
Few-shot Task-agnostic Neural Architecture Search for
Distilling Large Language Models

Anonymous Author(s)
Affiliation
Address
email

Abstract

Traditional knowledge distillation (KD) methods manually design student archi-1

tectures to compress large models given pre-specified computational cost. This2

requires several trials to find viable students, and repeating the process with change3

in computational budget. We use Neural Architecture Search (NAS) to automat-4

ically distill several compressed students with variable cost from a large model.5

Existing NAS methods train a single SuperLM consisting of millions of sub-6

networks with weight-sharing, resulting in interference between subnetworks of7

different sizes. Additionally, many of these works are task-specific requiring task8

labels for SuperLM training. Our framework AutoDistil addresses above chal-9

lenges with the following steps: (a) Incorporates inductive bias and heuristics to10

partition Transformer search space into K compact sub-spaces (e.g., K=3 can11

generate typical student sizes of base, small and tiny); (b) Trains one SuperLM for12

each sub-space using task-agnostic objective (e.g., self-attention distillation) with13

weight-sharing of students; (c) Lightweight search for the optimal student without14

re-training. Task-agnostic training and search allow students to be reused for fine-15

tuning on any downstream task. Experiments on GLUE benchmark demonstrate16

AutoDistil to outperform state-of-the-art KD and NAS methods with upto 3x17

additional reduction in computational cost and negligible loss in task performance.18

1 Introduction19

While large pre-trained language models (e.g., BERT [1], GPT-3 [2]) are effective, their huge size20

poses significant challenges for downstream applications in terms of energy consumption and cost21

of inference [3] limiting their usage in on the edge scenarios and under constrained computational22

inference budgets. Knowledge distillation [4, 5, 6, 7] has shown strong results in compressing pre-23

trained language models into small student models. However, these works require pre-specification of24

the student architecture and computational cost (e.g., number of parameters, FLOPs) for distillation.25

This poses two significant challenges: (i) it requires several trials to come up with viable architectures26

as they are hand-engineered and to define several hyper-parameters (e.g., number of layers and27

attention heads, hidden dimension, etc.); (ii) one has to re-run distillation with any change in28

specification for the student architecture or computational cost for using it in a target environment.29

Neural Architecture Search (NAS) [8, 9, 10, 11] provides a natural solution to automatically search30

through a large space of candidate models.The dominant NAS paradigm consists of two main steps:31

(a) Training a Super model combining all possible architectures into a single graph and jointly training32

them via weight-sharing; (b) Searching for optimal architecture from Super model with best accuracy33

on a downstream task, satisfying user-specified latency constraint for target device. Parallel to above34

computer vision (CV) works, NAS has shown strong results in recent works like DynaBERT [12],35

AutoTinyBERT [13] and NAS-BERT [14] for natural language understanding (NLU).36

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.



Figure 1: AutoDistil uses few-shot task-
agnostic NAS to distill several compressed stu-
dents with variable #FLOPs (x-axis) from K=3
SuperLMs (corresponding to each point cloud)
trained on K sub-spaces of Transformer search
space. Each student (blue dot) extracted from the
SuperLM is fine-tuned on MNLI with accuracy on
y-axis. The best student from each SuperLM is
marked in red. Given any state-of-the-art distilled
model, AutoDistil generates a better candidate
with less #FLOPs and improved task performance
from corresponding search space.

Drawbacks of existing NAS methods.37

[D1: Co-adaptation in weight-sharing] Above38

works train one single large Super Language39

Model (SuperLM) consisting of millions of di-40

verse student architectures. This results in some41

undesirable effects of co-adaptation [15] like42

conflicts in weight-sharing where bigger student43

models converge faster in contrast to smaller44

ones converging slower [16, 11].45

[D2: Multi-stage training] A single SuperLM46

may not have sufficient capacity to encode a47

large search space. As a result, these works48

use multi-stage training process, where they49

first conduct NAS to identify candidate students50

and then perform further pre-training [13] and51

knowledge distillation [14] of the candidates.52

[D3: Task-specific training] NAS works in53

the CV domain (e.g., AutoFormer [17], Once-54

for-all [10], One-Shot NAS [11, 18]) leverage55

hard class labels from a given task (e.g., im-56

age classification) or soft labels from ImageNet57

pre-trained models (e.g., MobileNet [7], Reg-58

Net [19]) for task-specific optimization with ac-59

curacy as an evaluation metric. Different from60

CV domain, NLU tasks have different objec-61

tives and evaluation metrics for classification (e.g., MNLI), regression (e.g., STS-B) and correlation62

(e.g., CoLA). Correspondingly, pre-trained language models like BERT [1] are also trained in self-63

supervised fashion without using task labels. This makes it challenging to adapt existing NAS works64

to the NLU domain in a task-agnostic setting. Recent NAS works in the NLU domain are not fully65

task-agnostic. For instance, DynaBERT [12] accesses both task labels for knowledge distillation66

and task development set for network rewiring. NAS-BERT [14] performs two-stage knowledge67

distillation with pre-training and fine-tuning of the candidates for best performance. While AutoTiny-68

BERT [13] also explores task-agnostic training, we demonstrate better performance from few-shot69

NAS and much cheaper cost from single stage training without additional pre-training and distillation.70

Contributions. We address above challenges with fully task-agnostic few-shot NAS consisting of71

three steps. (S1) Search space design. We partition the Transformer search space into K sub-spaces72

considering important architectural hyper-parameters like the network depth, width and attention73

heads. We further leverage inductive bias and heuristics to limit the number of student architectures74

in each sub-space. (S2) Fully task-agnostic SuperLM training. We train K SuperLM overall, one75

for every sub-space. This allows each SuperLM more capacity to encode a sub-space as opposed to a76

single large one. We train each SuperLM with a fully task-agnostic objective (without accessing any77

task labels) like deep self-attention distillation, where we transfer knowledge from the self-attention78

module (including keys, queries and values) of a pre-trained teacher (e.g., BERT) to the student and79

use weight-sharing to train the SuperLM. (S3) Lightweight optimal student search. We obtain80

optimal student(s) directly from well-trained SuperLM(s) without any re-training that can be simply81

fine-tuned on downstream tasks. Our contributions over existing NAS works can be summarized as:82

• In contrast to prior works (e.g., DynaBERT, AutoTinyBERT, NAS-BERT), we do a single-stage83

training combining NAS and distillation with no further pre-training or augmentation and demonstrate84

superior performance of the NAS process itself with significantly reduced training cost. Obtained85

subnetworks are simply fine-tuned on downstream tasks.86

• Fully task-agnostic training with subnetwork attention state alignment for self-attention relation87

distillation and search in contrast to prior works in NLU (e.g., DynaBERT, NAS-BERT) and CV (e.g.,88

AutoFormer, BigNAS, Once-For-All).89

• Few-shot NAS to mitigate gradient conflicts in SuperNet training compared to prior One-shot NAS90

works in NLU (e.g., DynaBERT, AutoTinyBERT, NAS-BERT). AutoFormer in the CV domain is an91

exception to this point which also uses few-shot NAS but accesses task labels during training.92

• Strong results over all the above NAS and distillation works in NLU with 3x additional compression93

over best performing distillation technique with negligible drop in task performance.94

2



Search Engine

Task
Agnostic

Task
Proxy

𝛼𝒜∗

PerformanceCost

𝓐𝟑

𝓐𝟐

𝓐𝟏

K-shot Learning for SuperLM

Subnetwork Search

K Search Partitions

…

Transformer 1

Transformer 2

Transformer 3

Transformer 4

Transformer 5

Transformer T

x1 x2 x3

…

Transformer 1

Transformer 2

Transformer 3

x1 x2 x3

Transformer S

Q

K

V

Distill
Q

K

V

Attention

WQ WK WV

Wo

W1

W2

Sampled Subnetworks

Pre-trained Teacher

Adaptive Transformer Block
of Sampled Subnetworks

Multi-head Self-attention Relation Distillation

Figure 2: Overview of AutoDistil . It considers K partitions of the Transformer architecture
subspace to train one SuperLM for each partition with weight-sharing of the constituent subnetworks
trained via task-agnostic deep self-attention distillation. Optimal compressed subnetworks can be
easily extracted from the SuperLMs without additional training or distillation.

2 Background95

We present an overview of Transformers [20], especially its two main sub-layers, multi-head self-96

attention (MHA) and feed-forward network (FFN). Transformer layers are stacked to encode contex-97

tual information for input tokens as: Xl = Transformerl(X
l−1), l ∈ [1, L] where L is the number98

of Transformer layers, Xl ∈ Rs∗dhid , s is the sentence length, and dhid is the hidden dimension. In99

the following, we omit the layer indices for simplicity.100

Multi-Head Self-Attention (MHA). Given previous Transformer layer’s output X, MHA computes:101

Attention(Qh,Kh,Vh) = softmax(
QhK

⊤
h√

dhead
)Vh; Qh,Kh,Vh = XWQ

h ,XWK
h ,XW V

h , (1)

MHA(X) = Concat(head1, · · · ,headH)WO, (2)

where WQ
h , WK

h , W V
h ∈ Rdhid∗dhead , WO ∈ Rdhid∗dhid are linear transformations. Qh, Kh, Vh102

∈ Rs∗dhead are called queries, keys, and values, respectively. H is the number of heads. headh =103

Attention(Qh,Kh,Vh) denotes the h-th attention head. Concat is the concatenating operation.104

dhead = dhid/H is the dimension of each head.105

Feed-Forward Network (FFN). Each Transformer layer contains an FNN sub-layer, which is stacked106

on the MHA. FFN consists of two linear transformations with a ReLU activation as:107

FFN(x) = max(0, xW 1 + b1)W
2 + b2, (3)

where W 1 ∈ Rdhid∗df , W 2 ∈ Rdf∗dhid , b1 ∈ Rdf , and b2 ∈ Rdhid . In addition, there are residual108

connection and layer normalization on top of MHA and FFN (denoted by ⊕ in Figure 2), which are109

formulated as LayerNorm(x + MHA(x)) and LayerNorm(x + FFN(x)), respectively.110

3 Few-shot Task-agnostic NAS111

Given a large pre-trained language model (e.g., BERT) as teacher, AutoDistil distills several112

compressed models with variable computational cost with the following major components.113

3.1 Search Space Design114

Searchable transformer components. From Transformers overview (Section 2) and our framework115

(Figure 2), we observe four important hyper-parameters for the Transformer blocks to include:116

(1) Feed-forward network (FFN) dimension - we encode this by the MLP (multi-layer perceptron)117

ratio defined as r =
df

dhid
, with df and dhid representing the intermediate dimension of the FFN and118

hidden dimension respectively; (2) Number of layers (L) to capture the network depth; (3) Hidden119

dimension (dhid) to encode input; (4) Attention heads (H) for multi-head self-attention.120

3



All of the above factors are important for model capacity and have a significant impact on the model121

size and computational cost. For instance, different layers have different feature representation122

capabilities. Recent works show that Transformer models are overparameterized [21, 22], such as123

the feed-forward layer (FFN), which is one of the most computation intensive components [23].124

Therefore, we search for optimal MLP ratio and hidden dimension that reduce computational cost125

resulting from FFN layers. Furthermore, studies [24, 25] show that attention heads can be redundant126

when they learn to encode similar relationships for each word. Thus, we make the number of attention127

heads searchable as well.128

Inductive bias. Prior work [26] demonstrate that thinner and deeper neural networks with improved129

representation capacity perform better than wider and shallower ones. We incorporate this as an130

inductive bias to decide the number of layers to consider for the students in each of our K sub-spaces131

(base, small, tiny), where we prefer deeper students in terms of the number of layers. Furthermore,132

we constrain all the Transformer layers in a given student model to share identical and homogeneous133

structures, i.e., the same number of attention heads, hidden dimension, etc. This not only reduces the134

size of the search space, it is also more friendly to hardware and software frameworks [13].135

Search space partition. Existing works [13, 14] train a single large SuperLM containing millions of136

student architectures by weight-sharing. This leads to performance degradation due to optimization137

interference and convergence of subnetworks with very different sizes [11]. To mitigate such138

interference, we employ a few-shot learning strategy [17, 16] as follows. We partition the whole139

Transformer search space into K sub-spaces such that each sub-space covers different sizes of student140

models given by the number of parameters. For instance, K = 3 can cover typical student sizes,141

namely base, small and tiny versions. Table 1 shows the parameter ranges for the K sub-spaces,142

along with the student configurations contained in each.143

SuperLMTiny SuperLMSmall SuperLMBase BERT

#Subnets 256 256 256 N/A
#Layers (4, 7, 1) (9, 12, 1) (9, 12, 1) 12
#Hid_dim (128, 224, 32) (256, 352, 32) (544, 640, 32) 768
MLP Ratio (2.0, 3.5, 0.5) (2.5, 4.0, 0.5) (2.5, 4.0, 0.5) 4.0
#Heads (7, 10, 1) (7, 10, 1) (9, 12, 1) 12

#FLOPs 40-367M 0.5-2.1G 2.1-7.9G 11.2G
#Params 4-10M 12-28M 39-79M 109M

Table 1: The search space of AutoDistil with K=3 partitions, each
consisting of 256 subnets with variable computational cost. We train
one SuperLM with weight-sharing for each partition with child models
sharing transformer blocks. Each tuple represents the lowest value,
highest value, and steps for each factor.

We now encode each sub-144

space into a SuperLM,145

where each student model146

in the space is a subnetwork147

of the SuperLM. Further-148

more, all the student subnet-149

works share the weights of150

their common dimensions,151

with the SuperLM being the152

largest one in the search153

space. Considering K in-154

dependent SuperLMs, each155

one now has more capacity156

to encode a sub-space, in157

contrast to a limited capac-158

ity single SuperLM as in prior works. Furthermore, our choices for the heuristic partition and159

inductive bias result in less number of student models of comparable size in each sub-space which160

alleviates conflicts in weight-sharing.161

We extract student subnetworks from the SuperLM by a simple truncation strategy like bottom-left162

extraction. We defer more sophisticated extraction strategies to future work. In the above strategy,163

given a specific architecture α = {l, dhid, r, h}, (i) we first extract alternate l Transformer layers from164

the SuperLM; (ii) then extract bottom-left sub-matrices in terms of dhid and r from the original165

matrices that represent the hidden dimension and the MLP ratio respectively; (iii) finally, for the166

attention heads, we extract the leftmost h heads and retain the dimension of each head as the SuperLM.167

3.2 Task-agnostic SuperLM Training168

We illustrate SuperLM training process in Algorithm 1. Given a large pre-trained language model (e.g.,169

BERT) as teacher, we initialize the SuperLM with the weights of teacher. In each step of SuperLM170

training, we randomly sample several student subnetworks from the search space; apply knowledge171

distillation between sampled subnetworks and the teacher to accumulate gradients; and then update172

the SuperLM. During sampling, we employ Sandwich rule [27], also used in BigNAS [11], that173

samples the smallest subnetwork, the largest subnetwork and M random ones for updating SuperLM.174

The motivation is to improve the performance of all subnetworks by increasing the performance175

lower bound (smallest subnetwork) and upper bound (largest one) across all subnetworks.176

4



We leverage deep self-attention distillation [4] for task-agnostic training. To this end, we employ177

multi-head self-attention relation distillation to align the attention distributions as well as scaled178

dot-product of keys, queries and values of the teacher and sampled student subnetworks. Consider179

A1, A2, A3 to denote the queries, keys and values of multiple relation heads of teacher model,180

and B1, B2, B3 respectively for a sampled subnetwork. Mean squared error (MSE(·)) between181

multi-head self-attention relation of teacher and sampled subnetwork is used as distillation objective:182

L =

3∑
i=1

βiLi, Li =
1

H

H∑
k=1

MSE(RT
ik,R

S
ik), (4)

where RT
i = softmax(AiA

⊤
i /

√
dk), RS

i = softmax(BiB
⊤
i /

√
dk), H is the number of attention183

heads; RT
i represents the teacher’s Q−Q, K −K, or V − V relation; RS

i represents the same for184

student. RT
ik is the relation information based on one attention head, and dk is the attention head size.185

Relation knowledge distillation avoids the introduction of additional parameters to transform the186

student’s representations with different dimensions to align to that of the teacher. For the teacher187

model and subnetworks with different number of attention heads, we first concatenate the self-188

attention vectors of different attention heads of the subnetwork and then split them according to the189

number of relation heads of the teacher model. Then, we align their queries with the same number of190

relation heads for distillation. In addition, we only transfer the self-attention knowledge from the191

last layer of the teacher model to the last layer of the student model. Automatically selecting which192

layers to align is an interesting research direction that we defer to future work.193

Algorithm 1 Few-shot Task-agnostic Knowledge
Distillation with AutoDistil .

Input: Partitioned K sub-spaces Ak; initialized K Su-
perLMs Sk on Ak; pre-trained teacher T ; unlabeled
data D; training epochs E; sampling steps M
Output: Trained SuperLMs {Sk}
for k = 1 to K do

for i = 1 to E do
Get a batch of data from D
for batch in D do

Clear gradients in SuperLM Sk

for m = 1 to M do
Randomly sample a subnetwork s from Sk

Calculate self-attention distil. loss between
subnetwork s and teacher T with Eqn. (4)
Accumulate gradients

end for
Update Sk with the accumulated gradients

end for
end for

end for

The SuperLM for sub-space Ak is trained as:194

W ∗
Ak

= argminWEα∈A[L(Wα;U ;Dtrain)],
(5)

where, K is the number of sub-space parti-195

tions; W are the weights of the SuperLM;196

Wα are the weights in W specified by the ar-197

chitecture α; U are the weights of the teacher198

model including the self-attention module199

used for distillation; Dtrain is the training data200

set, and L(·) is the self-attention loss function201

from Eqn. (4).202

3.3 Lightweight Optimal Student Search203

We outline two search strategies for selecting204

the optimal student subnetwork.205

Task-agnostic search. We adopt this to be our206

primary strategy to compare against all base-207

lines since it does not access any task label208

information. We compute the task-agnostic209

self-attention distillation loss for all student subnetworks using Eqn. (4) on a heldout validation set210

from the unlabeled training corpus. The student subnetworks are directly obtained by bottom-left211

extraction from the well-trained SuperLM (outlined in Section 3.1). This process is lightweight since212

it does not require any training or adaptation of the student and number of subnetworks is limited. The213

optimal student is given by the subnetwork with least validation loss subject to following constraint.214

α∗
A = argminα∈A1,2,···KL(W ∗

α ;Dval), s.t. g(α) < c, (6)

where W ∗
α is the weights of architecture α obtained from W ∗

Ak
, Dval is the validation data set, L215

is the self-attention distillation loss, and g(·) is a function to calculate the computational cost (e.g.,216

#FLOPs, #parameters) of the subnetwork subject to a given user-specified resource constraint c.217

Task-proxy search. We compare our task-agnostic search against another strategy that considers a218

proxy task (e.g., MNLI [28]) with label information to fine-tune the 256 candidate subnetworks in219

each sub-space. The optimal student in each sub-space is given by the one with the best downstream220

task performance (e.g., accuracy). Note that, for this strategy, the proxy task is used only during221

search while the NAS training is still fully task-agnostic.222

5



4 Experiments223

Datasets. We conduct experiments on the General Language Understanding Evaluation (GLUE)224

benchmark [29]. We compare our method with the baseline methods on two single-sentence classifi-225

cation tasks (CoLA [30], SST-2 [31]), two similarity and paraphrase tasks (MRPC [32], QQP [33]),226

and three inference tasks (MNLI [28], QNLI [34], RTE [35, 36, 37, 38])1. We report accuracy for227

MNLI, QNLI, QQP, SST-2, RTE, report f1 for MRPC, and report Matthew’s correlation for CoLA.228

Baselines. We compare against several task-agnostic methods2 generating compressed models from229

BERTbase teacher, using (i) knowledge distillation like BERTSMALL [39], Truncated BERT [28],230

DistilBERT [5], TinyBERT [6], MINILM [4]; as well as those based on Neural Architecture Search,231

like AutoTinyBERT [13], DynaBERT [12], and NAS-BERT [14].232

AutoDistil configuration. We use uncased BERTBASE as the teacher consisting of 12 Trans-233

former layers, 12 attention heads; with the hidden dimension and MLP ratio being 768 and 4,234

respectively. It consists of 109M parameters with 11.2G FLOPs. We use English Wikipedia and235

BookCorpus data for SuperLM training with WordPiece tokenization. We use a batch size of 128236

and 4e-5 as the peak learning rate for 10 epochs. The maximum sequence length is set to 128.237

The coefficients in distillation objective (Eqn. (4)), β1, β2, and β3, are all set to 1. We distill the238

self-attention knowledge of the last layer to train the SuperLM. Both the teacher and SuperLM are239

initialized with pre-trained BERTBASE. Other hyper-parameter settings are shown in Appendix. We240

use 16 V 100 GPUs to train the SuperLM with 336 GPU-hours as the training cost.241

4.1 Finding the Optimal Compressed Models242

AutoDistilAgnostic is obtained by fully task-agnostic training and task-agnostic search without243

using any task label information. We set a constraint in Eqn. (6) such that the #FLOPs of the optimal244

compressed model is atleast 50% less than the teacher model. We rank all the subnetworks contained245

in all the partitions of the trained SuperLM by their self-attention distillation loss on the heldout246

validation set, and select the one that meets the constraint with the minimum loss.247

AutoDistilProxy uses MNLI [28] as a proxy to estimate downstream task performance of different248

subnetworks. Prior work [40] has demonstrated performance improvements in MNLI to be correlated249

to other GLUE tasks. To this end, we fine-tune all the 256 subnetworks in each partition of the trained250

superLMs, and select corresponding subnetworks with the best trade-off between task performance251

(accuracy) and computational cost (#FLOPs). This results in K=3 optimal students, corresponding to252

AutoDistilProxyB , AutoDistilProxyS and AutoDistilProxyT obtained from the corresponding253

sub-spaces of SuperLMBase, SuperLMSmall and SuperLMTiny, respectively. Notably all students are254

obtained from the AutoDistil SuperLM still trained in a fully task-agnostic fashion.255

4.1.1 Comparison with Traditional Knowledge Distillation Baselines256

We compare AutoDistil against state-of-the-art KD models distilled from the same teacher257

BERTBASE in Table 2 with respect to the following measures: computational cost in the form of (i)258

FLOPs and (ii) parameters, along with (iii) improvement in the average task performance aggregated259

over all the GLUE tasks. We observe that the compressed model AutoDistilAgnostic generated260

via our task-agnostic SuperLM training leads to upto 3x reduction in FLOPs over state-of-the-art261

distilled models (e.g., MINILM [4], TinyBERT [6], DistilBERT [5]) that are hand-engineered while262

matching the overall task performance. The most aggressive compressed version corresponding to263

AutoDistilProxyT
obtains a massive 41x reduction in FLOPs over BERTBASE while incurring264

5 point accuracy drop in GLUE (excluding CoLA) and 10 point drop (including CoLA). Notably265

CoLA is a syntactic task in contrast to other semantic tasks in the benchmark like natural language266

inference, paraphrase detection and sentiment classification. This depicts an interesting impact of267

massive model compression on varying task types.268

4.1.2 Comparison with Neural Architecture Search Baselines269

We report the performance of several NAS-generated student models of comparable FLOPs and270

parameters from corresponding papers in Table 2.271

1We ignore STS-B for a fair comparison with our strongest KD baseline MINILM [4] that do not report it.
2For a fair comparison, we do not include MobileBERT [7] that uses BERTlarge as teacher.

6



Table 2: Performance comparison between students from traditional task-agnostic distillation; multi-
stage one-shot NAS with additional pre-training, distillation; and single-stage few-shot AutoDistil
Our results are averaged over 5 runs with baselines reported from corresponding papers.

Model #FLOPs #Para MNLI-m QNLI QQP SST-2 CoLA MRPC RTE Average(Metric) (G) (M) (Acc) (Acc) (Acc) (Acc) (Mcc) (Acc) (Acc)

BERTBASE [1] (teacher) 11.2 109 84.5 91.7 91.3 93.2 58.9 87.3 68.6 82.2

Base-sized Models from Task-agnostic KD Methods and AutoDistil
BERTSMALL [39] 5.66 66.5 81.8 89.8 90.6 91.2 53.5 84.9 67.9 80.0
Truncated BERT [28] 5.66 66.5 81.2 87.9 90.4 90.8 41.4 82.7 65.5 77.1
DistilBERT[5] 5.66 66.5 82.2 89.2 88.5 91.3 51.3 87.5 59.9 78.6
TinyBERT [6] 5.66 66.5 83.5 90.5 90.6 91.6 42.8 88.4 72.2 79.9
MINILM [4] 5.66 66.5 84.0 91.0 91.0 92.0 49.2 88.4 71.5 81.0
AutoDistilProxyB 4.40 50.1 83.8 90.8 91.1 91.1 55.0 88.8 71.9 81.7

Small-sized Models from Multi-stage One-shot NAS Methods and AutoDistil
AutoTinyBERT-KD-S1 [13] 1.69 30.0 82.3 89.7 89.9 91.4 47.3 88.5 71.1 80.0
DynaBERT [12] 1.81 37.7 82.3 88.5 90.4 92.0 43.7 81.4 63.2 77.4
NAS-BERT10 [14] 2.30 10.0 76.4 86.3 88.5 88.6 34.0 79.1 66.6 74.2
AutoDistilProxyS 2.02 26.1 83.2 90.0 90.6 90.1 48.3 88.3 69.4 79.9
AutoDistilAgnostic 2.13 26.8 82.8 89.9 90.8 90.6 47.1 87.3 69.0 79.6

Tiny-sized Models from Multi-stage One-shot NAS Methods and AutoDistil
AutoTinyBERT-KD-S4 [13] 0.30 10.1 76.0 85.5 86.9 86.8 20.4 81.4 64.9 71.7
NAS-BERT5 [14] 0.87 5.00 74.4 84.9 85.8 87.3 19.8 79.6 66.6 71.2
AutoDistilProxyT 0.27 6.88 79.0 86.4 89.1 85.9 24.8 78.5 64.3 72.6

AutoDistil outperforms all competing methods on aggregate for all sizes; except for small-sized272

model; where it has marginally lower performance (0.1 points on avg) compared to AutoTinyBERT.273

Cost (GPU AutoTiny AutoTiny Auto
hours) BERT BERT-Fast Distil

SuperNet
Training

NR NR 336

Search 150 12 <1

Further
Training

870 290 0

Table 3: Cost (V100 GPU hours)
comparison for generating students
of similar FLOPs. NRAutoTiny-
BERT does not report the cost of Su-
perNet training - typically the most
expensive step. Further Training
refers to additional pre-training ap-
plied to NAS-generated candidates

It is worthwhile to note that computational cost of training pro-274

cess is another important dimension for comparing methods.275

This is especially important when comparing to NAS methods276

that use multi-stage training; where additional pre-training and277

distillation is applied to NAS-generated candidates.278

To better understand the impact of single-stage vs. multi-stage279

methods on the training cost, we compare the overall cost of280

NAS for AutoDistil and that reported in AutoTinyBERT3281

for the small model segment in Table 3. AutoDistil is much282

cheaper due to its single-stage training protocol; where no ad-283

ditional pre-training or distillation is needed. It is worth noting284

that the overall SuperNet training cost of AutoDistil (the285

most expensive component of NAS) is less or comparable to286

the additional training cost of re-training candidate models287

for AutoTinyBERT. Note that AutoTinyBERT does not report288

their SuperNet training cost. Additionally, AutoDistil has289

a much faster search mechanism due to (1) inductive biases290

built into the search space definition to limit the number of student architectures and (2) task-agnostic291

search that only requires computing self-attention validation loss without the need for any training.292

Finally, we show the pareto frontier of student subnetworks generated by several KD and NAS293

methods in Figure 3 for the MNLI task. The blue points represent all the subnetworks extracted from294

AutoDistil and red points denote the optimal ones, all fine-tuned on the MNLI task. We observe295

the optimal AutoDistil models to outperform several competing methods.296

4.1.3 Task-agnostic Training Strategies297

Table 4: Comparing task-agnostic
SuperLM training strategies.

Strategy MRPC RTE

MLM 89.4 68.2
KDatt+Cont. 91.0 71.8
KDatt 91.2 71.5

We study different task-agnostic strategies for SuperLM train-298

ing in AutoDistil . Specifically, we compare three strate-299

gies in Table 4. (i) We replacing the KD loss in Eqn. (4) with300

masked language modeling (MLM) loss [1] to calculate gradi-301

ents which is the most widely used task-agnostic pre-training302

and distillation strategy. (ii) KDatt+Cont further continues303

training the searched compressed models on the large language304

corpus (iii) KDatt is the strategy adopted in AutoDistil for self-attention distillation. We evaluate305

subnetworks with the same architecture (6 layers, 768 hidden, 12 heads, MLP ratio 4) from the306

3Other NAS methods either use a different hardware for training or do not report the cost.

7



(a) Acc vs #FLOPs (SuperLMBase).(b) Acc vs #FLOPs (SuperLMSmall).(c) Acc vs #FLOPs (SuperLMTiny).

(d) Acc vs #Para (SuperLMBase). (e) Acc vs #Para (SuperLMSmall). (f) Acc vs #Para (SuperLMTiny).

Figure 3: Computational cost vs. task (MNLI) performance trade-off for all 256 subnetworks
contained in each of K SuperLMs (base, small and tiny). 3(a)-3(c) show the trade-off between
accuracy (Y-axis) and #FLOPs (X-axis), and 3(d)-3(f) show the trade-off between accuracy (Y-axis)
and #Para (X-axis). We show the optimal compressed AutoDistil student for each SuperLM
marked in red, along with other state-of-the-art KD and NAS techniques for comparison.

trained SuperLM. We fine-tune the subnetworks on RTE and MRPC tasks, and report accuracy307

and f1 respectively. First, we observe self-attention distillation to perform better than MLM, for308

SuperLM training. Second, we observe limited performance gains with continued training of the309

optimal subnetworks from NAS as done in existing works demonstrating the effectiveness of our310

single-stage training protocol.311

4.1.4 One-shot vs. Few-shot NAS with Varying K312

Table 5: Search space design strategies.

Task Search Space Size (#subnetworks)
One-shot (K = 1) Few-shot (K = 3)

27 864 11232 256*3

MRPC 88.2 87.5 85.1 91.2
RTE 67.2 64.5 62.8 71.8

For few-shot NAS, we choose K=3 (i.e. 3 sub-313

spaces) for following reasons: (1) the 3 sub-spaces314

correspond to base, small and tiny model sizes; as315

used in prior work in CV; e.g. AutoFormer [17],316

(2) searching over different values of K is a very317

resource-extensive process since it requires training318

K SuperLMs for each choice of K, (3) As K in-319

creases, the search process becomes similar to the320

undesirable brute-force discrete search that trains all models in search space individually.321

To understand the effect of few-shot NAS vs. one-shot NAS, we compare the performance of a322

single space (K = 1) to multiple sub-spaces (K = 3). We extract subnetworks with the same323

architecture (6 layers, 768 hidden, 12 heads, MLP ratio 4) from trained SuperLMs for each strategy324

for evaluation with results presented in Table 5. For one-shot NAS, we consider a single search space325

containing different numbers of subnetworks (e.g., 27, 864, 11232). The few-shot NAS contains 256326

subnetworks in each partition. We fine-tune the subnetworks on RTE and MRPC tasks, and report327

accuracy and f1 respectively. We observe fewer subnetworks contained in a single search space for328

one-shot NAS result in a better performance. This results from optimization interference and gradient329

conflicts as the number and size of subnetworks increase in the space. Finally, we observe our design330

strategy performs the best while containing lesser number of subnetworks demonstrating the benefit331

of few-shot NAS for language model distillation.332

4.1.5 Comparing Search Strategies and Optimal Architectures333

From Table 2, we observe that the student models AutoDistilAgnostic and AutoDistilProxyS
334

obtained from SuperLMsmall by task-agnostic and task-proxy search strategies respectively obtain a335

similar trade-off between performance and cost. The task-proxy search results in a minor performance336

gain 0.3 over the fully task-agnostic search mechanism. Table 6 shows the configuration of searched337

optimal architectures from AutoDistil with corresponding computational cost. For reference, we338

also show the architecture of the teacher BERTBASE and a state-of-the-art distilled model MINILM [4]339

that are hand-engineered. We observe that the obtained architectural hyper-parameters are quite340

8



Table 6: Architecture comparison between the optimal com-
pressed students searched by AutoDistil with state-of-
the-art hand-engineered students distilled from BERTBASE.

Model #Layers #Hid Ratio #Heads #FLOPs #Para

BERTBASE 12 768 4 12 11.2G 109M
MINILM 6 768 4 6 5.66G 66.5M

AutoDis.Agnostic 11 352 4 10 2.13G 26.8M
AutoDis.ProxyB 12 544 3 9 4.40G 50.1M
AutoDis.ProxyS 11 352 4 8 2.02G 26.1M
AutoDis.ProxyT 7 160 3.5 10 0.27G 6.88M

non-standard and difficult to obtain by341

trial and error considering the large342

space of Transformer architectures.343

We also observe that optimal com-344

pressed models have thin-and-deep345

structure consistent with findings that346

thinner and deeper models perform347

better [26] than wider and shallower348

ones. While we use this as an induc-349

tive bias for sub-space partitioning,350

our search space (Table 1) also con-351

tains diverse subnetworks with differ-352

ent depth and width. Non-maximal MLP ratio and attention heads for optimal compression indicate353

that self-attention and feed-forward layers of Transformers are overparameterized [21, 22].354

5 Related Work355

Task-specific knowledge distillation. Knowledge distillation (KD) [41] is a widely used technique356

for model compression, which transfers knowledge from a large teacher to a smaller student. Task-357

specific KD aims to generate smaller students by using downstream task label information. Typical358

task-specific KD works include BERT-PKD [42], BERTSMALL [39], TinyBERT [6], DynaBERT [12],359

and SparseBERT [43]. While task-specific KD often achieves good task performance, a typical360

drawback is that it is resource-consuming to run KD for each and every task, and also not scalable.361

Task-agnostic knowledge distillation. In contrast to task-specific KD, we explore task-agnostic KD362

that does not use any task label information. The distilled task-agnostic models can be re-used by363

simply fine-tuning on downstream tasks. Task-agnostic KD leverages knowledge from soft target364

probabilities, hidden states, layer mappings and self-attention distributions of teacher to train student365

models. Typical task-agnostic KD works include DistilBERT [5] MobileBERT [7], and MiniLM [4].366

MobileBERT assumes that students have the same number of layers as the teacher for layer-by-layer367

distillation. MiniLM transfers self-attention knowledge from the last layer of the teacher to that of the368

student. These works rely on hand-designed architecture for the student models for KD that requires369

several trials, and needs to be repeated for a new student with a different cost. In contrast, we develop370

techniques to automatically design and distill several student models with variable cost using NAS.371

Neural Architecture Search. While NAS has been extensively studied in computer vision [8,372

9, 10, 11], there has been relatively less exploration in natural language processing. Evolved373

Transformer [44] and HAT [45] search for efficient sub-networks from the Transformer architecture374

for machine translation tasks. Some recent approaches closest to our method include, DynaBERT [12],375

AutoTinyBERT [13] and NAS-BERT [14]. DynaBERT performs task-specific distillation. NAS-376

BERT performs two-stage knowledge distillation with pre-training and fine-tuning of candidates.377

Similar to above approaches, AutoTinyBERT also employs one-shot NAS with a single large search378

space containing millions of subnetworks that result in co-adaption and weight-sharing challenges379

for SuperLM training. Further it also uses a multi-stage training protocol for further pre-training380

and distillation of the NAS-generated candidates. In contrast, AutoDistil employs few-shot NAS381

with a compact search space design with a single-stage task-agnostic training protocol. This further382

allows us to do a lightweight search for the optimal student without re-training.383

6 Conclusion384

We develop a few-shot task-agnostic NAS framework, namely AutoDistil for distilling large385

language models into compressed students with variable computational cost. To address the co-386

adaption and weight-sharing challenges for SuperLM training, we partition the Transformer search387

space into K compact sub-spaces covering important architectural components like the network388

depth, width, and number of attention heads. We leverage deep self-attention distillation for fully389

task-agnostic SuperLM training and lightweight optimal student search without any re-training.390

This allows our students to be re-used by simply fine-tuning on downstream tasks. AutoDistil391

generates students with 3x less computational cost (FLOPs) than state-of-the-art task-agnostic392

distillation methods while obtaining a similar downstream task performance in the GLUE benchmark.393

9



References394

[1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirec-395

tional transformers for language understanding. In NAACL, pages 4171–4186, Minneapolis, Minnesota,396

June 2019. Association for Computational Linguistics.397

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind398

Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,399

Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens400

Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,401

Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models402

are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors,403

Advances in Neural Information Processing Systems, volume 33, pages 1877–1901. Curran Associates,404

Inc., 2020.405

[3] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep406

learning in NLP. In ACL, pages 3645–3650, Florence, Italy, July 2019. Association for Computational407

Linguistics.408

[4] Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep self-attention409

distillation for task-agnostic compression of pre-trained transformers. In H. Larochelle, M. Ranzato,410

R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems,411

volume 33, pages 5776–5788. Curran Associates, Inc., 2020.412

[5] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of bert:413

smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.414

[6] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.415

Tinybert: Distilling bert for natural language understanding. In Proceedings of the 2020 Conference on416

Empirical Methods in Natural Language Processing: Findings, pages 4163–4174, 2020.417

[7] Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou. Mobilebert: a418

compact task-agnostic bert for resource-limited devices. In Proceedings of the 58th Annual Meeting of the419

Association for Computational Linguistics, pages 2158–2170, 2020.420

[8] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture search via421

parameters sharing. In International Conference on Machine Learning, pages 4095–4104. PMLR, 2018.422

[9] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and Quoc V423

Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of the IEEE/CVF424

Conference on Computer Vision and Pattern Recognition, pages 2820–2828, 2019.425

[10] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once for all: Train one network and426

specialize it for efficient deployment. In International Conference on Learning Representations, 2020.427

[11] Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender, Pieter-Jan Kindermans, Mingxing Tan, Thomas428

Huang, Xiaodan Song, Ruoming Pang, and Quoc Le. Bignas: Scaling up neural architecture search with429

big single-stage models. In European Conference on Computer Vision, pages 702–717. Springer, 2020.430

[12] Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. Dynabert: Dynamic bert with431

adaptive width and depth. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors,432

Advances in Neural Information Processing Systems, volume 33, pages 9782–9793. Curran Associates,433

Inc., 2020.434

[13] Yichun Yin, Cheng Chen, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. AutoTinyBERT: Automatic435

hyper-parameter optimization for efficient pre-trained language models. In Proceedings of the 59th Annual436

Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on437

Natural Language Processing (Volume 1: Long Papers), pages 5146–5157. Association for Computational438

Linguistics, August 2021.439

[14] Jin Xu, Xu Tan, Renqian Luo, Kaitao Song, Jian Li, Tao Qin, and Tie-Yan Liu. NAS-BERT: task-agnostic440

and adaptive-size BERT compression with neural architecture search. In Feida Zhu, Beng Chin Ooi, and441

Chunyan Miao, editors, KDD ’21: The 27th ACM SIGKDD Conference on Knowledge Discovery and Data442

Mining, Virtual Event, Singapore, August 14-18, 2021, pages 1933–1943. ACM, 2021.443

[15] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc Le. Understanding444

and simplifying one-shot architecture search. In International Conference on Machine Learning, pages445

550–559. PMLR, 2018.446

10



[16] Yiyang Zhao, Linnan Wang, Yuandong Tian, Rodrigo Fonseca, and Tian Guo. Few-shot neural architecture447

search. In International Conference on Machine Learning, pages 12707–12718. PMLR, 2021.448

[17] Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin Ling. Autoformer: Searching transformers for449

visual recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages450

12270–12280, 2021.451

[18] Tianyi Chen, Bo Ji, Tianyu Ding, Biyi Fang, Guanyi Wang, Zhihui Zhu, Luming Liang, Yixin Shi, Sheng452

Yi, and Xiao Tu. Only train once: A one-shot neural network training and pruning framework. Advances453

in Neural Information Processing Systems, 34, 2021.454

[19] Jing Xu, Yu Pan, Xinglin Pan, Steven Hoi, Zhang Yi, and Zenglin Xu. Regnet: Self-regulated network for455

image classification. IEEE Transactions on Neural Networks and Learning Systems, 2022.456

[20] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz457

Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information processing458

systems, pages 5998–6008, 2017.459

[21] Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? In NeurIPS,460

pages 14014–14024, 2019.461

[22] Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head self-462

attention: Specialized heads do the heavy lifting, the rest can be pruned. arXiv preprint arXiv:1905.09418,463

2019.464

[23] Prakhar Ganesh, Yao Chen, Xin Lou, Mohammad Ali Khan, Yin Yang, Deming Chen, Marianne Winslett,465

Hassan Sajjad, and Preslav Nakov. Compressing large-scale transformer-based models: A case study on466

bert. arXiv preprint arXiv:2002.11985, 2020.467

[24] Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? In H. Wallach,468

H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural469

Information Processing Systems, volume 32. Curran Associates, Inc., 2019.470

[25] Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head self-471

attention: Specialized heads do the heavy lifting, the rest can be pruned. In Proceedings of the 57th Annual472

Meeting of the Association for Computational Linguistics, pages 5797–5808, Florence, Italy, July 2019.473

Association for Computational Linguistics.474

[26] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and Yoshua475

Bengio. Fitnets: Hints for thin deep nets. In Yoshua Bengio and Yann LeCun, editors, 3rd International476

Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference477

Track Proceedings, 2015.478

[27] Jiahui Yu and Thomas S Huang. Universally slimmable networks and improved training techniques. In479

Proceedings of the IEEE/CVF international conference on computer vision, pages 1803–1811, 2019.480

[28] Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for sentence481

understanding through inference. In Proceedings of the 2018 Conference of the North American Chapter of482

the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers),483

pages 1112–1122, New Orleans, Louisiana, June 2018. Association for Computational Linguistics.484

[29] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:485

A multi-task benchmark and analysis platform for natural language understanding. In Proceedings of486

the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages487

353–355, Brussels, Belgium, November 2018. Association for Computational Linguistics.488

[30] Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural network acceptability judgments, 2018.489

[31] Richard Socher et al. Recursive deep models for semantic compositionality over a sentiment treebank.490

In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages491

1631–1642, Seattle, Washington, USA, October 2013. Association for Computational Linguistics.492

[32] William B Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In493

Proceedings of the Third International Workshop on Paraphrasing (IWP2005), 2005.494

[33] Zihan Chen, Hongbo Zhang, Xiaoji Zhang, and Leqi Zhao. Quora question pairs. URL https://www. kaggle.495

com/c/quora-question-pairs, 2018.496

11



[34] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for497

machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.498

[35] Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising textual entailment challenge.499

In Machine Learning Challenges Workshop, pages 177–190. Springer, 2005.500

[36] R Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo, Bernardo Magnini, and Idan Szpektor.501

The second pascal recognising textual entailment challenge. In Proceedings of the Second PASCAL502

Challenges Workshop on Recognising Textual Entailment, 2006.503

[37] Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and William B Dolan. The third pascal recognizing504

textual entailment challenge. In Proceedings of the ACL-PASCAL workshop on textual entailment and505

paraphrasing, pages 1–9, 2007.506

[38] Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo. The fifth pascal recognizing textual507

entailment challenge. In TAC, 2009.508

[39] Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Well-read students learn better: On the509

importance of pre-training compact models. arXiv preprint arXiv:1908.08962, 2019.510

[40] Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang Wang, and Michael511

Carbin. The lottery ticket hypothesis for pre-trained bert networks. In H. Larochelle, M. Ranzato,512

R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems,513

volume 33, pages 15834–15846. Curran Associates, Inc., 2020.514

[41] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network. In NIPS515

Deep Learning and Representation Learning Workshop, 2015.516

[42] Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient knowledge distillation for bert model compression.517

In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th518

International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 4323–4332,519

2019.520

[43] Dongkuan Xu, Ian EH Yen, Jinxi Zhao, and Zhibin Xiao. Rethinking network pruning–under the pre-train521

and fine-tune paradigm. In Proceedings of the Human Language Technology Conference of the NAACL,522

2021.523

[44] David So, Quoc Le, and Chen Liang. The evolved transformer. In Kamalika Chaudhuri and Ruslan524

Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine Learning, volume 97525

of Proceedings of Machine Learning Research, pages 5877–5886. PMLR, 09–15 Jun 2019.526

[45] Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, Ligeng Zhu, Chuang Gan, and Song Han. Hat:527

Hardware-aware transformers for efficient natural language processing. In Annual Conference of the528

Association for Computational Linguistics, 2020.529

12



Checklist530

1. For all authors...531

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s532

contributions and scope? [Yes]533

(b) Did you describe the limitations of your work? [Yes] Appendix534

(c) Did you discuss any potential negative societal impacts of your work? [N/A]535

(d) Have you read the ethics review guidelines and ensured that your paper conforms to536

them? [Yes]537

2. If you are including theoretical results...538

(a) Did you state the full set of assumptions of all theoretical results? [Yes]539

(b) Did you include complete proofs of all theoretical results? [Yes]540

3. If you ran experiments...541

(a) Did you include the code, data, and instructions needed to reproduce the main experi-542

mental results (either in the supplemental material or as a URL)? [Yes]543

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they544

were chosen)? [Yes]545

(c) Did you report error bars (e.g., with respect to the random seed after running experi-546

ments multiple times)? [No]547

(d) Did you include the total amount of compute and the type of resources used (e.g., type548

of GPUs, internal cluster, or cloud provider)? [Yes]549

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...550

(a) If your work uses existing assets, did you cite the creators? [Yes]551

(b) Did you mention the license of the assets? [N/A]552

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]553

554

(d) Did you discuss whether and how consent was obtained from people whose data you’re555

using/curating? [N/A]556

(e) Did you discuss whether the data you are using/curating contains personally identifiable557

information or offensive content? [N/A]558

5. If you used crowdsourcing or conducted research with human subjects...559

(a) Did you include the full text of instructions given to participants and screenshots, if560

applicable? [N/A]561

(b) Did you describe any potential participant risks, with links to Institutional Review562

Board (IRB) approvals, if applicable? [N/A]563

(c) Did you include the estimated hourly wage paid to participants and the total amount564

spent on participant compensation? [N/A]565

13


	Introduction
	Background
	Few-shot Task-agnostic NAS
	Search Space Design
	Task-agnostic SuperLM Training
	Lightweight Optimal Student Search

	Experiments
	Finding the Optimal Compressed Models
	Comparison with Traditional Knowledge Distillation Baselines
	Comparison with Neural Architecture Search Baselines
	Task-agnostic Training Strategies
	One-shot vs. Few-shot NAS with Varying K
	Comparing Search Strategies and Optimal Architectures


	Related Work
	Conclusion

