
Under review as a conference paper at ICLR 2023

PLANNING WITH SEQUENCE MODELS THROUGH ITER-
ATIVE ENERGY MINIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent works have shown that sequence modeling can be effectively used to train
reinforcement learning (RL) policies. However, the success of applying existing
sequence models to planning, in which we wish to obtain a trajectory of actions
to reach some goal, is less straightforward. The typical autoregressive generation
procedures of sequence models preclude sequential refinement of earlier steps,
which limits the effectiveness of a predicted plan. In this paper, we suggest an
approach towards integrating planning with sequence models based on the idea
of iterative energy minimization, and illustrate how such a procedure leads to im-
proved RL performance across different tasks. We train a masked language model
to capture an implicit energy function over trajectories of actions, and formulate
planning as finding a trajectory of actions with minimum energy. We illustrate
how this procedure enables improved performance over recent approaches across
BabyAI and Atari environments. We further demonstrate unique benefits of our
iterative optimization procedure, involving new task generalization, test-time con-
straints adaptation, and the ability to compose plans together.

1 INTRODUCTION

Eθ(τ̂ i−1) Eθ(τ̂ i)

Energy
High Low

Figure 1: Plan Generation through Iteratively En-
ergy Minimization. LEAP plans a trajectory to a goal
(specified by the yellow star) by iteratively sampling
and minimizing a trajectory energy function estimated
using language model Eθ .

Sequence modeling has emerged as unified
paradigm to study numerous domains such as
language (Brown et al., 2020; Radford et al.,
2018) and vision (Yu et al., 2022; Dosovitskiy
et al., 2020). Recently, (Chen et al., 2021; Jan-
ner et al., 2021) have shown how a similar ap-
proach can be effectively applied to decision
making, by predicting the next action to take.
However, in many decision making domains, it
is sub-optimal to simply predict the next action
to execute – as such an action may be only lo-
cally optimal and lead to global dead-end. In-
stead, it is more desirable to plan a sequence
of actions towards a final goal, and choose the
action most optimal for the final overall goal.

Unlike greedily picking the next action to execute, effectively constructing an action sequence to-
wards a given goal requires a careful, iterative procedure, where we need to assess and refine in-
termediate actions in a plan to ensure we reach the final goal. To refine an action at a particular
timestep in a plan, we must reconsider both actions both before and after the chosen action. Directly
applying this procedure to standard language generation is difficult, as the standard autoregressive
decoding procedure prevents regeneration of previous actions based of future ones. For example, if
the first five predicted actions places an agent at a location too far to reach a given goal, there is no
manner we may change the early portions of plan.

In this paper, we propose an approach to iteratively generate plans using sequence models. Our
approach, Multistep Energy-Minimization Planner (LEAP), formulates planning as an iterative op-
timization procedure on an energy function over trajectories defined implicitly by a sequence model
(illustrated in Figure 1). To define an energy function across trajectories, we train a bidirectional

1



Under review as a conference paper at ICLR 2023

sequence model using a masked-language modeling (MLM) objective (Devlin et al., 2019). We de-
fine the energy of a trajectory as the negative pseudo-likelihood (PLL) of this MLM (Salazar et al.,
2019) and sequentially minimize this energy value by replacing actions at different timepoints in the
trajectory with the marginal estimates given by the MLM. Since our MLM is bi-directional in nature,
the choice of new action at a given time-step is generated based on both future and past actions.

By iteratively generating actions through planning, we illustrate how our proposed framework out-
performs prior methods in both BabyAI (Chevalier-Boisvert et al., 2019) and Atari (Bellemare et al.,
2013) tasks. Furthermore, by formulating the action generation process as an iterative energy mini-
mization procedure, we illustrate how this enables us to generalize to environments with new sets of
test-time constraints as well as more complex planning problems. Finally, we demonstrate how such
an energy minimization procedure enables us to compose planning procedures in different models
together, enabling the construction of plan which achieves multiple objectives.

Concretely, in this paper, we contribute the following: First, we introduce LEAP, a framework
through which we may iteratively plan with sequence models. Second, we illustrate how such a
planning framework can be beneficial on both BabyAI and Atari domains. Finally, we illustrate
how iteratively planning through energy minimization gives a set of unique properties, enabling
better test time performance on more complex environments and environments with new test-time
obstacles, and the ability to compose multiple learned models together, to jointly generate plans that
satisfy multiple sets of goals.

2 RELATED WORK

Sequence Models and Reinforcement Learning. Sequence modeling with deep networks, from
sequence-to-sequence models (Hochreiter & Schmidhuber, 1997; Sutskever et al., 2014) to BERT
(Devlin et al., 2019) and XLnet (Yang et al., 2019), have shown promising results in a series of lan-
guage modeling problems (Dai et al., 2019b; Sutskever et al., 2014; Liu & Lapata, 2019; Dehghani
et al., 2018). With these advances, people start applying sequence models to represent components
in standard RL such as policies, value functions, and models to improved performance (Espeholt
et al., 2018; Parisotto et al., 2020; Kapturowski et al., 2018). While the sequence models provide
memory information to make the agent predictions temporally and spatially coherent, they still rely
on standard RL algorithm to fit value functions or compute policy gradients. Furthermore, recent
works replace as much of the RL pipeline as possible with sequence modeling to leverage its scala-
bility, flexible representations and causally reasoning (Janner et al., 2021; Chen et al., 2021; Furuta
et al., 2021; Zheng et al., 2022; Emmons et al., 2021; Li et al., 2022). However, those methods
adopt autoregressive modeling objectives and the predicted trajectory sequences have no easy way
to be optimized, which will inevitably lower the long-horizon accuracy. Recent studies point out
that using sequence models (Chen et al., 2021; Emmons et al., 2021) rather than typical value-based
approaches have difficulty converging in stochastic environments (Paster et al., 2020; 2022).

Planning in Reinforcement Learning. Planning has been explored extensively in model-based
RL, which learns how the environment respond to actions (Sutton, 1991). The learned world dy-
namic model is exploited to predict the conditional distribution over the immediate next state or
autoregressively reason the long-term future (Chiappa et al., 2017; Ke et al., 2018). However, due
to error compounding, plans generated by this procedure often look more like adversarial examples
than optimal trajectories when the planning horizon is extended (Bengio et al., 2015; Talvitie, 2014;
Asadi et al., 2018). To avoid the aforementioned issues, simple gradient-free method like Monte
Carlo tree search (Coulom, 2007), random shooting (Nagabandi et al., 2018) and beam search (Sun
et al., 2022) are explored. Another line of works studied how to break the barrier between model
learning and planning, and plan with an imperfect model, include training an autoregressive latent-
space model to predict values for abstract future states (Tamar et al., 2016; Oh et al., 2017; Schrit-
twieser et al., 2020; Sun et al., 2022); energy-based models of policies for model-free reinforcement
learning (Haarnoja et al., 2017); improve the offline policies by planning with learned models for
model-based reinforcement learning (Yu et al., 2020; Schrittwieser et al., 2021); directly applying
collocation techniques for direct trajectory optimization (Erez & Todorov, 2012; Du et al., 2019);
and folding planning into the generative modeling process (Janner et al., 2021). In contrast to these
works, we explore having planning directly integrated in a language modeling framework.

Energy Based Learning. Energy-Based Models (EBMs) capture dependencies between variables
by associating a scalar energy to each configuration of the variables, and provide a unified theoretical

2



Under review as a conference paper at ICLR 2023

framework for many probabilistic and non-probabilistic approaches to learning (LeCun et al., 2006).
Prior works have explored EBMs for policy training in model-free RL (Haarnoja et al., 2017), mod-
eling the environment dynamics in model-based RL (Du et al., 2019; Janner et al., 2022) and natural
images (Du & Mordatch, 2019; Dai et al., 2019a), as well as energy values over text (Goyal et al.,
2021). Most similar to our work, Du et al. (2019) illustrates how energy optimization EBMs natu-
rally support inference of intermediate states given start and goal state distributions. However, the
underlying training relies on a constrastive divergence objective, which has proven difficult to train
(Grathwohl et al., 2019). On the other hand, our training approach relies on a more stable masked
language modeling objective.

3 METHOD

In this section, we describe our framework, Multistep Energy-Minimization Planner (LEAP), which
formulates planning as a energy minimization procedure. Given a set of trajectories in a discrete ac-
tion space, with each trajectory containing state and action sequences (s1,a1, s2,a2, . . . , sN ,aN ),
our goal is to learn a planning model which can predict a sequence of actions a1:T , given the tra-
jectory context τctx containing the past K steps states and actions, that maximizes the long-term
task-dependent objective J :

a∗1:T = argmax
a1:T

J (τctx,a1:T )

where N denotes the length of the entire trajectory and T is the planning horizon. We use the
abbreviation J (τ ), where τ =: (τctx,a1:T ), to denote the objective value of that trajectory. To
formulate this planning procedure, we learn an energy function Eθ(τ ), which maps each trajectory
τ to a scalar valued energy so that

a∗1:T = argmin
a1:T

Eθ(τctx,a1:T ).

3.1 LEARNING TRAJECTORY LEVEL ENERGY FUNCTIONS

We wish to construct an energy function Eθ(τctx,a1:T ) such that minimal energy is assigned to
optimal set actions a∗1:T . To train our energy function, we assume access to dataset of M near
optimal set of demonstrations in the environment, and train our energy function to have low energy
across demonstrations. Below, we introduce masked language models, and then discuss how we
may get such a desired energy function from masked language modeling.

Masked Language Models. Given a trajectory of the form (s1,a1, s2,a2, . . . , sn,an), we train a
transformer language model to model the marginal likelihood pθ(at|τctx,a−t), where we utilize a−t

as shorthand for actions a1:T except the action at timestep t. To train this masked language model
(MLM), we utilize the standard BERT training objective (Devlin et al., 2019), where we minimize
the loss function

LMLM = Eτ ,t [− log pθ(at; τctx,a−t)] , (1)
where we mask out and predict the marginal likelihood of percentage of the actions in a trajectory
(details on masking in the Section A.4). .

Constructing Trajectory Level Energy Functions. Given a trained MLM, we define an energy
function for a trajectory as the sum of negative marginal likelihood of each action in a sequence

Eθ(τ ) = −
∑
t

log pθ(at; τctx,a−t). (2)

Such an energy function, also known as the pseudolikelihood of the MLM, has been used exten-
sively in prior work in NLP (Goyal et al., 2021; Salazar et al., 2020), and has been demonstrated
to effectively score the quality natural language text (outperforming direct autoregressive scoring)
(Salazar et al., 2020). In our planning context, this translates to effectively assigning low energy to
optimal planned actions, which is our desired goal for Eθ(τ ). We illustrate the energy computation
process in Figure 2.

3.2 PLANNING AS ENERGY MINIMIZATION

Given a learned energy function Eθ(τ ), which assigns low energy to optimal trajectories a∗1:T , we
wish to plan a sequence of actions in test-time to minimize our energy function. To implement this

3



Under review as a conference paper at ICLR 2023

MLM

Sampler

Horizon

Trajectory Energy Energy Minimization

Energy Estimation

Figure 2: Energy Minimization in LEAP. LEAP generates plans via Gibbs sampling different actions based
on a learned trajectory energy model Eθ(τ ). In each iteration, Masked Language Model (MLM) is utilized
to predict energy of randomly selected steps conditioned on previous state and action prediction. New actions
are sampled based on the energy distribution. By repeating the above steps iteratively, LEAP generates the
trajectory with low energy value.

planning procedure, we utilize Gibbs sampling of individual actions at each timestep on the energy
function Eθ(τ ) for low energy plans, which we detail below.

For test-time plan generation, we initialize a masked trajectory of length T , with a small context
length of past states and actions, which we illustrate in Equation 3. At each step of Gibb’s sampling,
we randomly mask out one or multiple action tokens in padded locations and perform forward pass
to estimate their energy distribution conditioned on trajectory context τ i

\I , which is the masked
outcome from previous iteration on sampled timesteps collected in index set I . Then, action at is
sampled using Gibb’s sampling based on the locally normalized energy score at ∼ pθ(at; τctx,a−t).
The process is illustrated in Figure 2, where the actions with low energy values (in blue) are sampled
to minimize Eθ(τ

i; θ) in each iteration. To sample effectively from the underlying energy distri-
bution, we repeat this procedure for multiple timesteps, which we illustrate in Algorithm 1. The
computational time of Algorithm 1 increases linearly with iteration numbers.

τ =

[
s1 s2 . . . sn−1 sn sn . . . sn︸ ︷︷ ︸

context

a1 a2 . . . an−1 ︸ ︷︷ ︸
plan

[PAD] [PAD] . . . [PAD]

]
(3)

Algorithm 1 Iterative Planning through Energy Minimization (for discrete actions)

1: Require trained energy model hθ, context trajectory τ
2: Pad the states and actions with length T into context trajectory
3: for i = 1, . . . , N do
4: // Sample index set.
5: I ∼ [1, 2, · · · , T ]
6: // Estimate the energy distributions on masked tokens
7: E ← f(h(τ i

\I ; θ))
8: // Sample the action tokens based on energy value
9: a ∼ E

10: // Update actions a in τ at masked tokens
11: τ i+1 ← τ i

\T + a
12: end for
13: Execute all planned actions a1:T or the first planned action a1 in padded trajectory τ

Note that our resultant algorithm has several important differences compared to sequential model
based approaches such as Decision Transformer (DT) (Chen et al., 2021). First, actions are gen-
erated using an energy function defined globally across actions, enabling us to choose each action
factoring in the entire trajectory context. Second, our action generation procedure is iterative in
nature, allowing us to leverage computational time to find better solutions towards final goals.

4 PROPERTIES OF MULTISTEP ENERGY-MINIMIZATION PLANNER

In LEAP, we formulate planning as an optimization procedure argminτ Eθ(τ ). By formulating
planning in such a manner, we illustrate how our approach enables online adaptation to new test-time

4



Under review as a conference paper at ICLR 2023

Initial 

State

Invisible 

Obstacle

Run-time 

Obstacle
Trajectory

Goal 

State

Visible 

Obstacle

Plan Online Train Test

Planner 1 Planner 2 Composite Plan

(a) (b)

(c)

Figure 3: Properties of Planning as Energy Minimization. By formulating planning as energy minimization,
LEAP enables the following properties: (a): Online adaptation; (b): Generalization; (c): Task composition.

constraints, generalization to harder planning problems, and plan composition to achieve multiple
set of goals (illustrated in Figure 3).

Online adaptation. In LEAP, recall that plans are generated by minimizing an energy function
Eθ(τ ) across trajectories. At test time, if we have new external constraints, we maybe correspond-
ingly define a new energy function Econstraint(τ ) to encode these constraints. For instance, if a state
becomes dangerous at test time (illustrated as a red grid in Figure 3 (a)) – we may directly define
an energy function which assigns 0 energy to plans which do not utilize this state and high energy
to plans which utilize such a state. We may then generate plans which satisfies this constraint by
simply minimizing the summed energy function

τ ∗ = argmin
τ

(Eθ(τ ) + Econstraint(τ )). (4)

and then utilize Gibb’s sampling to obtain a plan τ ∗ from Eθ(τ ) + Econstraint(τ ). While online
adaptation may also be integrated with other sampling based planners using rejection sampling, our
approach directly integrates trajectory generation with online constraints.

Novel Environment Generalization. In LEAP, we leverage many steps of sampling to recover an
optimal trajectory τ ∗ which minimizes our learned trajectory energy function Eθ(τ ). In settings at
test time when the environment is more complex than those seen at training time (illustrated in Fig-
ure 3 (b)) – the underlying energy function necessary to compute plan feasibility may remain simple
(i.e. measure if actions enter obstacles), but the underlying planning problem becomes much more
difficult. In these settings, as long as the learned function Eθ(τ ) generalizes, and we may simply
leverage more steps of sampling to recover a successful plan in this more complex environment.

Task compositionality. Given two different instances of LEAP, E1
θ (τ ) and E2

θ (τ ), encoding sep-
arate tasks for planning, we may generate a trajectory which accomplishes the tasks encoded by both
models by simply minimizing a composed energy function (assuming task independence)

τ ∗ = argmin
τ

(E1
θ (τ ) + E2

θ (τ )). (5)

An simple instance of such a setting is illustrated in Figure 3 (c), where the first LEAP model
E1

θ (τ ) encodes two obstacles in an environment, and a second LEAP model E2
θ (τ ) encodes four

other obstacles. By jointly optimizing both energy functions (through Gibbs sampling), we may
successfully construct a plan which avoids all obstacles in both models.

5 EXPERIMENTS

In this section, we evaluate the planning performance of LEAP in BabyAI and Atari environments.
We compare with a variety of different offline reinforcement learning approaches, and summarize
the main results in Figure 4.

5



Under review as a conference paper at ICLR 2023

BabyAI Atari Generalization
0

40

80

Pe
rf

or
m

an
ce

Ours TD Learning Decision Transformer

Figure 4: Quantitative Results of LEAP of Different Domains. Results comparing LEAP to Decision
Transformer and TD learning (IQL in BabyAI and Generalization tests and CQL in Atari) across BabyAI,
Atari, and Generalization Tests. On a diverse set of tasks, LEAP performs better than prior approaches.

5.1 BABYAI

Setup The BabyAI comprises an extensible suite of tasks in environments with different sizes and
shapes, where the reward is given only when the task is successfully finished. We evaluate models in
trajectory planning that requires the agent move to the goal object through turn left, right and move
forward actions, and general instruction completion tasks in which the agent needs to take extra
pickup, drop and open actions to complete the instruction. For more detailed experimental settings
and parameters, please refer to Table 5 in Appendix.

Baselines We compare our approach with a set of different baselines: Behavior Cloning algo-
rithm (BC); model free reinforcement learning (RL) algorithms Batch-Constrained deep Q-Learning
(BCQ) (Fujimoto et al., 2019), and Implicit Q-Learning (IQL) (Kostrikov et al., 2021); model based
RL algorithm Model-based Offline Policy (MOPO) (Yu et al., 2020); return-conditioning approach
Decision Transformer (DT) (Chen et al., 2021); model based Planning Transformer (PlaTe) (Sun
et al., 2022). In our experiments, we use, as model inputs, the full observation of the environment,
the instruction, the agent’s current location and the goal object location (if available).

Results Across all environments, LEAP achieves highest success rate, with the margin magnified
on larger, harder tasks, see Table 1. In particular, LEAP could solve the easy tasks like GoToLo-
calS8N7 with nearly 90% success rate, and has huge advantages over baselines in the large maze
worlds (GoToObjMazeS7) and complex tasks (GoToSeqS5R2) which require going to a sequence
of objects in correct order. In contrast, baselines perform poorly solving these difficult tasks.

Next, we visualize the underlying iterative planing and execution procedure in GoToLocalS8N7 and
GoToSeqS5R2 tasks. On the left side of Figure 5, we present how the trajectory is optimized and
its energy is minimized at single time step. Through iterative refinement, the final blue trajectory
is closer to the optimal solution than the original red one, which follows the correct direction with
higher efficiency and perform the actions like open the door in correct situation. On the right side,
we present the entire task completion process through many time steps. LEAP successfully plans a
efficient trajectory to visit the two objects and opens the door when blocked. We also explore the
model performance in the stochastic settings, please refer to Appendix B.

Task Env BC BCQ IQL DT PlaTe MOPO LEAP

Trajectory
Planning

GoToLocalS7N5 71.0% 71.5% 84.5% 73.0% 42.5% 87.0% 89.5%
GoToLocalS8N7 61.5% 63.0% 71.5% 63.5% 45.0% 81.5% 89.0%
GoToObjMazeS4 24.0% 23.0% 52.5% 46.5% 35.5% 60.0% 65.0%
GoToObjMazeS7 18.0% 10.5% 29.0% 22.0% 27.5% 30.5% 45.5%

Instruction
Completion

PickUpLoc 57.5% 58.5% 41.0% 59.5% 7.5% 43.5% 65.0%
GoToSeqS5R2 13.5% 10.0% 28.5% 26.5% 25.0% 30.0% 38.0%

GoToObjMazeS4R2Close 24.0% 22.5% 31.5% 48.5% 32.5% 36.0% 55.5%

Table 1: BabyAI Quantitative Performance. The task success rate of LEAP and a variety of prior algorithms
on BabyAI env. Models are trained with 500 optimal trajectory demos in each environment, and results are av-
eraged over 5 random seeds. The SX and NY in environment name means its size and the number of obstacles.
Effect of Iterative Refinement. We investigate the effect of iterative refinement by testing the
success rate of our approach under different sample iteration number in GoToLocalS7N5 environ-
ment. From the left side of Figure 6, the task success rate continues to improve as we increase the
number of sample iteration.

Energy Landscape Verification. We further verify our approach by visualizing the energy as-
signment on various trajectories in the same environment as above. More specifically, we com-
pare the estimated energy of the labeled optimal trajectory with the noisiness of trajectories, pro-

6



Under review as a conference paper at ICLR 2023

(a)

(b)
Open

Plan Execute

Go to the blue ball

Go to the ball and go to the green key

Open

E
ne

rg
y

Low

High
N=1 N=5 N=10

Figure 5: Qualitative Visualization of Planning and Execution Procedure in BabyAI. Left depicts the
planning through iterative energy minimization where N is the sample iteration number. Right
shows the execution of the concatenate action sequences. Two task settings are illustrated: (a):
Trajectory planning, where the task is to solely plan a trajectory leading to the goal location. (b):
Instruction completion, where a sequence of tasks are commanded, and an additional ”Open” is
involved to get through the doors. Target locations are marked with .

1 5 10 20 30 50
Sample Iteration Number

50

60

70

80

90

100

Su
cc

es
s R

at
e 

(%
)

0 25 50 75 100 125 150 175 200
Epoch

0

2

4

6

8

En
er

gy

Noise Level=100%
Noise Level=75%
Noise Level=50%
Noise Level=25%
Noise Level=12%
Noise Level=0%

Figure 6: Analysis of LEAP in the BabyAI Environments. Left: Success rate increases with more sampling
steps, suggesting the importance of iterative refinement in LEAP. Right: LEAP captures the correct energy
landscape. It assigns low energy to the optimal trajectory (noise level=0%) and high energy to noisy paths.

duced by randomizing a percentage of steps in the optimal action sequence. The right Figure 6
depicts the energy assignment to trajectories with various corruption levels as a function of train-
ing time. With the progress of training, LEAP learns to (a) reduce the energy value assigned
to the optimal trajectory; (b) increase the energy value assigned to the corrupted trajectories.

Optimal Suboptimal(25%)
Env DT LEAP DT LEAP

GoToObjMazeS4 46.5% 65.0% 45% 63.0%
GoToObjMazeS7 22.0% 45.5% 19.5% 44.0%

GoToSeqS5R2 26.5% 38.0% 29.5% 37.5%

.

Table 2: Performance on Suboptimal
Data The task success rate of LEAP and
DT, using optimal trajectories and subopti-
mal trajectories containing 25% random ac-
tions respectively as training data.

This result justifies the performance of LEAP, which val-
idates our idea.

Effect of Training Data. In BabyAI, we utilize a set
of demonstrations generated using an oracle planner. We
further investigate the performance of LEAP when the
training data is not optimal. To achieve it, we randomly
swap the decisions in the optimal demonstration with an
arbitrary action with the probability of 25%. We compare
against DT, the autoregressive sequential planner. The
results are collected in Table 2. Despite a small perfor-
mance drop, LEAP still substantially outperforms DT, indicating that LEAP works well with non-
perfect data.

5.2 ATARI

Setup We further evaluate our approach on the dynamically changing Atari environment, with
higher-dimensional visual state. Due to above features , we train and test our model without the goal
state, and update the plan after each step of execution to avoid unexpected changes in the world.
We compare our model to BC, DT (Chen et al., 2021), CQL (Kumar et al., 2020), REM (Agarwal
et al., 2020), and QR-DQN (Dabney et al., 2018). Following Chen et al. (2021), the evaluation is
conducted on four Atari games (Breakout, Qbert, Pong, and Seaquest), where 1% of data is used for
training. Human normalized score is utilized for the performance evaluation.

7



Under review as a conference paper at ICLR 2023

Game LEAP DT CQL QR-DQN REM BC

Breakout 378.9±64.3 267.5±56.3 211.1 17.1 8.9 138.9
Qbert 19.6±2.2 15.4±6.6 104.2 0.0 0.0 17.3
Pong 108.9±1.6 106.1±4.7 111.9 18.0 0.5 85.2
Seaquest 1.3±0.2 2.5±0.2 1.7 0.4 0.7 2.1

Avg 127.2 97.9 107.2 8.9 2.5 60.9

Table 3: Quantitative Comparison on Atari. Gamer-
normalized scores for the 1% DQN-replay Atari dataset
(Agarwal et al., 2020). We report the mean and standard
error score across 3 seeds. LEAP achieves best aver-
aged scores over 4 games and performs comparably to
DT and CQL over all games.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Normalized Energy

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 R
ew

ar
ds

R2 = 0.246

Breakout

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Normalized Energy

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 R
ew

ar
ds

R2 = 0.516

Pong

Figure 7: Energy vs. Reward on Atari. En-
ergies and rewards are normalized to [0, 1]. We
demonstrate negative correspondence between the
achieved rewards and estimated energy by LEAP,
which justifies our method.

Results Table 3 shows the result comparison. LEAP achieves the best average performance.
Specifically, it achieves better or comparable result in 3 games out of 4, whereas baselines typi-
cally perform poorly in more than one games.

Energy Landscape Verification In Atari environment, the training trajectories are generated by
an online DQN agent during training, whose accumulated rewards are varied a lot. LEAP is trained
to estimate the energy values of trajectories depending on their rewards. In Figure 7, we visualize
the estimated energy of different training trajectories and their corresponding rewards in Breakout
and Pong games. We notice that the underlying energy value estimated to a trajectory is well cor-
related with its reward, with low energy value assigned to high reward trajectory. This justifies the
correctness of our trained model and further gives a natural objective to assess the relative of quality
planned trajectory. In Qbert and Seaquest games that LEAP gets low scores, this negative correlation
is not obvious showing that the model is not well-trained.

6 PROPERTIES OF MULTISTEP ENERGY-MINIMIZATION PLANNER

Next, we analyze the unique properties enabled by LEAP described in §4 in customized BabyAI
environments. For each environment, we design at most three settings with increasing difficulty
levels to gradually challenge the planning model. As before, the target reaching success rate is
measured as the evaluation criteria. The performances are compared against Implicit Q-Learning
(IQL) (Kostrikov et al., 2021) and Decision Transformer (DT) (Chen et al., 2021).

6.1 ONLINE ADAPTATION

Setup To examine LEAP’s adaptation ability to test-time constraints, we construct an BabyAI
environment with multiple lethal lava zones at the test time as depicted in Figure 8 (a). The planner
Eθ generates the trajectory without the awareness of the lava zones. Once planned, the energy
prediction is corrected by the constraint energy function Econstraint(τ ), which assigns large energy
to the immediate action leading to lava, and zero otherwise. The agent traverses under the guidance
of the updated energy estimation. To make the benchmark comparison fair, we also remove the
immediate action that will lead to a lava for all baselines. The difficulty levels are characterized
by the amount of lava grids added and the way they are added, where easy, medium correspond to
adding at most 2 and 5 lava grids respectively on the way to the goal object in 8×8 grids world.
The third case is hard due to the unstructured maze world in which the narrow paths can be easily
blocked by lava grids and requires the agents to plan a trajectory to bypass.

Results The quantitative comparison is collected in the Table 4, Left. Although drops with harder
challenges, the performance of our model still exceeds both baselines under all settings. Visual
illustration of medium example results can be seen in Figure 8 (a) that the agent goes up first to
bypass the lava grids and then drives to the goal object.

6.2 NOVEL ENVIRONMENT GENERALIZATION

Setup To evaluate LEAP’s generalization ability in unseen testing environments, we train the
model in easier environments but test them in more challenging environments. In easy case, the
model is trained in 8×8 world without any obstacles but tested in the world with 14 obstacles as
distractors. In medium and hard cases, the model is trained in single-room world but tested in maze

8



Under review as a conference paper at ICLR 2023

Test Online Adaptation Generalization Task Composition
LEAP DT IQL LEAP DT IQL LEAP DT IQL

Easy 92.0% 68.0% 90.5% 77.5% 36.0% 60.5% 83.5% 58.0% 42.5%
Medium 64.5% 20.0% 52.0% 64.0% 37.5% 57.5% 43.0% 15.5% 11.5%

Hard 54.5% 48.0% 44% 61.0% 24.5% 65.5% N/A N/A N/A

Table 4: Property Test on Modified BabyAI Environments. Three properties performance of LEAP and
prior algorithms on BabyAI tasks with different difficulty. Left: Online Adaptation; Middle: Generalization;
Right: Task Composition.

Train Test

(a)

Train Test

(b)

LEAP 1 LEAP 2 Composite LEAP

(c)

Figure 8: Qualitative Visualization of Generalization Tests. (a): Online adaptation (medium), trained in
plane world and tested in world with lavas; (b): Generalization (hard), trained in plane world and tested in
maze world; (c): Task composition (easy), each model only perceive half number of obstacles. Target locations
and unperceivable obstacles are marked with and , respectively.

world containing multi-rooms connected by narrow paths (Figure 8 (b)). The maze size and the
number of rooms in hard case are 10×10 and 9, which are larger than 7×7 and 4 in medium case.

Results Our model achieves best averaged performance across three cases, but slightly worse than
IQL in hard case, see Table 4, Middle. In contrast, sequential RL model DT has significantly lower
performance when moved to in unseen maze environments. LEAP trained in plane world could still
plan a decent trajectory in unseen maze environment after blocked by walls, see Figure 8 (b).

6.3 TASK COMPOSITIONALITY

Setup We design composite trajectory planning and instruction completion tasks for easy and
medium cases respectively. In easy case, all obstacles are equally separated into two subsets, each
observable by one of the two planners, see Figure 8 (c). As a result, the planning needs to add up
model’s predictions using two partial observations to successfully avoid the obstacles. In medium
case, two separate models trained for different tasks; one for planning trajectory in 10×10 maze
world and the other for object pickup in single-room world. The composite task is to complete the
object pickup in 10×10 maze world.

Results Our model significantly outperforms the baselines in both two testing cases, while IQL
and DT suffer great success rate drop indicating they can not be applied to composite tasks directly,
see Table 4, Right. This proves that LEAP can be easily combined with other models responsible
for different tasks, making it more applicable and general for wide-range tasks. In Figure 8 (c), the
composite LEAP could reach the goal by avoiding all obstacles even though the first LEAP planner
is blocked by unperceivable obstacle.

7 CONCLUSION

This work proposes and evaluates LEAP, an sequence model that plans and refines a trajectory
through energy minimization. The energy-minimization is done iteratively - where actions are se-
quentially along a trajectory. Our work has several limitations. Our current approach is limited to
discrete spaces – relaxing this using approaches such as discrete binning (Janner et al., 2021) would
be interesting.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on offline
reinforcement learning. In International Conference on Machine Learning, 2020. 7, 8

Kavosh Asadi, Dipendra Misra, and Michael Littman. Lipschitz continuity in model-based rein-
forcement learning. In International Conference on Machine Learning, pp. 264–273. PMLR,
2018. 2

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013. 2

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
prediction with recurrent neural networks. Advances in neural information processing systems,
28, 2015. 2

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In Advances in Neural Information
Processing Systems, 2020. 1

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021. 1, 2, 4,
6, 7, 8, 16

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. BabyAI: First steps towards grounded language learning
with a human in the loop. In International Conference on Learning Representations, 2019. 2

Silvia Chiappa, Sébastien Racaniere, Daan Wierstra, and Shakir Mohamed. Recurrent environment
simulators. arXiv preprint arXiv:1704.02254, 2017. 2

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In Computers
and Games, pp. 72–83, 2007. 2

Will Dabney, Mark Rowland, Marc Bellemare, and Rémi Munos. Distributional reinforcement
learning with quantile regression. In Conference on Artificial Intelligence, 2018. 7

Bo Dai, Zhen Liu, Hanjun Dai, Niao He, Arthur Gretton, Le Song, and Dale Schuurmans. Expo-
nential family estimation via adversarial dynamics embedding. Advances in Neural Information
Processing Systems, 32, 2019a. 3

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdi-
nov. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860, 2019b. 2

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal
transformers. arXiv preprint arXiv:1807.03819, 2018. 2

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, 2019. 2, 3

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 1

10



Under review as a conference paper at ICLR 2023

Yilun Du and Igor Mordatch. Implicit generation and generalization in energy-based models. arXiv
preprint arXiv:1903.08689, 2019. 3

Yilun Du, Toru Lin, and Igor Mordatch. Model based planning with energy based models. In
Conference on Robot Learning, 2019. 2, 3

Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey Levine. Rvs: What is essential for
offline rl via supervised learning? arXiv preprint arXiv:2112.10751, 2021. 2

Tom Erez and Emanuel Todorov. Trajectory optimization for domains with contacts using inverse
dynamics. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
4914–4919. IEEE, 2012. 2

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with im-
portance weighted actor-learner architectures. In International conference on machine learning,
pp. 1407–1416. PMLR, 2018. 2

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pp. 2052–2062, 2019. 6

Hiroki Furuta, Yutaka Matsuo, and Shixiang Shane Gu. Generalized decision transformer for offline
hindsight information matching. arXiv preprint arXiv:2111.10364, 2021. 2

Kartik Goyal, Chris Dyer, and Taylor Berg-Kirkpatrick. Exposing the implicit energy networks be-
hind masked language models via metropolis–hastings. arXiv preprint arXiv:2106.02736, 2021.
3

Will Grathwohl, Kuan-Chieh Wang, Jörn-Henrik Jacobsen, David Duvenaud, Mohammad Norouzi,
and Kevin Swersky. Your classifier is secretly an energy based model and you should treat it like
one. arXiv preprint arXiv:1912.03263, 2019. 3

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In International conference on machine learning, pp. 1352–1361.
PMLR, 2017. 2, 3

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997. 2

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021. 1,
2, 9

Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. arXiv preprint arXiv:2205.09991, 2022. 3

Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney. Recurrent ex-
perience replay in distributed reinforcement learning. In International conference on learning
representations, 2018. 2

Nan Rosemary Ke, Amanpreet Singh, Ahmed Touati, Anirudh Goyal, Yoshua Bengio, Devi Parikh,
and Dhruv Batra. Modeling the long term future in model-based reinforcement learning. In
International Conference on Learning Representations, 2018. 2

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. arXiv preprint arXiv:2110.06169, 2021. 6, 8

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. In Advances in Neural Information Processing Systems, 2020. 7

Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and F Huang. A tutorial on energy-based
learning. Predicting structured data, 1(0), 2006. 3

11



Under review as a conference paper at ICLR 2023

Shuang Li, Xavier Puig, Yilun Du, Clinton Wang, Ekin Akyurek, Antonio Torralba, Jacob Andreas,
and Igor Mordatch. Pre-trained language models for interactive decision-making. arXiv preprint
arXiv:2202.01771, 2022. 2

Yang Liu and Mirella Lapata. Text summarization with pretrained encoders. arXiv preprint
arXiv:1908.08345, 2019. 2

Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. Neural network dynamics
for model-based deep reinforcement learning with model-free fine-tuning. In 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 7559–7566. IEEE, 2018. 2

Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. Advances in neural
information processing systems, 30, 2017. 2

Emilio Parisotto, Francis Song, Jack Rae, Razvan Pascanu, Caglar Gulcehre, Siddhant Jayakumar,
Max Jaderberg, Raphael Lopez Kaufman, Aidan Clark, Seb Noury, et al. Stabilizing transformers
for reinforcement learning. In International conference on machine learning, pp. 7487–7498.
PMLR, 2020. 2

Keiran Paster, Sheila A McIlraith, and Jimmy Ba. Planning from pixels using inverse dynamics
models. arXiv preprint arXiv:2012.02419, 2020. 2

Keiran Paster, Sheila McIlraith, and Jimmy Ba. You can’t count on luck: Why decision transformers
fail in stochastic environments. arXiv preprint arXiv:2205.15967, 2022. 2, 16

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. 2018. 1

Julian Salazar, Davis Liang, Toan Q Nguyen, and Katrin Kirchhoff. Masked language model scoring.
arXiv preprint arXiv:1910.14659, 2019. 2

Julian Salazar, Davis Liang, Toan Q. Nguyen, and Katrin Kirchhoff. Masked language model scor-
ing. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
pp. 2699–2712, 2020. 3

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020. 2

Julian Schrittwieser, Thomas Hubert, Amol Mandhane, Mohammadamin Barekatain, Ioannis
Antonoglou, and David Silver. Online and offline reinforcement learning by planning with a
learned model. Advances in Neural Information Processing Systems, 34:27580–27591, 2021. 2

Jiankai Sun, De-An Huang, Bo Lu, Yun-Hui Liu, Bolei Zhou, and Animesh Garg. Plate: Visually-
grounded planning with transformers in procedural tasks. IEEE Robotics and Automation Letters,
7(2):4924–4930, 2022. 2, 6

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
Advances in neural information processing systems, 27, 2014. 2

Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM Sigart
Bulletin, 2(4):160–163, 1991. 2

Erik Talvitie. Model regularization for stable sample rollouts. In UAI, pp. 780–789, 2014. 2

Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value iteration networks.
Advances in neural information processing systems, 29, 2016. 2

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.
Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in Neural
Information Processing Systems, volume 32, 2019. 2

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, et al. Scaling autoregressive models for content-
rich text-to-image generation. arXiv preprint arXiv:2206.10789, 2022. 1

12



Under review as a conference paper at ICLR 2023

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 33:14129–14142, 2020. 2, 6

Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. arXiv preprint
arXiv:2202.05607, 2022. 2

13



Under review as a conference paper at ICLR 2023

Appendix

A EXPERIMENTAL DETAILS

A.1 BABYAI ENVIRONMENT DETAILS

We categorize the environments tested in the trajectory planning and instruction completion into the
single-room plane world and multi-room maze world which are connect by doors.

1. Trajectory planning:

• Plane world: GoToLocalS7N5 (7×7), GoToLocalS8N7 (8×8)
• Maze world: GoToObjMazeS4 (10×10), GoToObjMazeS7 (19×19)

2. Instruction completion:

• Plane world: PickUpLoc (8×8)
• Maze world: GoToObjMazeS4R2Close (7×7), GoToSeqS5R2 (9×9)

The Table 5 presents the detailed BabyAI environment settings including the environment size, the
number of rooms, the number of obstacles, the status of doors and one example instruction in that
environment.

Env Size # Room # Obs Door Inst

GoToLocalS7N5 7× 7 1 5 − go to the green key
GoToLocalS8N7 8× 8 1 7 − go to the blue box
GoToObjMazeS4 10× 10 9 1 9 Open go to the blue key
GoToObjMazeS7 19× 19 9 1 9 Open go to the grey ball
GoToObjMazeS4R2Close 7× 7 4 1 3 Closed go to the blue ball
PickUpLoc 8× 8 1 8 − pick up the yellow ball

GoToSeqS5R2 9× 9 4 4 3 Closed
go to the green door and go to the green door,
then go to a red door and go to the green door

Table 5: BabyAI environment setting details and example instruction.

A.2 NETWORK DETAILS

We build our LEAP implementation based on Decision Transformer (https://github.com/
kzl/decision-transformer) and exploit the instruction encoder from the BabyAI agent
model (https://github.com/mila-iqia/babyai/blob/iclr19/babyai/model.
py). In detail, we use the Gated Recurrent Units (GRU) encoder to process the instruction
and then apply ExpertControllerFiLM (inspired by FiLMedBlock from https://arxiv.org/
abs/1709.07871)to fuse the instruction embedding with state embedding. For all our experi-
ments we use bidirectional mask in transformer attention layer, except for Atari where we found
casual attention to perform better. The full list of hyperparameters can be found in Table 6 and Table
7, most of the hyperparameters are taken from Decision Transformer and BabyAI agent model.

A.3 BASELINE MODELS

BabyAI Baseline Models We ran BCQ and IQL based on the following implementation

https://github.com/sfujim/BCQ.

https://github.com/BY571/Implicit-Q-Learning/tree/main/discrete iql.

For BC and DT, we use the author’s original implementation

https://github.com/kzl/decision-transformer.

For PlaTe, we use the author’s original implementation

14

https://github.com/kzl/decision-transformer
https://github.com/kzl/decision-transformer
https://github.com/mila-iqia/babyai/blob/iclr19/babyai/model.py
https://github.com/mila-iqia/babyai/blob/iclr19/babyai/model.py
https://arxiv.org/abs/1709.07871
https://arxiv.org/abs/1709.07871
https://github.com/sfujim/BCQ
https://github.com/BY571/Implicit-Q-Learning/tree/main/discrete_iql
https://github.com/kzl/decision-transformer


Under review as a conference paper at ICLR 2023

Hyperparameter Value

Number of layers 3
Number of attention heads 4
Embedding dimension 128
Batch size 64
Image Encoder nn.Conv2d
Image Encoder channels 128, 128
Image Encoder filter sizes 2× 2, 3× 3
Image Encoder maxpool strides 2, 2 (Image Encoder may vary a little

depending on the environment size)
Instruction Encoder nn.GRU
Instruction Encoder channels 128
State Encoder nn.Linear
State Encoder channels 256, 256, 128
Max epochs 200
Dropout 0.1
Learning rate 6 ∗ 10−4

Adam betas (0.9, 0.95)
Grad norm clip 1.0
Weight decay 0.1
Learning rate decay Linear warmup and cosine decay (see code for details)

Table 6: Hyperparameters of LEAP for BabyAI experiments.

Hyperparameter Value

Number of layers 6
Number of attention heads 8
Embedding dimension 128
Batch size 64 Breakout, Qbert

128 Seaquest
256 Pong

Image Encoder nn.Conv2d
Image Encoder channels 32, 64, 64
Image Encoder filter sizes 8× 8, 4× 4, 3× 3
Image Encoder strides 4, 2, 1
Max epochs 10
Dropout 0.1
Learning rate 6 ∗ 10−4

Adam betas (0.9, 0.95)
Grad norm clip 1.0
Weight decay 0.1
Learning rate decay Linear warmup and cosine decay (see code for details)

Table 7: Hyperparameters of LEAP for Atari experiments.

https://github.com/Jiankai-Sun/plate-pytorch.

For MOPO, we use the author’s original implementation of dynamic model training and policy
learning. For RL policy, we adopt the IQL discussed above.

https://github.com/tianheyu927/mopo.

The actor network and policy network of BCQ and IQL use the transformer architecture which is
the same as architecture in our model, see details above. The original DT and BC already use the
transformer architecture so we didn’t change. For all baselines, we add the same instruction encoder
and image encoder described above to process instruction and image observations.

15

https://github.com/Jiankai-Sun/plate-pytorch
https://github.com/tianheyu927/mopo


Under review as a conference paper at ICLR 2023

Atari Baseline Models The scores for DT, BC, CQL, QR-DQN, and REM in Table 3 can be found
in Chen et al. (2021).

A.4 EXPERIMENT DETAILS

BabyAI For LEAP, the larger size environment requires longer horizon T and correspondingly
more sampling iterations N . After N iteration, all T planned actions will be executed. For DT
model, it’s beneficial of using a longer context length in more complex environments as shown in its
original paper (Chen et al., 2021). We list out these parameters for LEAP and DT models in Table 8.
We didn’t use context information in LEAP in most BabyAI environments as we expect the iterative
planning could generate a correct trajectory based solely on the current state observation. While the
GoToSeqS5R2 environment requires go to a sequence of objects in correct order and LEAP needs
to remember what objects have been visited from the context. During training, we randomly select
and mask one action in a trajectory.

LEAP DT
Env context plan sample iteration context

GoToLocalS7N5 0 5 10 5
GoToLocalS8N7 0 5 10 5
GoToObjMazeS4 0 10 30 10
GoToObjMazeS7 0 15 50 15

GoToObjMazeS4R2Close 0 5 10 5
PickUpLoc 0 5 10 5

GoToSeqS5R2 20 5 10 20

Table 8: BabyAI environment experiment details for LEAP and DT.

The input to DT model includes the instruction, state context sequence, action context sequence and
return-to-go sequence in which the target reward is set to 1 initially. The input to other baseline mod-
els are the same except they use normal reward sequence instead of return-to-go sequence. While
LEAP only use the instruction, state context sequence and action context sequence. Inside state
sequence, each state sn contains the [x, y, dir, gx, gy] meaning the agent’s x position, y position,
direction and goal object’s x position, y position (if the goal location is available).

Atari In dynamically changing Atari environment, LEAP use context information in all four
games and only execute the first planned action to avoid the unexpected changes in the world, see
details in Table 9. During training, we randomly sample and mask one action in a trajectory.

Env context plan sample iteration

Breakout 25 5 10
Qbert 25 5 10
Pong 25 5 10

Seaquest 25 10 30

Table 9: Atari environment experiment de-
tails for LEAP.

Env w/o return w return

Breakout 182.0 378.9
Qbert 41.0 19.6
Pong 100.7 108.9

Seaquest 0.5 1.3

Table 10: LEAP performance in Atari envi-
ronment with and w/o return input.

Note that our approach can easily be conditioned on total reward, by simply concatenating the reward
as input in the sequence model. One hypothesis is that when demonstration set contained trajectories
of varying quality, taking reward as input following will enable the model to recognize the quality
of training trajectories and potentially improve the performance. To further validate the importance
of the rewards, we test the LEAP with and without return-to-go inputs, which sum of future rewards
Chen et al. (2021). The results show that the performance degradation without the return-to-go
inputs, which is shown in Table 10.

B STOCHASTIC ENVIRONMENT TESTING

In this section we demonstrate the possibility of extending our method into stochastic settings.
Although Paster et al. (2022) reveals that planning by sampling from the learnt policy conditioned
on desired reward could lead to suboptimal outcome due to the existence of stochastic factors, our

16



Under review as a conference paper at ICLR 2023

model circumvents the problem by formulating the planning as an optimization problem - we use the
Gibbs sampling method to find the trajectory with the lowest energy evaluated by the trained model.
Assuming that the frequency of successful actions dominates in the dataset, our model is trained
to assign lower energy to trajectories with higher likelihood of reaching the goal. Consequently, in
the stochastic environments, LEAP constructs a sequence of actions that has the best opportunity to
accomplish the target. When executing this plan in a stochastic environment, we may also choose to
replan our sequence of actions after each actual action in the environment (to deal with stochasticity
of the next state given an action). Note then that this sequence of actions will be optimal in the
stochastic environment, as we always choose the action that has the maximum likelihood of reaching
the final state. Also note that multi-step planning can potentially provide advantage over a simple
policy to predict the next action in stochastic environments, as such policy simply assigns probability
distribution to the immediate next step without the awareness of future step adjustments facing
stochastic factors.

To verify the assumptions, we constructed a stochastic testing in BabyAI environment. The test
is created by adopting a stochastic dynamic model, where the agent fails to execute the turning
actions turn left/right with 20% chance, and instead performs the remaining actions, including turn
right/left, forward, pickup, drop, and open, with uniform probability. The remaining settings follow
BabyAI experiments detailed in Appendix. A.4, except that we train models using demonstrations
generated with the above dynamic model. Those training data are noisy in the sense that the actions
taken are not optimal, and corrections are required from future actions. We believe LEAP, as a
multi-step planner, can learn the above correlations between the consecutive actions. We compare
LEAP with the baseline DT, the results of which is collected in the Table. 11. It can be observed that
LEAP has a superior performance compared to DT on both tested environments, which indicates
both the possibility of applying our approach in the stochastic settings, and the advantage of multi-
step planning when facing stochastic factors.

Env LEAP DT

GoToObjMazeS4 57.5% 30.8%
GoToObjMazeS7 33.3% 28.3%

Table 11: Comparison of LEAP and DT on stochastic settings

C ABLATION ON ENERGY MODEL AND OPTIMIZATION METHOD

We further ablate on our design choices, including the energy model and sampling methods. We
consider Masked Language Model (MLM) and sequence model classifier as the energy model, and
random-shooting, Cross-Entropy Method (CEM), and Gibbs Sampling as the optimization approach.
All combinations are tested, for which the results are collected in Table 12. We observe that the
Gibbs sampling gives the best outcome with MLM model and that defining an energy value using a
sequence model classifier doesn’t work well in all settings.

1. Sampling methods:
• Random-shooting: randomly generated 30 action sequences and pick up the one with lowest

estimated energy value.
• Cross-Entropy method: randomly generated 30 action sequences, keep the three best se-

quences with lowest estimated energy values in each iteration. Then we randomly update
one action token in the elite sequences to get 30 new sequences for next iteration. The
sequence with lowest energy is selected in the final iteration.

• Gibbs sampling: discussed in the main text.
2. Energy models:

• Sequence model classifier: LSTM sequence model predicts the scalar energy value given the
entire trajectory τ , and train the loss between ground truth trajectory energy and estimated
energy. The optimal trajectories in Babyai are assigned with lowest energy value 0 and the
generates suboptimal trajectories are assigned with higher values depending on the degree
of randomness.

• MLM: discussed in the main text.

17



Under review as a conference paper at ICLR 2023

Energy model Random-shooting CEM Gibbs sampling

MLM 23.3% 57.5% 62.5%
Classifier 25.0% 12.5% 15.5%

Table 12: Comparison of different combination between energy models and sampling methods

18


	Introduction
	Related Work
	Method
	Learning Trajectory Level Energy Functions
	Planning as Energy Minimization

	Properties of Multistep Energy-Minimization Planner
	Experiments
	BabyAI
	Atari

	Properties of Multistep Energy-Minimization Planner
	Online adaptation
	Novel Environment Generalization
	Task compositionality

	Conclusion
	Experimental Details
	BabyAI Environment Details
	Network Details
	Baseline Models
	Experiment details

	Stochastic Environment Testing
	Ablation on Energy model and Optimization method

