (Hermann035

et al., 2015). QA’s popularity as an evaluation tech-036

nique has led to several sub-categories: tasks can037

require a model to answer questions from either038

its background knowledge or from a short passage039

(e.g., SQuAD, Rajpurkar et al. (2016)) or with in-040

formation retrieval to allow the model to search for041

the answer in a large corpus (e.g., ARC, Clark et al.042

(2018)). Answering can take the form of true/false 043

classification (BoolQ, Clark et al. (2019)), multiple- 044

choice, span selection (SQuAD, Rajpurkar et al. 045

(2016)), or text generation (TriviaQA, Joshi et al. 046

(2017)). 047

Transformer architectures optimized for specific 048

QA formulations have driven recent progress in 049

question answering. For example, some models tar- 050

get IR-oriented QA (Guu et al., 2020) while others 051

optimize their learning strategy to specific question 052

types (e.g., by optimizing for expected answers to 053

factoid questions, Roberts et al. (2020)). While spe- 054

cialization improves performance, it limits general- 055

ization. UnifiedQA (Khashabi et al., 2020) takes a 056

step forward by generalizing the architecture and 057

training over multiple data sets with different QA 058

formulations. 059

Most research assumes that the information nec- 060

essary to answer questions is either included with 061

the query (e.g., BoolQ, SQuAD 1.1) or that the 062

information was already stored in language mod- 063

els either during initial pre-training or during a 064

task-specific second pre-training.1 However, this 065

assumption is a limitation for language models re- 066

lying on massive corpora (Raffel et al., 2020; Gao 067

et al., 2020) to learn oft-repeated facts (Petroni 068

et al., 2019). Valuable, domain-specific informa- 069

tion seldom is repeated often enough to be captured 070

by language models. An evaluation of domain- 071

specific knowledge without access to a relevant 072

text is even more challenging as simple strate- 073

gies like identifying the answer by information 074

retrieval are ineffective. Even reasoning tasks such 075

as ARC (Clark et al., 2018) only target general sci- 076

entific knowledge and offer large text corpora to 077

aid QA systems. 078

We propose Learning from Textbooks (LEFT), 079

a new task where systems must classify domain- 080

1For example, Roberts et al. (2020) adjust T5’s masking
strategy to target named entities as they expect named entities
to be parts of answers.
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specific statements drawn from a textbook’s review081

questions as true or false. We define three test082

configurations for a model. The first tests models’083

ability to answer questions without any domain-084

specific material (e.g., applying a PTLM with no085

access to domain-specific knowledge). This set-086

ting is equivalent to a person taking the test before087

taking the class. In the second configuration, a088

model has access the textbook’s content and may089

encode the information in the textbook but may not090

access the textbook during the test; we call this091

closed book. The second setting tests a model’s092

ability to learn by reading. In the third configura-093

tion, which we call open book, models can access094

the textbook during the test. Thus, LEFT supports095

contrasting QA formulations and reading methods096

to explore the strengths and weaknesses of various097

QA approaches.098

2 Related Work099

Question Answering. Most previous research100

specializes QA models to target specific question101

formulations. Question answering with a relevant102

paragraph often relies on span selection (Yang103

et al., 2015; Rajpurkar et al., 2016) or simple rea-104

soning (Clark et al., 2019). Previous open-book105

QA methods first filter a large corpus to a small106

set of relevant documents using information re-107

trieval (Robertson and Zaragoza, 2009; Karpukhin108

et al., 2020). The document set then provides con-109

text for answering questions (Joshi et al., 2017;110

Nguyen et al., 2016; Dhingra et al., 2017; Dunn111

et al., 2017). Conversely, closed-book QA instead112

requires models to answer using only their implicit113

knowledge (Roberts et al., 2020). Taking a step114

towards generalizing QA, UnifiedQA (Khashabi115

et al., 2020) proposes a unified architecture that116

answers various question types relying partly on117

knowledge encoded in its language model.118

Knowledge in Pre-trained Language Models.119

Pre-trained language models (PTLMs) have shown120

good performance in cloze-style queries (Petroni121

et al., 2019), fact-checking (Thorne et al., 2018), en-122

tity linking (Hoffart et al., 2011; Guo and Barbosa,123

2018), and open-domain QA (Kwiatkowski et al.,124

2019; Joshi et al., 2017; Petroni et al., 2020). How-125

ever, in most cases, the PTLMs rely on knowledge126

learned from massive corpora during pre-training.127

LEFT tests domain-specific knowledge acquired128

from a textbook, a small corpus of only a few hun-129

dreds of thousands of words (see Table 1).130

AG USH

Dev Test Dev Dev+ Test

Num. chapters 8 9 8 8 24
Text size (words) 137 620 138 669 89 765 89 765 301 860
Num. statements 186 214 148 376 412

Table 1: Data overview for the two textbooks: Ameri-
can Government 2e (AG) and U.S. History (USH). The
Dev+ set consists of the Dev set and the statements
based on questions from a community of instructors.

Textbook Question Answering. Researchers 131

have explored machine understanding of elemen- 132

tary and middle-school science textbooks by visual 133

question answering (Kembhavi et al., 2017; Kim 134

et al., 2019; Gomez-Perez and Ortega, 2020) and in- 135

formation retrieval (Clark et al., 2018). While exist- 136

ing textbook QA tasks focus on general knowledge 137

(which can be gained by pre-training on general 138

web corpora), LEFT focuses on domain-specific 139

knowledge. Furthermore, it quantifies pre-trained 140

language models’ pre-existing knowledge by re- 141

quiring that models take the task before and after 142

reading LEFT’s corpus. 143

3 Task Description 144

Learning from Textbooks (LEFT) contains two 145

machine-readable textbooks at the introductory col- 146

lege level and a set of true or false statements man- 147

ually derived from review questions written by the 148

textbook authors. The task requires that systems 149

based on language models classify the statements 150

before and after reading the given textbook material 151

to separate what was learned from the book from 152

what was known before reading. “Reading” is any 153

algorithm method that learns from the domain text 154

without storing a copy of the text. To support com- 155

parisons with existing QA approaches, LEFT also 156

supports the open-book setting, where a system can 157

use a textbook paragraph when answering. 158

Our goal is to support testing pre-trained lan- 159

guage models, e.g., T5 (Raffel et al., 2020), and 160

also those approaches that extract and store triples 161

during reading (e.g., <US Declaration of indepen- 162

dence, signed, Aug 2, 1776>). While learning cor- 163

pora appear in other question answering tasks (e.g., 164

ARC, 14M words, Clark et al. (2018)), the text 165

included in LEFT is small and corresponds to the 166

textbook chapters relevant to each question set. The 167

largest text in LEFT contains only 300K words (for 168

details, see Table 1). 169
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LEFT includes two open-license2 college-level170

introductory textbooks, American Government171

2e (Krutz, 2019) and U.S. History (Corbett, 2014),172

and true/false statements derived from each book’s173

review questions. We manually rewrote each text-174

book’s multiple-choice review questions into a bal-175

anced set of true and false statements.3,4 We inten-176

tionally wrote the statements such that each true177

and false pair has high word overlap to deter clas-178

sification strategies that rely on word overlap with179

the textbook. We include five sample statements180

from LEFT in Appendix A.181

We measure task performance by accuracy.182

Since the two textbooks are used in teaching col-183

lege students, we do not release the correct labels184

(see the Ethical Considerations section). We split185

each textbook into a Dev set consisting of the first186

eight chapters and a Test set consisting of the re-187

maining chapters (see Table 1 for an overview). We188

allow unlimited submissions to the Dev set, but for189

any submission, we only provide the overall accu-190

racy without feedback on which statements were191

correctly classified. This design decision aims to192

prevent divulging the correct answers (see the Ethi-193

cal Considerations section).194

We require that all submissions to LEFT’s195

closed-book assessment contain predictions before196

and after reading the textbook material. Predic-197

tions before reading quantify the information in-198

cluded in each model through initial pre-training.199

The change in performance after reading illustrates200

each model’s reading effectiveness.201

4 Results202

We illustrate baseline performance on LEFT using203

two state-of-the-art language models: T5 (Raffel204

et al., 2020) and GPT-Neo (a GPT-3 architecture,205

Brown et al. (2020), trained on the open Pile cor-206

pus (Gao et al., 2020)). We fine-tune the two lan-207

guage models using BoolQ (Clark et al., 2019). Ta-208

ble 2 shows results in LEFT’s three evaluation set-209

2Both textbooks are licensed under the Creative Commons
Attribution License v4.0 license.

3We construct one true and one false statement for each
question to obtain a balanced data set. For example, the ques-
tion When was the US Declaration of Independence signed?
(A)(correct) August 2, 1776 (B) December 2, 1776, (C) August
2, 1746, (D) August 22, 1976 could become The US Declara-
tion of Independence was signed on August 2, 1776 (true) and
The US Declaration of Independence was signed on August 2,
1746 (false).

4For U.S. History, we also process questions written by a
community of instructors to obtain a second set of true/false
statements.

tings: Prior-knowledge (out-of-the-box language 210

models fine-tuned on BoolQ), Closed-book, af- 211

ter reading (language models with continued light 212

pre-training on LEFT’s text content), and Open- 213

book (where models have access to the relevant 214

textbook paragraph). Since the Prior knowledge 215

and Closed-book settings do not include the rele- 216

vant paragraph for each question, we adjust fine- 217

tuning to only use BoolQ’s questions and ignore 218

its text snippets. In the Open-book setting, we con- 219

sider automatically retrieved textbook paragraphs 220

(using sBERT, Reimers and Gurevych (2019)) and 221

manually identified the relevant paragraphs (gold 222

information retrieval, goldIR). When selecting the 223

relevant textbook content, a snippet matches a para- 224

graph exactly as written by each textbook’s authors. 225

However, due to technical limitations imposed by 226

T5’s memory consumption, in our experiments, we 227

limit the concatenated statements and paragraphs 228

to a maximum length of 128 word pieces (see Ap- 229

pendix B.1). 230

4.1 Baseline Results 231

T5 and GPT-Neo’s scores are indistinguishable 232

from the random baseline of 50% in the Prior- 233

knowledge setting, suggesting that the textbooks 234

query for information is not already present in the 235

two language models. Continuing each model’s 236

pre-training with the relevant textbook parts some- 237

times helps, but not consistently. The lack of im- 238

provement after reading is further evidence that 239

the models memorize, but not in particularly use- 240

ful ways, i.e., they can complete sentences but did 241

not learn the subject matter and cannot classify the 242

statements, even after 20 epochs. It also suggests 243

that the closed-book setting represents a new chal- 244

lenge for PTLMs. 245

Accuracy in the open-book setting is far higher, 246

especially when using goldIR (i.e., a manually se- 247

lected relevant paragraph). As in the closed book 248

setting, we contrast models using only prior knowl- 249

edge with models pre-trained on the textbook. Pre- 250

training with the textbook never improves the sys- 251

tem’s accuracy — suggesting that even in this set- 252

ting, the models are not learning by reading the text- 253

book. The gap between goldIR- and sBERT-based 254

retrieval suggests that there is room for retrieval- 255

based improvement in the open-book setting. How- 256

ever, even with goldIR, T5 only achieves an accu- 257

racy of ~70%, suggesting that paragraph-based QA 258

alone is not solved with existing models. 259
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American Government 2e U.S. History

Dev (186) Test (214) Dev (148) Dev+ (376) Test (412)

Prior-knowledge
T5-3B -ctx 51.07 49.53 50.00 50.00 50.00
GPT-Neo 2.7B -ctx 52.68 48.13 51.35 50.27 49.75

Closed-book, after reading
T5 3B +pt -ctx 56.45 52.33 49.32 49.73 48.79
GPT-Neo 2.7B +pt -ctx 50.00 55.14 50.67 50.80 49.75

Open-book
T5-3B +ctx +sBERT 59.13 60.74 53.37 56.38 59.46
T5-3B +pt +ctx +sBERT 60.21 57.94 51.35 50.53 55.58
T5-3B +ctx +goldIR 70.96 74.30 69.59 - -
T5-3B +pt +ctx +goldIR 66.12 63.08 61.48 - -

Table 2: Baseline accuracy with the current state-of-the-art language models. The Dev+ set consists of the Dev set
and the statements based on questions from a community of instructors. In the heading, each set’s name is followed
by its number of statements. The order of abbreviations reflects the order of operations. All models are fine-tuned
with BoolQ; +/- ctx – whether we included BoolQ’s context during fine-tuning; +pt – whether we pre-trained on the
relevant textbook chapters. Fields marked with a “-” correspond to sets for which we do not yet have goldIR and are
addressed in Section 5.

5 Conclusions & Future Work260

There are several natural directions in which we261

can extend and improve LEFT. We plan to set up a262

web-based leaderboard to support easy, automated263

evaluation on LEFT after this paper’s publication.264

Secondly, since manually-collected relevant para-265

graphs allow researchers to decouple information266

retrieval and context-based question-answering in267

the open-book setting, we are collecting relevant268

paragraphs for all sets in Table 2. We are extending269

U.S. History’s Test set similarly to the Dev+ set by270

including statements based on questions written by271

a community of instructors. Lastly, we are catego-272

rizing the kind of knowledge required to classify273

each statement to better understand what kinds of274

knowledge pose the most difficulties.275

We draw several conclusions from this work.276

Foremost, Learning from Textbooks (LEFT) rep-277

resents a new type of challenge task for PTLMs,278

contrasted with the much-studied challenges of (1)279

common sense QA based on prior knowledge, (2)280

reading comprehension given a paragraph, and (3)281

knowledge specific to a field, e.g., science at the282

elementary or middle school level. The task is283

intended to stimulate research on the following di-284

mensions:285

1. Zero-shot learning, much as an entering col-286

lege student could do when studying a text-287

book,288

2. Measuring a system’s knowledge before vs.289

after “reading” the textbook,290

3. Capability in both closed-book and open-book 291

question answering, 292

4. The effect of IR accuracy on task accuracy 293

compared to the system’s language under- 294

standing performance. 295

Our baseline studies show that T5 and GPT-Neo 296

thus far are challenged to show improvement af- 297

ter reading the relevant textbook, that open-book 298

evaluation is easier than closed-book (as it is for 299

humans), and that the gating factor in LEFT is un- 300

derstanding the textbook and/or the question rather 301

than paragraph retrieval. The baseline results show 302

there is much room for improvement. 303

Ethical Considerations 304

We have considered two kinds of ethical con- 305

siderations when creating Learning from Text- 306

books (LEFT): content and environmental aspects. 307

Content. The two textbooks in LEFT cover 308

topics that include history, race, and politics. Open- 309

Stax textbooks follow a set of Diversity and Rep- 310

resentation Development Guidelines which aim to 311

“properly represent genders, gender identities, races, 312

cultures, geographies, ethnic backgrounds, disabili- 313

ties, nationalities, ages, sexual orientations, socio- 314

economic status, and diverse viewpoints”.5 As cre- 315

ators of an NLP task, we do not make any claims, 316

nor do we comment on the topics covered in the 317

two textbooks. Furthermore, we understand that 318

5See Diversity and Representation Development Guide-
lines in the instructor materials for each textbook.
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documents as large and complex as textbooks are319

bound to contain inaccuracies. We invite users with320

specific content accuracy concerns to consult the321

official textbook errata included in each textbook’s322

instructor resources.6323

Releasing labels for the statements in LEFT324

would indirectly reveal the correct answers for325

multiple-choice questions in the two textbooks.326

While both American Government 2e and U.S. His-327

tory include answer keys, they are incomplete. We328

believe releasing the correct answers to all multiple-329

choice questions in the book would be detrimental330

to the intended primary users of the two textbooks;331

in other words, it might hinder students’ learning.332

We only used full-time employees compensated333

according to US law to rewrite the multiple-choice334

review questions in the two textbooks.335

Environmental. We included baseline re-336

sults based on large pre-trained language models.337

Strubell et al. (2019) concerns about the environ-338

mental impact of training deep learning language339

models. As pointed out by Patterson et al. (2021),340

most of the energy consumption for deep learn-341

ing language models comes during the initial pre-342

training. In this work, we limit ourselves to fine-343

tuning and light continued pre-training of T5 and344

GPT-Neo. While we do not have information about345

GPT-Neo’s training, T5’s training took place in346

highly efficient data centers whose energy con-347

sumption was offset by purchasing electricity from348

renewable sources (Patterson et al., 2021). For our349

light pre-training and fine-tuning, we use a ma-350

chine with four NVIDIA Quadro RTX 8000 fed351

from Anonymized Location’s energy grid. Our total352

computation time for the experiments in this paper353

is about 500 hours, but this is an informal estimate354

rather than an accurate measurement.355
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A Sample statements561

Sample statements in LEFT. The first two state-562

ments are from American Government 2e, the fol-563

lowing three from U.S. History:564

• Public goods are available to all without pay-565

ment.566

• In a majoritarian voting electoral system vot-567

ers select the party of their choice rather than568

an individual candidate.569

• Europeans did not introduce Indians to570

wampum.571

• Philadelphia served as the base for British572

operations for most of the Revolutionary War.573

• The British bombardment of Baltimore in-574

spired The Star-Spangled Banner.575

B Training details576

For all light pre-training and fine-tuning, we use577

a machine with four NVIDIA Quadro RTX 8000578

GPUs.579

B.1 T5-3B580

We implement the model using PyTorch Light-581

ning (et al., 2019) and Hugging Face’s PyTorch582

Transformers (Wolf et al., 2020). For pre-training583

and fine-tuning, we a maximum sequence length584

128. We searched for the best learning rate for our585

model out of {3e− 5, 1e− 4, 3e− 4, 1e− 3}.586

Fine-tuning Pre-training

Batch size 16 16
Gradient accumulation 1 1

Learning Rate 3e-4 1e-3

Num epochs 20
Optimizer AdamW

β1 0.9
β2 0.999
ε 1e-8

Weight decay 0.0
Scheduler WarmupDecayLR

Warmup max steps 400
fp16 no

Table 3: Hyperparameters for T5-3B.

B.2 GPT-Neo 2.7B587

We use GPT-Neo 2.7B from the Hugging Face588

Model Hub.7 GPT-Neo matches the architecture of589
7https://huggingface.co/EleutherAI/

gpt-neo-2.7B

GPT-3 (Brown et al., 2020), but is trained on the 590

openly available Pile corpus (Gao et al., 2020). 591

Fine-tuning Pre-training

Batch size 48 2
Gradient accumulation 1 4

Num epochs 10
Optimizer AdamW

β1 0.9
β2 0.999
ε 1e-8

Weight decay 0.01
Scheduler WarmupDecayLR

Warmup max steps 200
fp16 yes

Table 4: Hyperparameters for GPT-Neo.
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