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ABSTRACT

In this paper, we propose Block and Subword-Scaling Floating-Point (BSFP), a
datatype with a non-uniform quantization scheme for the skewed and non-uniform
distribution of weight vectors in neural networks. By quantizing each weight
vector as the superposition of multiple subword vectors (in two’s complement)
with scaling factors (in Low-bit Floating-Point, LBFP), BSFP can effectively fit
the distribution of weight vectors while maintaining high computation efficiency.
Furthermore, we present a grid search-based MSE-optimal quantization flow and
a scaled serial processing engine to complete the quantization pipeline and the
infrastructure.
The experimental results on the ImageNet classification task show that our proposed
method outperforms state-of-the-art Microsoft Floating Point (MSFP) by up to
18.57% top-1 accuracy at the same weight precision and reduces up to 10.3% model
size. Furthermore, BSFP outperforms MSFP by up to 2.0× computing throughput
and up to 5.3× energy efficiency under the same silicon area budget.

1 INTRODUCTION

Deep Neural Networks (DNNs) have continuously enabled more and more eye-catching artificial
intelligence (AI) applications Johnson et al. (2016); Lin et al. (2014); Deng et al. (2009). However,
their large model size and high computational complexity hinder the wide deployment of DNNs to
latency-sensitive cloud services and energy-constrained edge devices. To address the performance and
energy challenges, in addition to compacting neural network structures Sandler et al. (2018); Ma et al.
(2018), reducing the bitwidths of weights or activations also have been extensively explored Jacob
et al. (2018); Darvish Rouhani et al. (2020); Tambe et al. (2020); Li et al. (2020).

Particularly, non-conventional datatypes and custom hardware are emerging to optimize the per-
formance, energy efficiency, area efficiency, and memory requirements of DNN inference. Prior
industry and academia researches have explored low-bit floating-point datatypes Kalamkar et al.
(2019); Jouppi et al. (2020); NVIDIA (2022); Tambe et al. (2020), block-based floating-point
datatypes Darvish Rouhani et al. (2020); Köster et al. (2017), low-bit fixed-point datatypes NVIDIA
(2020); Jacob et al. (2018), and power-of-two fixed-point datatypes Miyashita et al. (2016); Zhou
et al. (2017); Li et al. (2020) as the potential candidates in efficient DNN inference. Among many
datatypes, Microsoft Floating Point (MSFP), a kind of block-based floating-point type as shown in
Figure 1(b), claims to achieve the state-of-the-art tradeoff among dynamic range, DNN accuracy, and
hardware complexity Darvish Rouhani et al. (2020).

This work focuses on post-training quantization, which is preferable in practice. First, for end users,
it involves no data (including private data) and enables a low-friction deployment pipeline Nagel
et al. (2019). Second, according to our discussions with an IC design house that tapes out AI chips in
advanced technology nodes, the industry (at least their application-side customers) does appreciate
post-training quantization because in most cases, AI application companies are reluctant to release
AI models and training data to AI accelerator companies. Although we focus on post-training
quantization, we still include the finetuning results in Appendix A.

This paper proposes Block and Subword-Scaling Floating-Point (BSFP), a new class of dataypes
with an bit-efficient, non-uniform quantization method and custom hardware to improve the energy
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Figure 1: Number system comparison between (a) the proposed Block and Subword-Scaling Floating-
Point (BSFP), (b) Microsoft FP (MSFP Darvish Rouhani et al. (2020)), and (c) floating-point numbers
(IEEE 754 FP16, Google BF16 Jouppi et al. (2020), and Nvidia TensorFloat (TF19) NVIDIA (2022)).

efficiency and performance over state-of-the-art MSFP. As shown in Figure 1(a), the key idea of
BSFP is to approximate each full-precision weight vector using the sum of two subword vectors
with two scalings, respectively. More specifically, each subword is a low-bit (e.g., 2-bit), signed
(two’s complement) integer, and each scaling is a low-bit floating-point (LBFP) number (e.g., a 7-bit
one). We will show that BSFP is superior to MSFP in capturing the nonuniformity and skewness
of per-vector weight distributions, which are common cases for a vector made of a small number
(e.g., 16) of weights. In addition, although BSFP adopts two scalings and two subword vectors, it can
still be efficiently computed for the following three reasons. First, the computation cost of scaling is
amortized over 16 weights. Second, each scaling is an LBFP and involves only low-bit operations,
e.g., multiplications with a 3-bit mantissa. Third, the subword vector structure happens to fit bit-serial
computation architectures Qian Zhang et al. (2022); Judd et al. (2016).

One property that BSFP exhibits is to approximate the desired weight vector using both coarse and
fine vectors. One subword vector with a large scaling captures large weights, and the other subword
vector with a small scaling mitigates the remaining deviations. Therefore, BSFP can adapt to large
outliers and small resolutions simultaneously.

Figure 2(a) compares the quantization results of a real 16-element weight vector from ShuffleNet-v2
in either 8-level BSFP or 15-level MSFP. This example clearly demonstrates the potential that even
the BSFP with relatively fewer quantization levels can achieve smaller quantization errors (e.g., in
terms of MSE) than MSFP with more quantization levels. We summarize the rationales of BSFP’s
superiority below:

• No waste of quantization level: BSFP utilizes two’s complement for each subword and does
not waste precious quantization levels. On the other hand, MSFP resembles sign-magnitude
and wastes one quantization level (i.e., duplicated +0 and −0). Even worse, the impact of
wasting quantization levels increases as the bitwidth goes down. For instance, a 3-b two’s
complement number can represent 8 quantization levels, 12.5% more than the 7 levels of
the 3-b sign-magnitude number.

• Adaptation to skewed distribution: BSFP exploits the asymmetrical nature of two’s
complement numbers (e.g., -2, -1, 0, 1 for 2-b two’s complement numbers) and the sign of
the associated scaling to adapt to the asymmetrical weight distribution of in weight vectors.
In comparison, MSFP is permanently restricted to symmetrical quantization levels and leads
to a waste of quantization levels fitting asymmetrical distributions.

• Adaptation to non-uniform distribution: BSFP can offer non-uniform quantization levels
by combining two subword-scaling vectors. In comparison, MSFP always quantizes weight
vectors, which may exhibit non-uniform weight distributions, uniformly.

• Better freedom of quantization step size: The quantization step size of BSFP is defined by
the two scalings, which are (low-bitwidth) floating-point values. In contrast, the quantization
step size of MSFP cannot be any value other than power-of-two, e.g., 0.5, 0.25, 0.125.
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Figure 2: (a) Quantizing 16 real weights of ShuffleNet-v2 using 3-b Block and Subword-Scaling
Floating-Point (BSFP) can achieve both lower quantization error (MSE) and lower storage than 4-b
Microsoft Floating Point (MSFP). (b) Properties comparison of BSFP with MSFP.

BSFP can be deployed to servers and edge devices, achieving high performance and energy efficiency.
Our experiments will demonstrate the robustness and generality of BSFP using several mainstream
DNNs on the ImageNet classification task. In summary, this work makes the following contributions:

• We propose Block and Subword-Scaling Floating-Point (BSFP), a hardware-algorithm
co-designed numerical datatype for DNNs that can achieve higher accuracy with better
computing throughput and energy efficiency than MSFP.

• We design a scaled serial processing engine to support the proposed BSFP. This custom
hardware enjoys a small area footprint and can support various configurations of the BSFP.

• We identify mean squared error (MSE) as an effective criterion in determining the LBFP
scaling factors of BSFP and a grid search-based MSE-optimal quantization flow to enable a
low-friction deployment pipeline. We present both post-training and fine-tuning procedures
for preparing DNNs in the proposed BSFP format.

• We perform extensive evaluations on various DNNs of the ImageNet classification task and
demonstrate that BSFP successfully outperforms MSFP in model size, quantization error,
accuracy, throughput, and energy efficiency.

2 RELATED WORKS

There is rising attention to designing custom datatypes for efficient inferencing. The wide range
of formats can be categorized into four classes, i.e., floating-point, fixed-point, power-of-two, and
block-based floating-point.

The first category, floating-point numbers (FP32, FP16, Bfloat16 (BF16), and TensorFloat), adopts
or modifies the IEEE-754 floating-point formats. This data format enjoys a large dynamic range at
the cost of a significant hardware area. The representative commercial hardware are Google’s TPUs
(BF16) Jouppi et al. (2020) and NVIDIA’s A100 GPUs (Tensorfloat, TF19) NVIDIA (2022).

The second class of datatype is low-bit fixed-point datatype (e.g., INT4), whose operations are
equivalent to integer operations and can achieve low hardware cost and high performance. The
fix-point numbers have evolved from 8-b Jacob et al. (2018), 4-b NVIDIA (2020); Dai et al. (2021), 3-
b Mellempudi et al. (2017), and ultimately binary Hubara et al. (2016). Although fixed-point datatype
achieves small hardware area and receives great popularity, it requires careful model re-calibration
and suffers from large accuracy drop when representing values with a high dynamic range.

The third class is power-of-two numbers, including Power-of-Two Zhou et al. (2017); Miyashita et al.
(2016) and Additive Power-of-Two Li et al. (2020), which utilizes one or two power-of-two terms to
approximate floating-point weights. The power-of-two format is appealing for replacing multipliers
with low-cost shifters. However, the available values are limited by the power-of-two form.

Additionally, some prior research also explores non-uniform quantization. For example, LQ-
Nets Zhang et al. (2018) learns quantization levels to minimize the quantization error. Distilla-
tion Polino et al. (2018) optimizes the quantization levels by learning to minimize a task loss with
their teacher networks. However, these methods use a limited number of floating-point numbers to
quantize the full-precision data points, leading to significantly larger computation overhead.

3



Under review as a conference paper at ICLR 2023

The last category is block-based floating-point, which forces a block of (e.g., 16) floating-point
numbers to share one exponent. The block-based floating-point offers low area overheads and a
large dynamic range. This format has enabled state-of-the-art accuracy-to-area Pareto frontier. The
representative examples are Intel’s Lake Crest (Flexpoint Köster et al. (2017)) and Microsoft’s
Brainwave Fowers et al. (2018) (MSFP Darvish Rouhani et al. (2020)).

The closest work related to this paper is MSFP in NeurIPS 2020 Darvish Rouhani et al. (2020),
which is the current state-of-the-art format in terms of area-to-accuracy trade-offs. Our BSFP
design is fundamentally different and novel compared to MSFP for the following reasons: 1) BSFP
approximates full-precision weight vector using the superposition of multiple subword-scaling vectors,
which MSFP and other prior works do not explore before. Please refer to the properties comparison in
Figure 2 and the corresponding discussion of BSFP’s superiority. 2) We design a bit-serial processing
engine that can support different configurations of BSFP. In comparison, the MSFP work considers a
bit-parallel processing engine and does not support format changes.

3 BLOCK AND SUBWORD-SCALING FLOATING-POINT (BSFP)

We propose BSFP that quantize an l-element full-precision weight vector (
−−→
Wfp) using Nsub l-element

subword-scaling vectors (
−−−→
Wsubi* scalei =

−−−→
Wsubi ∗ (−1)si2eimi), where the subwords adopt the

two’s complement format and the scaling factors adopt the LBFP format. The default l is 16 unless
explicitly mentioned. These scaling factors (−1)si2eimi determine the quantization points that
a BSFP vector can represent. We find that using two subwords achieves good accuracy-storage
trade-offs and set Nsub = 2.

−−→
Wfp ≈

Nsub∑
i=1

−−−→
Wsubi ∗ (−1)si2eimi

Nsub=2
======= (

−−−→
Wsub1 ∗ (−1)s12e1m1) + (

−−−→
Wsub2 ∗ (−1)s22e2m2)

We apply BSFP to weights, and we leave activations as MSFP as the MSFP paper
does Darvish Rouhani et al. (2020). The rationales behind this decision are as follows. Weights differ
from activations in that weights are available offline. Thus, weight can and also should enjoy a longer
quantization time budget. Clearly, if both weights and activations adopt MSFP, as the MSFP paper
does, it directly suggests that some optimization opportunities for weights are left on the table.

Computing with the BSFP format. Dot products are the fundamental operations in DNNs. Here we
show the dot product of a l-element

−−−→
Wbsfp weight vector and a

−−−−→
Amsfp activation vector.

−−−→
Wbsfp ·

−−−−→
Amsfp = (

Nsub∑
i=1

−−−→
Wsubi ∗ (−1)si2eimi) · (

−−−−→
Amsfp ∗ 2eshared)

=

Nsub∑
i=1

((
−−−→
Wsubi ·

−−−−→
Amsfp) ∗ ((−1)simi2

ei+eshared))

For each subword vector of the BSFP, it first multiplies with the MSFP activation vector using
compact multipliers and an adder tree to obtain the partial sum. Secondly, the LBFP scaling factor
of BSFP is combined with the shared exponent of MSFP to get the correct scaling factor. More
specifically, the exponent fields of BSFP and MSFP are summed together. Finally, we scale the partial
sum with the combined scaling factor. The hardware overheads of BSFP over MSFP is to multiply
the partial sum by a low-bit (3-b or 4-b) mantissa of the scaling factor.

Scaled Serial Processing Engine (S2PE). Figure 3 shows the proposed scaled serial processing
engine (S2PE) and its example in computing a 4b BSFP weight vector. Within a S2PE, the 2b
multipliers are chosen to enable flexibility in computing different bitwidth configurations with bit-
serial computation Qian Zhang et al. (2022). This design choice achieves a compact silicon footprint
and high computation flexibility.
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Figure 3: Proposed scaled serial processing engine (S2PE) and systolic architecture.

In addition, the proposed PE only requires an integer multiplier to scale the partial sum by the (at
most) 4-b mantissa of the LBFP scaling factor. The exponent terms of BSFP and MSFP are added
together to convert the scaled partial sum back to BF16 for accumulation. For BSFP with a bitwidth
larger than 2, the proposed PE computes the result using multiple cycles. We finally present a systolic
architecture, which integrated multiple scaled serial processing engines.

Criterion-optimal quantization flow. The flexibility of the BSFP requires a flow to determine a
suitable LBFP scaling factors setup. We observe that the number of combinations for LBFP scaling
factors, which exhaustively evaluates all of them on GPU is feasible. Specifically, every weight
vectors are parallelly quantized and evaluated using the same LBFP scaling setup. For example, an
optimal setup for ShuffleNet-v2 can be found within 30 minutes using one NVIDIA V100 (ResNet-50:
less than 1 hour; ViT: less than 1.5 hours).

Figure 4 shows the quantization flow, which consists of four steps: 1) Generating subword con-
figurations, which generate several potential subword configurations that satisfy the target weight
bitwidth. 2) Generating LBFP scaling combinations, which creates search space by exploring all
potential combinations (grids) of LBFP scaling factors. 3) Iterative rounding, which quantizes the
full-precision weight vectors using generated scaling factor combinations. 4) Criterion evaluation,
which evaluates the difference between the full-precision weights and quantized counterparts using
chosen criterion. The criterion candidates are L1, Mean Square Error (MSE), and Cosine Similarity,
where MSE is selected as final criterion. The details of the flow is presented in Appendix D.
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Figure 4: Criterion-optimal quantization flow for BSFP format.

4 BSFP CONFIGURATIONS

In this section, we discuss the effects of different configuration setups for the BSFP.

Block Size (or vector length, l). The block size determines the model size, the PE area efficiency,
and the model accuracy. In general, a larger vector length amortizes the hardware overheads and
reduces the storage overheads of LBFP scaling factors. In practice, we found a vector length of 16-64
to be effective for BSFP in preserving the accuracy while incurring a moderate hardware cost.

Encoding Criterion. The quantization criterion plays an important role in our quantization flow to
decide the final accuracy. Common criterion candidates are Manhattan distance (L1 distance), Mean
square error (MSE, Euclidean distance, L2 distance) Zhao et al. (2019), and Cosine Similarity Zhu
et al. (2019); Zhang et al. (2019). We identify MSE as a better criterion in our quantization flow.
Furthermore, users can easily define their evaluation criterion in the framework.

Number of Subwords. We can tune the number of subwords (Nsub) factor to explore the trade-offs
for the BSFP datatype. To fully obtain the benefit of BSFP, we suggest setting Nsub larger than 1,
e.g., 2-4. In practice, the number of subwords is set to 2 to balance storage overheads and accuracy.
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Low-bit Floating-point (LBFP) Scaling Factor Format. The configuration for LBFP scaling factor
format is also crucial in determining our quantization flow’s accuracy and search space. Appendix H
shows that scaling format with 1s4m3e and 1s3m3e achieves good trade-offs.

Besides, we propose to equip separate exponent biases for different LBFP scaling factors. The
key idea is to set suitable biases to minimize the LBFP scaling factor’s precision while achieving
satisfying accuracy. We empirically set exponent biases of first and second subword scaling factors
to be -3 and -8, respectively. It is noteworthy that both biases are the same across the whole model,
which incurs negligible storage overheads. Setting biases on a per-layer basis is left as future work.

5 EVALUATIONS

Baselines and Network Architectures. We compare the BSFP with MSFP Darvish Rouhani
et al. (2020), DSQ Nagel et al. (2019), TFlite Krishnamoorthi (2018), and APoT Li et al. (2020) in
accuracy-to-precision trade-off. Furthermore, we also compare area and power efficiency with other
strong baselines, such as BF16 Jouppi et al. (2020), fixed-point Nagel et al. (2019) and Power-of-Two
PEs Zhou et al. (2017); Li et al. (2020).

We select six mainstream DNNs for evaluating BSFP and MSFP. ShuffleNet-v2 Ma et al. (2018)
and MobileNet-v2 Sandler et al. (2018) are chosen to represent compact DNNs. ResNet-18 and
ResNet-50 He et al. (2015) are selected to represent classical DNNs. EfficientNet-v2 Tan & Le (2019)
and VIT Dosovitskiy et al. (2020) are chosen to represent modern DNNs. All of the results are based
on ImageNet classification dataset Deng et al. (2009).

Hardware Evaluations. We implement the BSFP PE and baseline PEs in Verilog and validate the
behavior against the software functional simulator. All designs are synthesized at 500 MHz under
TSMC 40nm using Synopsys Design Compiler (Topographical mode). We set the parallelism to be
16 for all number systems.

5.1 MODEL SIZE-TO-ACCURACY AND VECTOR LENGTH-TO-MODEL SIZE TRADE-OFFS

Figure 5(a) shows the storage-to-accuracy Pareto frontier of BSFP and MSFP on ShuffleNet-v2
(post-training quantization). The BSFP consistently improves the accuracy using a smaller model
size. For example, BSFP simultaneously obtains 0.4% top-1 accuracy gain and saves 5% model size
over MSFP. The superiority of BSFP is consistent across four evaluated models, where other results
are omitted for brevity.

Figure 5(b) compares the accuracy-to-storage trade-offs of different vector lengths for BSFP and
MSFP on ShuffleNet-v2 (post-training quantization). On BSFP, the vector length ranging from 16
to 64 leads to only a marginal accuracy drop, while a vector length of 128 significantly decreases
the accuracy. Thus, we suggest that the vector length for BSFP be 16-64. On the other hand, MSFP
drops accuracy significantly from a length of 16 to 32, and the accuracy does not vary significantly
while further enlarging the vector length. It is also noteworthy that BSFP consistently outperforms
the Pareto frontier regardless of vector length compared to MSFP.
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Figure 5: (a) Model size-to-accuracy Pareto frontiers of BSFP and MSFP with various bitwidths
(fixing vector length). (b) Model size-to-accuracy Pareto frontiers of BSFP and MSFP with various
vector length, l (fixing bitwidth). (c) Quantization using different criteria. All experiments are
conducted on ShuffleNet-v2 using post-training quantization.
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Figure 6: KL Divergence-to-model size comparison of MSFP and BSFP on (a) ShuffleNet-v2 and (b)
MobileNet-v2. The KLD of BSFP is consistently lower than MSFP while using a smaller model size.

5.2 QUANTIZING USING DIFFERENT CRITERION

Figure 5(c) shows the accuracy of quantizing ShuffleNet-v2 using different criteria, that is, L1
distance, MSE, and Cosine Similarity. The MSE continuously serves as the best criterion in our grid
search-based quantization flow. It is noteworthy that different criteria have little accuracy difference
in higher bitwidth and vary considerably in lower bitwidths. One reason of MSE’s superiority is that
it punishes large element-wise distortion, which other two criteria cannot. In comparison, selecting
L1 norm optimizes overall distortion and selecting Cosine Similarity optimizes the angular difference.

5.3 KULLBACK-LEIBLER DIVERGENCE ANALYSIS

Kullback-Leibler Divergence (KL Divergence) is chosen for evaluating quantization quality in MSFP
paper. Intuitively, lower KL Divergence demonstrates the quantization can fit the original data much
better, which results in higher accuracy. We compare the KL Divergence of MSFP and BSFP to
demonstrate the superiority of BSFP.

Figure 6(a) and Figure 6(b) sample a layer from ShuffleNet-v2 and MobileNet-v2 to compare the
KL Divergence-to-model size Pareto frontier of BSFP and MSFP. The key takeaway is that BSFP
consistently obtains better KL Divergence for both models while allocating smaller model sizes. The
discrepancy between MSFP and BSFP enlarges as the model size reduces.

5.4 PER-VECTOR ABSOLUTE PEARSON’S SKEWNESS ANALYSIS

Figure 7 analyzes the per-vector absolute Pearson’s skewness coefficient (SK) for each layer of
ShuffleNet-v2 and ResNet-18. We report the proportion of vectors with different degrees of skewness,
i.e., moderate (0.5 < SK < 1.0), high (1.0 < SK < 1.5), and very high (1.5 < SK). Two
takeaways are: 1) The weight vectors on modern networks, i.e., ShuffleNet-v2 and ResNet-18, are
skewed. Specifically, up to 50% ∼ 75% of the weight vectors are skewed. The proposed BSFP can
adapt to skewed distribution, which can outperform prior works with uniform number systems. 2)
Even on weight vectors that are less skewed, the BSFP can still outperform prior works because it
does not waste quantization levels and provides better step size flexibility.
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moderately skewed means 1.0 > SK > 0.5. Appendix G shows that slicing weight into vectors is
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systems utilize post-training quantization. The accuracy of DFQ Nagel et al. (2019) and TFlite Krish-
namoorthi (2018) are derived from the papers. We implement APoT to obtain the accuracy.

Table 1: Post-training comparison of accuracy and hardware performance on ImageNet with MSFP
and BSFP.

Method Precision 
(W / A) Top-1 (%) Model Size FLOPs/ 

FixOPs (8b) Method Precision 
(W / A) Top-1 (%) Model Size FLOPs/ 

FixOPs (8b)

Sh
uf

fle
N

et
-v

2 FP 32 / 32 69.18 9.1 MB 148.8M

MSFP

8 / 8 69.03 2.4 MB 148.8M
BSFP
(OURS)

7 [5+2] / 8 69.10 2.3 MB 130.2M
7 / 7 68.27 2.1 MB 113.9M 6 [3+3] / 6 68.62 2.0 MB 83.7M
6 / 6 63.01 1.9 MB 83.7M 5 [4+1] / 4 66.06 1.7 MB 46.5M
5 / 5 47.49 1.6 MB 58.1M 4 [3+1] / 4 47.50 1.4 MB 37.2M

M
ob

ile
N

et
-v

2 FP 32 / 32 71.84 14.0 MB 314.1M

MSFP

8 / 8 71.58 3.7 MB 314.1M
BSFP
(OURS)

7 [4+3] / 8 71.37 3.5 MB 274.8M
7 / 7 69.42 3.3 MB 240.5M 6 [4+2] / 6 69.93 3.0 MB 176.7M
6 / 6 63.03 2.9 MB 176.7M 5 [4+1] / 4 66.01 2.6 MB 98.2M
5 / 5 47.49 2.4 MB 122.7M 4 [2+2] / 4 50.35 2.2 MB 78.5M

R
es

N
et

-1
8

FP 32/32 69.76 46.8 MB 1.82G

MSFP

8 / 8 69.69 12.4 MB 1.82G

BSFP
(OURS)

7 [5+2] / 8 69.67 11.6 MB 1.59G
7 / 7 69.54 11.0 MB 1.39G 6 [4+2] / 6 69.58 10.1 MB 1.02G
6 / 6 69.27 9.5 MB 1.02G 5 [3+2] / 4 69.40 8.7 MB 568.8M
5 / 5 67.75 8.0 MB 710.9M 4 [2+2] / 4 67.57 7.2 MB 455.0M
4 / 4 57.40 6.6 MB 455.0M 3 [2+1] / 3 61.04 5.8 MB 255.9M

R
es

N
et

-5
0

FP 32/32 76.13 102.2 MB 4.14G

MSFP

8 / 8 76.06 27.2 MB 4.14G

BSFP
(OURS)

7 [5+2] / 8 76.08 25.4 MB 3.6G
7 / 7 75.86 24.0 MB 3.17G 6 [4+2] / 6 76.02 22.2 MB 2.3G
6 / 6 75.54 20.8 MB 2.3G 5 [3+2] / 4 75.57 19.0 MB 1.6G
5 / 5 73.45 17.6 MB 1.6G 4 [3+1] / 4 73.93 15.8 MB 1.0G
4 / 4 64.28 14.4 MB 1.0G 3 [2+1] / 3 63.68 12.6 MB 582.2M

Ef
fic

ie
nt

N
et

-v
2 

(s
)

FP 32/32 84.23 88.0 MB 8.8G

MSFP

8 / 8 84.09 23.4 MB 8.8G

BSFP
(OURS)

7 [5+2] / 8 84.06 21.8 MB 7.7G
7 / 7 83.94 20.6 MB 6.7G 6 [4+2] / 6 83.96 19.1 MB 5.0G
6 / 6 83.08 17.9 MB 5.0G 5 [4+1] / 6 83.12 16.3 MB 4.2G
5 / 5 77.45 15.1 MB 3.4G 4 [2+2] / 4 76.08 13.6 MB 2.2G
4 / 4 3.27 12.4 MB 2.2G 3 [2+1] / 4 27.20 10.8 MB 1.7G

V
isi

on
 T

ra
ns

fo
rm

er
 

(V
iT

-B
/1

6)

FP 32/32 81.07 348.1 MB 56.0G

MSFP

8 / 8 81.01 92.4 MB 56.0G

BSFP
(OURS)

7 [5+2] / 8 80.92 86.3 MB 49.0G
7 / 7 80.94 81.6 MB 42.9G 6 [4+2] / 6 80.87 75.4 MB 31.5G
6 / 6 80.84 70.7 MB 31.5G 5 [4+1] / 4 80.41 64.6 MB 17.5G
5 / 5 80.13 59.8 MB 21.9G 4 [2+2] / 4 80.21 53.7 MB 14.0G
4 / 4 76.89 48.9 MB 14.0G 3 [2+1] / 4 79.77 42.8 MB 10.5G

5.5 WEIGHT PRECISION-TO-ACCURACY PARETO FRONTIER

Figure 8 compares the weight precision-to-accuracy Pareto frontier of MSFP and BSFP on four
DNNs. The BSFP consistently outperforms MSFP on the accuracy, given the same weight precision.
Furthermore, the accuracy gap between MSFP and BSFP enlarges while reducing the weight precision.
Let us take ShuffleNet-v2 as an example. When allocates 7b weight precision for both BSFP and
MSFP, BSFP achieves 69.10% top-1 accuracy, outperforming MSFP’s 68.27% accuracy by 0.83%.
When further narrows down the weight bit to five, the accuracy benefit of BSFP over MSFP enlarges.
Further, BSFP consistently outperforms MSFP and other numerical systems under same precision.

Table 1 summarizes the accuracy, model size, and the number of operations on six DNNs. For full
precision models, we report their computation complexity in FLOPs. We define a FixOP as one
operation between an 8-bit fixed-point weight and an 8-bit fixed-point activation, which takes 64
binary operations for quantized models. To sum up, BSFP consistently achieves higher accuracy with
smaller model size and computation complexity than MSFP. Smaller FixOPs improve the computation
steps on serial PE or reduce hardware overheads on parallel PE.

8
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Table 2: BSFP versus other mainstream number formats for DNN inference. Memory and MAC
density of various formats are normalized to BF16. The results listed are based on topographical
synthesis results using TSMC 40nm process at 500 MHz.

16× BF16 16× INT4 16× INT8 16× Power-
of-Two

Bit-Serial 
MSFP PE

Scaled Serial PE (BSFP)
2b-mult 1b-mult

Area (per PE) 1.0× 22.6× 8.7× 7.8× 13.0× 26.6× 33.1×
Power (per PE) 1.0× 13.0× 5.1× 4.8× 8.5× 14.1× 24.6×
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Figure 9: Throughput-to-Accuracy (left) and Energy efficiency-to-Accuracy (right) comparison of
BSFP with other strong baselines. We normalize the throughput and energy efficiency to MSFP-16.

5.6 ACCURACY-TO-PERFORMANCE AND ACCURACY-TO-ENERGY EFFICIENCY COMPARISONS

Table 2 shows the area and power of PEs with different number formats. We normalize all of the
designs with BF16 PE. In general, scaled serial PE achieves the best area efficiency and power
efficiency because of the compact MAC circuit. The 2-b scaled serial PE can outperform 2-b serial
MSFP PE Qian Zhang et al. (2022) because of the following reasons:

• Larger adder tree induced by additional XOR gate: Besides area overheads of XOR gates, the
bitwidth of the multiplication results is required to enlarge because of the potential negation.
Consequently, the 16x4-b adder tree has to increase each input port by 1-b, causing 25%
more complexity than the original adder tree. In brief, the XOR gates, the negation logic,
and the enlarged adder tree jointly cause the area and energy in-efficiency.

• The alignment overheads for MSFP are more significant than for BSFP: Although the
bitwidth of scaling factors are similar for BSFP and MSFP, MSFP allocates all 8-b to be the
exponent. In contrast, BSFP allocates only 3-b to be exponent and lets the rest be sign and
mantissa. As a result, the alignment procedure before accumulation is largely simplified for
BSFP, which improves energy efficiency.

Figure 9 (upper) shows the throughput-to-accuracy comparison. The BSFP consistently outperforms
the MSFP across four models. More specifically, BSFP outperforms MSFP by 1.3×-2.0× throughput
while achieving higher accuracy. The throughput improvement is a result of higher area efficiency
and lower weight precision. Figure 9 (lower) shows the energy efficiency-to-accuracy comparison.
The BSFP also achieves significantly higher energy efficiency than MSFP. More specifically, BSFP
outperforms MSFP by 1.3×-5.3× energy efficiency while achieving higher accuracy.

6 CONCLUSIONS

This paper introduces the Block and Subword-Scaling Floating-Point (BSFP) for quantizing weight
vectors in neural networks, which typically exhibit a skewed and non-uniform distribution. The
quantized vector of BSFP is the sum of a set of subword-scaling vectors, bringing up 2× speedup
and 5.3× energy efficiency improvements compared with MSFP.

In addition, our grid search method guarantees to find optimal scaling setups for optimizing the
criterion, which captures dense data points and outliers. Our proposed scaled serial PE can obtain
optimal area efficiency and energy efficiency compared to prior number systems. As a result, BSFP
successfully reaches state-of-the-art model size, throughput, and energy efficiency.

9
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APPENDICES

A QUANTIZATION-AWARE FINETUNING (QAT)

Fine-tuning Setups. BSFP can also be applied to quantization-aware finetuning. The fine-tuning
procedure chooses SGD as the optimizer and sets the learning rate to be 10−6. In addition, we set the
momentum to 0.9 and weight decay to 10−5. The models are fine-tuned on NVIDIA’s V100 GPUs
using a batch size of 100. We extend Pytorch to conduct the algorithmic experiments.

Table 3 shows the quantize-aware finetuning comparison between MSFP and BSFP for wide range of
models. The key takeaway is:

• Consistency of the benefits: The BSFP consistently achieves higher accuracy using smaller
model size and fewer operations. This demonstrates that the benefits of BSFP is consistent
regardless of post-training quantization or quantize-aware training. Further, we also point
out that BSFP outperforms MSFP in accuracy given ultra low bitwidth.

Table 3: Quantization-aware fine-tuning comparison of accuracy performance as well as hardware
performance of ShuffleNet-v2 Ma et al. (2018), MobileNet-v2 Sandler et al. (2018), ResNets He et al.
(2015) on ImageNet with MSFP and BSFP.

Method Precision 
(W / A) Top-1 (%) Model Size FLOPs/ 

FixOPs (8b) Method Precision 
(W / A) Top-1 (%) Model Size FLOPs/ 

FixOPs (8b)

Sh
uf

fle
N

et
-v

2 FP 32 / 32 69.18 9.1 MB 148.8M

MSFP

8 / 8 68.89 2.4 MB 148.8M
7 / 7 68.30 2.1 MB 113.9M

BSFP
(OURS)

7 [5+2] / 8 69.10 2.3 MB 130.2M
6 / 6 67.56 1.9 MB 83.7M 6 [3+3] / 6 68.63 2.0 MB 83.7M
5 / 5 64.17 1.6 MB 58.1M 5 [4+1] / 4 65.69 1.7 MB 46.5M
4 / 4 44.99 1.3 MB 37.2M 4 [3+1] / 4 62.73 1.4 MB 37.2M

M
ob

ile
N

et
-v

2 FP 32 / 32 71.84 14.0 MB 314.1M

MSFP

8 / 8 71.71 3.7 MB 314.1M
7 / 7 71.19 3.3 MB 240.5M

BSFP
(OURS)

7 [5+2] / 8 71.80 3.5 MB 274.8M
6 / 6 70.27 2.9 MB 176.7M 6 [3+3] / 6 71.17 3.0 MB 176.7M
5 / 5 65.25 2.4 MB 122.7M 5 [4+1] / 4 67.38 2.6 MB 98.2M
4 / 4 45.73 2.0 MB 78.5M 4 [2+2] / 4 66.29 2.2 MB 78.5M

R
es

N
et

-1
8

FP 32/32 69.76 46.8 MB 1.82G

MSFP

8 / 8 69.84 12.4 MB 1.82G
7 / 7 69.73 11.0 MB 1.39G

BSFP
(OURS)

7 [5+2] / 8 70.01 11.6 MB 1.59G
6 / 6 69.64 9.5 MB 1.02G 6 [3+3] / 6 69.85 10.1 MB 1.02G
5 / 5 68.94 8.0 MB 710.9M 5 [3+2] / 4 69.09 8.7 MB 568.8M
4 / 4 64.76 6.6 MB 455.0M 4 [2+2] / 4 69.02 7.2 MB 455.0M
3/ 3 46.59 5.1 MB 255.9M 3 [2+1] / 3 64.85 5.8 MB 255.9M

R
es

N
et

-5
0

FP 32/32 76.13 102.2 MB 4.14G

MSFP

8 / 8 76.26 27.2 MB 4.14G
7 / 7 76.17 24.0 MB 3.17G

BSFP
(OURS)

7 [5+2] / 8 76.30 25.4 MB 3.6G
6 / 6 76.06 20.8 MB 2.3G 6 [4+2] / 6 76.17 22.2 MB 2.3G
5 / 5 75.12 17.6 MB 1.6G 5 [4+1] / 4 76.00 19.0 MB 1.6G
4 / 4 71.57 14.4 MB 1.0G 4 [2+2] / 4 75.04 15.8 MB 1.0G
3 / 3 53.47 11.2 MB 582.2M 3 [2+1] / 3 70.95 12.6 MB 582.2M

B COMPARISON BETWEEN STANDARD QAT AND THE PROPOSED LOW-COST
QAT

To amortize the overheads incurred by grid search during quantization-aware training (QAT), we
propose to quantize only the first batch for every 100 batches to amortize the quantization overheads.
We refer this proposal as low-cost QAT.

To answer the question whether the proposed low-cost QAT will affect the training process, Figure 10
compares the training curve of the standard QAT and low-cost QAT on finetuning ShuffleNet-v2
and MobileNet-v2. The takeaway is that the training curve of low-cost QAT is similar to the curve
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Figure 10: Training curve comparison between standard quantization-aware training and low-cost
quantization-aware training for (a) ShuffleNet-v2 and (b) MobileNet-v2.

standard QAT, which quantizes before every batch. This demonstrates that the low-cost QAT can
preserve the training curve while requiring significantly lower search overheads.

C EVALUATIONS ON OTHER TASKS

C.1 OPTICAL FLOW ESTIMATION USING RAFT ON KITTI DATASET

Since our research direction focuses on computer vision, we choose to extend evaluate for BSFP on
DNN-based optical flow estimation Teed & Deng (2021) (KITTI dataset Menze & Geiger (2015)).
Table 4 shows that the BSFP consistently outperforms the MSFP using same weight precision, which
demonstrates the benefit of BSFP is consistent regardless of the tasks.

Table 4: MSFP and BSFP on RAFT Teed & Deng (2021) for KITTI dataset Menze & Geiger (2015).
The BSFP consistently improves the error given same weight precision.

Optical Flow (RAFT) MSFP BSFP
Precision (W) Average end-point error

9 0.658 0.632
7 0.895 0.682
5 2.068 0.905

D DETAILS OF THE CRITERION-OPTIMAL QUANTIZATION FLOW

In order to find the optimal subword mantissas and scalings, we adopt iterative rounding, which
contains the following steps:

1. Enumerate the two scaling factors.
2. List the quantization levels the two scaling factors can generate. The number of quantization

levels is moderate. For example, there are only 64 levels if the two subwords are 2+4 bits.
3. Calculate the MSE between the 16 original weights and their nearest quantization levels.

Finding the nearest quantization level in a list is viable as other quantization schemes, such
as APoT Li et al. (2020), also employ it.

4. Keep the scaling factors that achieve the lowest MSE and go to step 1.

The pseudo code of the criterion-optimal quantization flow is presented in Algorithm 1

E SUPPORTING BSFP ON BIT-PARALLEL ARCHITECTURE

Since some of the hardware, e.g., CPU and GPU, prefers bit-parallel PE architecture, Figure 11
presents the bit-parallel BSFP PE design. The difference between serial PE architecture and parallel
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Algorithm 1 Criterion-optimal quantization flow
Input: Full-precision weight Wfp

Output: Criterion-optimal scalings scopt, Criterion-optimal subword mantissas manopt

Require: Subword configurations configsub, Scaling configurations configsc
Criterion← max
SC ← Enum(configsc) ▷ Enumerate all scaling setups to form search space SC
for sccur ∈ SC do ▷ For every sccur of the search space SC

listquant ← BuildQlist(sccur, configsub) ▷ Find all quantization levels using sccur
Wquant ← Quant(Wfp, listquant) ▷ Quantize Wfp to its nearest levels in list
Criterioncur ←MSE(Wfp, Wquant) ▷ Compute the MSE criterion
if Criterioncur < Criterion then. ▷ Update the scale and subword mantissas

scopt ← sccur
manopt ← mancur

Criterion← Criterioncur

end if
end for

PE architecture is that the scaling units need to be unrolled, which incurs some overheads. The
BSFP’s benefits of smaller model size and lower arithmetic complexity remain unchanged.

Further, we can achieve uneven subword configurations by fixing the upper multipliers and adjusting
only the weight precision of lower multipliers (red weights).
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Figure 11: Proposed scaled parallel processing engine.

F DETAILS OF THE HARDWARE COMPARISON

Processing Engine Details: Table 2 compares 16-wide PEs in different number formats, i.e., BF16,
INT4, INT8, Power-of-Two, MSFP, and BSFP, following similar setup in FAST Qian Zhang et al.
(2022). The architectural details for these PEs are summarized below:

• The BF16 (brain float) PE adopts bit-parallel architecture, which computes 16-wide BF16
multiplications and reduces them to a single partial sum. The accumulator is in BF16 format.

• The INT4 and INT8 PEs also adopt bit-parallel architectures, which perform 16-wide MAC
and generate 12b and 20b partial sum, respectively. The accumulator then accumulates it
using INT32 format.

• The Power-of-Two PE shifts 16 inputs based on the weight values and reduces 16 products
to a single partial sum. The accumulator is in INT32 format.

• The serial MSFP PE Qian Zhang et al. (2022) computes 16 2b-to-2b multiplications per cycle
and shifts them to accumulate for the correct partial sum. We adopt the BF16 accumulator.

• The proposed S2IP supports BSFP, which computes 16-wide 2b or 1b multiplications per
cycle and scale-and-shifts them to accumulate for correct partial sum. The accumulator is in
BF16 format.
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Additional Notes:

• The adder tree output precisions of every PEs are optimized to their minimum.
• ALL of the PEs obtain similar slack profiles.

Performance Analysis Setup: We adopt iso-area performance setup to fairly compare different
number systems, which is widely adopted by top architecture papers Sharify et al. (2019); Yang
et al. (2021). In other words, if the size of BF16 PE is 26× larger than that of the BF16 PE, we are
allowed to allocate 26× more PEs for BSFP. Besides PE parallelism, we also consider the multi-cycle
computation of serial architecture to reasonably estimate the performance.

Power Analysis Setup: We implement all of the above PEs using Verilog and synthesis them using
Synopsys Design Compiler (topographical mode) on the TSMC 40 nm node. Specifically, the power
of each module is analyzed with average switching activity. We then utilize the power profiles to
estimate throughput per Watt.

G PER-LAYER SKEWNESS ANALYSIS

Figure 12 analyzes the absolute skewness for weights of each layer without slicing weights into
vectors. We observe that most layers’ skewness is low (i.e., ≤0.5), which matches the summary of
prior works that weight values follow bell-shape and non-skewed distribution.

Through a side-by-side comparison between Figure 12 and Figure 13 (same as Figure 7; We copy it
here for easier comparison), we clearly observe that vectorization is one source of more considerable
skewness on Figure 13.
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Figure 12: Per-layer absolute skewness of (a) ShuffleNet-v2 and (b) ResNet-18. Most of the layers
obtain low skewness, which matches the analysis reported by prior works.
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Figure 13: Per-vector absolute Pearson’s skewness coefficient (SK) of (a) ShuffleNet-v2 and (b)
ResNet-18. In general, very highly skewed means SK > 1.5, highly skewed means SK > 1.0, and
moderately skewed means 1.0 > SK > 0.5.

H SEARCHING FOR THE BSFP CONFIGURATIONS

To obtain the scaling factor configurations (1-4-3, 1-3-3) and the exponent biases (-8, -3), we use
the following steps to empirically set them. This method is acceptable as neural networks naturally
posses many hyper parameters.
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1. Begin with setting scaling factors to BF16 (1-7-8), a sufficiently precise format.
2. Given the scaling factors, find the narrowest bitwidths of subwords that causes an accuracy

drop less than a first budget. For example, 5+2 bits are selected.
3. Given the subword settings, reduce the bitwidths of scaling factors and sweep the the biases

to a point that the overall accuracy drop is less than a second budget. This step lead us to
(1-4-3, 1-3-3) and biases (-3,-8).
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