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Abstract

Despite the remarkable success of pre-trained language models (PLMs), they still
face two challenges: First, large-scale PLMs are inefficient in terms of memory
footprint and computation. Second, on the downstream tasks, PLMs tend to rely
on the dataset bias and struggle to generalize to out-of-distribution (OOD) data.
In response to the efficiency problem, recent studies show that dense PLMs can
be replaced with sparse subnetworks without hurting the performance. Such
subnetworks can be found in three scenarios: 1) the fine-tuned PLMs, 2) the
raw PLMs and then fine-tuned in isolation, and even inside 3) PLMs without
any parameter fine-tuning. However, these results are only obtained in the in-
distribution (ID) setting. In this paper, we extend the study on PLMs subnetworks
to the OOD setting, investigating whether sparsity and robustness to dataset bias
can be achieved simultaneously. To this end, we conduct extensive experiments
with the pre-trained BERT model on three natural language understanding (NLU)
tasks. Our results demonstrate that sparse and robust subnetworks (SRNets) can
consistently be found in BERT, across the aforementioned three scenarios, using
different training and compression methods. Furthermore, we explore the upper
bound of SRNets using the OOD information and show that there exist sparse and
almost unbiased BERT subnetworks. Finally, we present 1) an analytical study
that provides insights on how to promote the efficiency of SRNets searching process
and 2) a solution to improve subnetworks’ performance at high sparsity. The code
is available at https://github.com/llyx97/sparse-and-robust-PLM.

1 Introduction

Pre-trained language models (PLMs) have enjoyed impressive success in natural language processing
(NLP) tasks. However, they still face two major problems. On the one hand, the prohibitive model
size of PLMs leads to poor efficiency in terms of memory footprint and computational cost [12, 49].
On the other hand, despite being pre-trained on large-scale corpus, PLMs still tend to rely on dataset
bias [18, 37, 65, 46], i.e., the spurious features of input examples that strongly correlate with the
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Figure 1: Three kinds of PLM subnetworks obtained from different pruning and fine-tuning paradigms.
(a) Pruning a fine-tuned PLM. (b) Pruning the PLM and then fine-tuning the subnetwork. (c) Pruning
the PLM without fine-tuning model parameters. The obtained subnetworks are used for testing.

label, during downstream fine-tuning. These two problems pose great challenge to the real-world
deployment of PLMs, and they have triggered two separate lines of works.

In terms of the efficiency problem, some recent studies resort to sparse subnetworks as alternatives to
the dense PLMs. [27, 38, 30] compress the fine-tuned PLMs in a post-hoc fashion. [4, 40, 32, 28]
extend the Lottery Ticket Hypothesis (LTH) [9] to search PLMs subnetworks that can be fine-tuned
in isolation. Taking one step further, [66] propose to learn task-specific subnetwork structures via
mask training [23, 35], without fine-tuning any pre-trained parameter. Fig. 1 illustrates these three
paradigms. Encouragingly, the empirical evidences suggest that PLMs can indeed be replaced with
sparse subnetworks without compromising the in-distribution (ID) performance.

To address the dataset bias problem, numerous debiasing methods have been proposed. A prevailing
category of debiasing methods [5, 54, 25, 20, 46, 13, 55] adjust the importance of training examples,
in terms of training loss, according to their bias degree, so as to reduce the impact of biased examples
(examples that can be correctly classified based on the spurious features). As a result, the model is
forced to rely less on the dataset bias during training and generalizes better to OOD situations.

Although progress has been made in both directions, most existing work tackle the two problems
independently. To facilitate real-world application of PLMs, the problems of robustness and efficiency
should be addressed simultaneously. Motivated by this, we extend the study on PLM subnetwork
to the OOD scenario, investigating whether there exist PLM subnetworks that are both sparse
and robust against dataset bias? To answer this question, we conduct large-scale experiments
with the pre-trained BERT model [6] on three natural language understanding (NLU) tasks that
are widely-studied in the question of dataset bias. We consider a variety of setups including the
three pruning and fine-tuning paradigms, standard and debiasing training objectives, different model
pruning methods, and different variants of PLMs from the BERT family. Our results show that BERT
does contain sparse and robust subnetworks (SRNets) within certain sparsity constraint (e.g., less
than 70%), giving affirmative answer to the above question. Compared with a standard fine-tuned
BERT, SRNets exhibit comparable ID performance and remarkable OOD improvement. When it
comes to BERT model fine-tuned with debiasing method, SRNets can preserve the full model’s ID
and OOD performance with much fewer parameters. On this basis, we further explore the upper
bound of SRNets by making use of the OOD information, which reveals that there exist sparse and
almost unbiased subnetworks, even in a standard fine-tuned BERT that is biased.

Regardless of the intriguing properties of SRNets, we find that the subnetwork searching process
still have room for improvement, based on some observations from the above experiments. First,
we study the timing to start searching SRNets during full BERT fine-tuning, and find that the entire
training and searching cost can be reduced from this perspective. Second, we refine the mask training
method with gradual sparsity increase, which is quite effective in identifying SRNets at high sparsity.
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Our main contributions are summarized as follows:

• We extend the study on PLMs subnetworks to the OOD scenario. To our knowledge, this
paper presents the first systematic study on sparsity and dataset bias robustness for PLMs.

• We conduct extensive experiments to demonstrate the existence of sparse and robust BERT
subnetworks, across different pruning and fine-tuning setups. By using the OOD information,
we further reveal that there exist sparse and almost unbiased BERT subenetworks.

• We present analytical studies and solutions that can help further refine the SRNets searching
process in terms of efficiency and the performance of subnetworks at high sparsity.

2 Related Work

2.1 BERT Compression

Studies on BERT compression can be divided into two classes. The first one focuses on the design of
model compression techniques, which include pruning [15, 38, 11], knowledge distillation [44, 50, 24,
31], parameter sharing [26], quantization [61, 64], and combining multiple techniques [51, 36, 30].
The second one, which is based on the lottery ticket hypothesis [9], investigates the compressibility
of BERT on different phases of the pre-training and fine-tuning paradigm. It has been shown that
BERT can be pruned to a sparse subnetwork after [11] and before fine-tuning [4, 40, 28, 32, 15],
without hurting the accuracy. Moreover, [66] show that directly learning subnetwork structures on the
pre-trained weights can match fine-tuning the full BERT. In this paper, we follow the second branch
of works, and extend the evaluation of BERT subnetworks to the OOD scenario.

2.2 Dataset Bias in NLP Tasks

To facilitate the development of NLP systems that truly learn the intended task solution, instead of
relying on dataset bias, many efforts have been made recently. On the one hand, challenging OOD
test sets are constructed [18, 37, 65, 46, 1] by eliminating the spurious correlations in the training
sets, in order to establish more strict evaluation. On the other hand, numerous debiasing methods
[5, 54, 25, 20, 46, 13, 55] are proposed to discourage the model from learning dataset bias during
training. However, few attention has been paid to the influence of pruning on the OOD generalization
ability of PLMs. This work presents a systematic study on this question.

2.3 Model Compression and Robustness

Some pioneer attempts have also been made to obtain models that are both compact and robust to
adversarial attacks [16, 60, 48, 10, 59] and spurious correlations [62, 8]. Specially, [59, 8] study the
compression and robustness question on PLM. Different from [59], which is based on adversarial
robustness, we focus on the spurious correlations, which is more common than the worst-case
adversarial attack. Compared with [8], which focus on post-hoc pruning of the standard fine-
tuned BERT, we thoroughly investigate different fine-tuning methods (standard and debiasing) and
subnetworks obtained from the three pruning and fine-tuning paradigms. A more detailed discussion
of the relation and difference between our work and previous studies on model compression and
robustness is provided in Appendix D.

3 Preliminaries

3.1 BERT Architecture and Subnetworks

BERT is composed of an embedding layer, a stack of Transformer layers [56] and a task-specific
classifier. Each Transformer layer has a multi-head self-attention (MHAtt) module and a feed-forward
network (FFN). MHAtt has four kinds of weight matrices, i.e., the query, key and value matrices
WQ,K,V ∈ Rdmodel×dmodel , and the output matrix WAO ∈ Rdmodel×dmodel . FFN consits of two linear
layers Win ∈ Rdmodel×dFFN , Wout ∈ RdFFN×dmodel , where dFFN is the hidden dimension of FFN.

To obtain the subnetwork of a model f(θ) parameterized by θ, we apply a binary pruning mask
m ∈ {0, 1}|θ| to its weight matrices, which produces f(m⊙ θ), where ⊙ is the Hadamard product.
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For BERT, we focus on the L Transformer layers and the classifier. The parameters to be pruned are
θpr = {Wcls} ∪

{
Wl

Q,W
l
K ,Wl

V ,W
l
AO,W

l
in,W

l
out

}L

l=1
, where Wcls is the classifier weights.

3.2 Pruning Methods

3.2.1 Magnitude-based Pruning

Magnitude-based pruning [19, 9] zeros-out parameters with low absolute values. It is usually realized
in an iterative manner, namely, iterative magnitude pruning (IMP). IMP alternates between pruning
and training and gradually increases the sparsity of subnetworks. Specifically, a typical IMP algorithm
consists of four steps: (i) Training the full model to convergence. (ii) Pruning a fraction of parameters
with the smallest magnitude. (iii) Re-training the pruned subnetwork. (iv) Repeat (ii)-(iii) until
reaching the target sparsity. To obtain subnetworks from the pre-trained BERT, i.e., (b) and (c) in
Fig. 1, the subnetwork parameters are rewound to the pre-trained values after (iii), and (i) can be
abandoned. More details about our IMP implementations can be found in Appendix A.1.1.

3.2.2 Mask Training

Mask training treats the pruning mask m as trainable parameters. Following [35, 66, 42, 32], we
achieve this through binarization in forward pass and gradient estimation in backward pass.

Each weight matrix W ∈ Rd1×d2 , which is frozen during mask training, is associated with a bianry
mask m ∈ {0, 1}d1×d2 , and a real-valued mask m̂ ∈ Rd1×d2 . In the forward pass, W is replaced
with m⊙W, where m is derived from m̂ through binarization:

mi,j =

{
1 if m̂i,j ≥ ϕ

0 otherwise
(1)

where ϕ is the threshold. In the backward pass, since the binarization operation is not differentiable,
we use the straight-through estimator [3] to compute the gradients for m̂ using the gradients of m,
i.e., ∂L

∂m , where L is the loss. Then, m̂ is updated as m̂← m̂− η ∂L
∂m , where η is the learning rate.

Following [42, 32], we initialize the real-valued masks according to the magnitude of the original
weights. The complete mask training algorithm is summarized in Appendix A.1.2.

3.3 Debiasing Methods

As described in the Introduction, the debiasing methods measure the bias degree of training examples.
This is achieved by training a bias model. The inputs to the bias model are hand-crafted spurious
features based on our prior knowledge of the dataset bias (Section 4.1.3 describes the details). In this
way, the bias model mainly relies on the spurious features to make predictions, which can then serve as
a measurement of the bias degree. Specifically, given the bias model prediction pb = (p1

b , · · · ,pK
b )

over the K classes, the bias degree β = pc
b, i.e., the the probability of the ground-truth class c.

Then, β can be used to adjust the training loss in several ways, including product-of-experts (PoE)
[5, 20, 25], example reweighting [46, 13] and confidence regularization [54]. Here we describe the
standard cross-entropy and PoE, and the other two methods are introduced in Appendix A.2.

Standard Cross-Entropy computes the cross-entropy between the predicted distribution pm and the
ground-truth one-hot distribution y as Lstd = −y · logpm.

Product-of-Experts combines the predictions of main model and bias model, i.e., pb and pm, and
then computes the training loss as Lpoe = −y · log softmax (logpm + logpb).

3.4 Notations

Here we define some notations, which will be used in the following sections.

• At
L(f(θ)): Training f(θ) with loss L for t steps, where t can be omitted for simplicity.

• Pp
L(f(θ)): Pruning f(θ) using pruning method p and training loss L.

• M(f(mθ)): Extracting the pruning mask of f(mθ), i.e.,M(f(mθ)) = m.
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• L ∈ {Lstd,Lpoe,Lreweight,Lconfreg} and p ∈ {imp, imp-rw,mask}, where “imp” and “imp-
rw”denote the standard IMP and IMP with weight rewinding, as described in Section 3.2.1.
“mask” stands for mask training.

• Ed(f(θ)): Evaluating f(θ) on the test data with distribution d ∈ {ID,OOD}.

4 Sparse and Robust BERT Subnetworks

4.1 Experimental Setups

4.1.1 Datasets and Evaluation

Natural Language Inference We use MNLI [57] as the ID dataset for NLI. MNLI is comprised of
premise-hypothesis pairs, whose relationship may be entailment, contradiction, or neutral. In MNLI
the word overlap between premise and hypothesis is strongly correlated with the entailment class. To
solve this problem, the OOD HANS dataset [37] is built so that such correlation does not hold.

Paraphrase Identification The ID dataset for paraphrase identification is QQP 3, which contains
question pairs that are labelled as either duplicate or non-duplicate. In QQP, high lexical overlap is
also strongly associated with the duplicate class. The OOD datasets PAWS-qqp and PAWS-wiki [65]
are built from sentences in Quora and Wikipedia respectively. In PAWS sentence pairs with high
word overlap have a balanced distribution over duplicate and non-duplicate.

Fact Verification FEVER 4 [52] is adopted as the ID dataset of fact verification, where the task is
to assess whether a given evidence supports or refutes the claim, or whether there is not-enough-info
to reach a conclusion. The OOD dataset Fever-Symmetric (v1 and v2) [46] is proposed to evaluate
the influence of the claim-only bias (the label can be predicted correctly without the evidence).

For NLI and fact verification, we use Accuracy as the evaluation metric. For paraphrase identification,
we evaluate using the F1 score. More details of datasets and evaluation are shown in Appendix B.1.

4.1.2 PLM Backbone

We mainly experiment with the BERT-base-uncased model [6]. It has roughly 110M parameters in
total, and 84M parameters in the Transformer layers. As described in Section 3.1, we derive the
subnetworks from the Transformer layers and report sparsity levels relative to the 84M parameters.
To generalize our conclusions to other PLMs, we also consider two variants of the BERT family,
namely RoBERTa-base and BERT-large, the results of which can be found in Appendix C.5.

4.1.3 Training Details

Following [5], we use a simple linear classifier as the bias model. For HANS and PAWS, the spurious
features are based on the the word overlapping information between the two input text sequences.
For Fever-Symmetric, the spurious features are max-pooled word embeddings of the claim sentence.
More details about the bias model and the spurious features are presented in Appendix B.3.1.

Mask training and IMP basically use the same hyper-parameters (adopting from [55]) as full BERT.
An exception is longer training, because we find that good subnetworks at high sparsity levels require
more training to be found. Unless otherwise specified, we select the best checkpoints based on the ID
dev performance, without using OOD information. All the reported results are averaged over 4 runs.
We defer training details about each dataset, and each training and pruning setup, to Appendix B.3.

4.2 Subnetworks from Fine-tuned BERT

4.2.1 Problem Formulation and Experimental Setups

Given the fine-tuned full BERT f(θft) = AL1
(f(θpt)), where θpt and θft are the pre-trained and

fine-tuned parameters respectively, the goal is to find a subnetwork f(m⊙ θ
′

ft) = P
p
L2
(f(θft)) that

3https://www.kaggle.com/c/quora-question-pairs
4See the licence information at https://fever.ai/download/fever/license.html
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Figure 2: Results of subnetworks pruned from the CE fine-tuned BERT. “std” means standard, and
the shadowed areas denote standard deviations, which also apply to the other figures of this paper.
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Figure 3: Results of subnetworks pruned from the PoE fine-tuned BERT. Results of the “mask train
(poe)” subnetworks from Fig. 2 (the orange line) are also reported for reference.

satisfies a target sparsity level s and maximize the ID and OOD performance.

max
m,θ

′
ft

(
EID

(
f
(
m⊙ θ

′

ft

))
+ EOOD

(
f
(
m⊙ θ

′

ft

)))
, s.t.

∥m∥0
|θpr|

= (1− s) (2)

where ∥∥0 is the L0 norm and |θpr| is the total number of parameters to be pruned. In practice, the
above optimization problem is achieved via Pp

L2
(), which minimizes the loss L2 on the ID training

set. When the pruning method is IMP, the subnetwork parameters will be further fine-tuned and
θ

′

ft ̸= θft. For mask training, only the subnetwork structure is updated and θ
′

ft = θft.

We consider two kinds of fine-tuned full BERT, which utilize the standard CE loss and PoE loss
respectively (i.e., L1 ∈ {Lstd,Lpoe}). IMP and mask training are used as the pruning methods (i.e.,
p ∈ {imp,mask}). For the standard fine-tuned BERT, both Lstd and Lpoe are examined in the pruning
process. For the PoE fine-tuned BERT, we only use Lpoe during pruning. Note that in this work, we
mainly experiment with Lstd and Lpoe. Lreweight and Lconfreg are also examined for subnetworks from
fine-tuned BERT, the results of which can be found in Appendix C.1.

4.2.2 Results

Subnetworks from Standard Fine-tuned BERT The results are shown in Fig. 2 (In this paper,
we present most results in figures for clear comparisons. Actual values of the results can be found in
the code link.). We discuss them from three perspectives. For the full BERT, we can see that standard
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Figure 4: Results of BERT subnetworks fine-tuned in isolation. “ft” is short for fine-tuning.

CE fine-tuning, which achieves good results on the ID dev sets, performs significantly worse on the
OOD test sets. This demonstrates that the ID performance of BERT depends, to a large extent, on
memorizing the dataset bias.

In terms of the subnetworks, we can derive the following observations: (1) Using any of the four
pruning methods, we can compress a large proportion of the BERT parameters (up to 70% sparsity)
and still preserve 95% of the full model’s ID performance. (2) With standard pruning, i.e., “mask
train (std)” or “imp (std)”, we can observe small but perceivable improvement over the full BERT on
the HANS and PAWS datasets. This suggests that pruning may remove some parameters related to
the bias features. (3) The OOD performance of “mask train (poe)” and “imp (poe)” subnetworks is
even better, and the ID performance degrades slightly but is still above 95% of the full BERT. This
shows that introducing the debiasing objective in the pruning process is beneficial. Specially, as mask
training does not change the model parameters, the results of “mask train (poe)” implicates that the
biased “full bert (std)” contains sparse and robust subnetworks (SRNets) that already encode a less
biased solution to the task. (4) SRNets can be identified across a wide range of sparsity levels (from
20% ∼ 70%). However at higher sparsity of 90%, the performance of the subnetworks is not desirable.
(5) We also find that there is an abnormal increase of the PAWS F1 score at 70% ∼ 90% sparsity for
some pruning methods, when the corresponding ID performance drops sharply. This is because the
class distribution of PAWS is imbalanced (see Appendix B.1), and thus even a naive random-guessing
model can outperform the biased full model on PAWS. Therefore, the OOD improvement should
only be acceptable when there is no large ID performance decline.

Comparing IMP and mask training, the latter performs better in general, except for “mask train (poe)”
at 90% sparsity on QQP and FEVER. This suggests that directly optimizing the subnetwork structure
is a better choice than using the magnitude heuristic as the pruning metric.

Subnetworks from PoE Fine-tuned BERT Fig. 3 presents the results. We can find that: (1) For
the full BERT, the OOD performance is obviously promoted with the PoE debiasing method, while
the ID performance is sacrificed slightly. (2) Unlike the subnetworks from the standard fine-tuned
BERT, the subnetworks of PoE fine-tuned BERT (the green and blue lines) cannot outperform the full
model. However, these subnetworks maintain comparable performance at up to 70% sparsity, on both
the ID and OOD settings, making them desirable alternatives to the full model in resource-constraint
scenarios. Moreover, this phenomenon suggests that there is a great redundancy of BERT parameters,
even when OOD generalization is taken into account. (3) With PoE-based pruning, subnetworks
from the standard fine-tuned BERT (the orange line) is comparable with subnetworks from the PoE
fine-tuned BERT (the blue line). This means we do not have to fine-tune a debiased BERT before
searching for the SRNets. (4) IMP, again, slightly underperforms mask training at moderate sparsity
levels, while it is better at 90% sparsity on the fact verification task.

7



4.3 BERT Subnetworks Fine-tuned in Isolation

4.3.1 Problem Formulation and Experimental Setups

Given the pre-trained BERT f(θpt), a subnetwork f(m⊙ θpt) is obtained before downstream fine-
tuning. The goal is to maximize the performance of the fine-tuned subnetwork AL1

(f(m⊙ θpt)):

max
m

(EID (AL1
(f(m⊙ θpt))) + EOOD (AL1

(f(m⊙ θpt)))) , s.t.
∥m∥0
|θpr|

= (1− s) (3)

Following the LTH [9], we solve this problem using the train-prune-rewind pipeline. For IMP, the
procedure is described in Section 3.2.1 and m =M(P imp-rw

L2
(f(θpt))). For mask training, the subnet-

work structure is learned from f(θft) (same as the previous section) and m =M(Pmask
L2

(f(θft))).

We employ CE and PoE loss for model fine-tuning (i.e., L1 ∈ {Lstd,Lpoe}). Since we have shown
that using the debiasing loss in pruning is conducive, the CE loss is not considered (i.e., L2 = Lpoe).

4.3.2 Results

The results of subnetworks fine-tuned in isolation are presented in Fig. 4. It can be found that: (1)
For standard CE fine-tuning, the “mask train (poe)” subnetworks are superior to “full bert (std)” on
the OOD test data, i.e., the subnetworks are less susceptible to the dataset bias during training. (2) In
terms of the PoE-based fine-tuning, the “imp (poe)” and “mask train (poe)” subnetworks are generally
comparable to “full bert (poe)”. (3) For most of the subnetworks, “poe ft” clearly outperforms “std ft”
in the OOD setting, which suggests that it is important to use the debiasing method in fine-tuning,
even if the BERT subnetwork structure has already encoded some unbiased information.

Moreover, based on (1) and (2), we can extend the LTH on BERT [4, 40, 28, 32]: The pre-trained
BERT contains SRNets that can be fine-tuned in isolation, using either standard or debiasing
method, and match or even outperform the full model in both the ID and OOD evaluations.

4.4 BERT Subnetworks Without Fine-tuning

4.4.1 Problem Formulation and Experimental Setups

This setup aims at finding a subnetwork f(m ⊙ θpt) inside the pre-trained BERT, which can be
directly employed to a task. The problem is formulated as:

max
m

(EID (f(m⊙ θpt)) + EOOD (f(m⊙ θpt))) , s.t.
∥m∥0
|θpr|

= (1− s) (4)

Following [66], we fix the pre-trained parameters θpt and optimize the mask variables m. This
process can be represented as Pmask

L (f(θpt)), where L ∈ {Lstd,Lpoe}.

4.4.2 Results

As we can see in Fig. 5: (1) With CE-based mask training, the identified subnetworks (under 50%
sparsity) in pre-trained BERT are competitive with the CE fine-tuned full BERT. (2) Similarly, using
PoE-based mask training, the subnetworks under 50% sparsity are comparable to the PoE fine-tuned
full BERT, which demonstrates that SRNets for a particular downstream task already exist in the
pre-trained BERT. (3) “mask train (poe)” subnetworks in pre-trained BERT can even match the
subnetworks found in the fine-tuned BERT (the orange lines) in some cases (e.g., on PAWS and on
FEVER under 50% sparsity). Nonetheless, the latter exhibits a better overall performance.

4.5 Sparse and Unbiased BERT Subnetworks

4.5.1 Problem Formulation and Experimental Setups

To explore the upper bound of BERT subnetworks in terms of OOD generalization, we include the
OOD training data in mask training, and use the OOD test sets for evaluation. Like the previous
sections, we investigate three pruning and fine-tuning paradigms, as formulated by Eq. 2, 3 and 4
respectively. We only consider the standard CE for subnetwork and full BERT fine-tuning, which is
more vulnerable to the dataset bias. Appendix B.3.3 summarizes the detailed experimental setups.
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Figure 5: Results of BERT subnetworks without fine-tuning. Results of the “mask train (poe)”
subnetworks from Fig. 2 (the orange line) are also reported for reference.

0.0 0.2 0.4 0.6 0.8
Sparsity

0.65

0.70

0.75

0.80

0.85

M
NL

I d
ev

 A
cc

bert-ft subnet
bert-pt subnet + ft
bert-pt subnet
full bert (std)
full bert (poe)
95% full bert (std)

0.0 0.2 0.4 0.6 0.8
Sparsity

0.6

0.7

0.8

0.9

1.0

HA
NS

 A
cc

Figure 6: NLI results of BERT subnetworks found
using the OOD information. Results of the other
two tasks can be found in Appendix C.2.
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Figure 7: NLI mask training curves (70% sparse),
starting from BERT fine-tuned for varied steps.
Appendix C.3 shows results of the other two tasks.

4.5.2 Results

From Fig. 6 we can observe that: (1) The subnetworks from fine-tuned BERT (“bert-ft subnet”) at
20% ∼ 70% sparsity achieve nearly 100% accuracy on HANS, and their ID performance is also close
to the full BERT. (2) The subnetworks in the pre-trained BERT (“bert-pt subnet”) also have very high
OOD accuracy, while they perform worse than “bert-ft subnet” in the ID setting. (3) “bert-pt subnet +
ft” subnetworks, which are fine-tuned in isolation with CE loss, exhibits the best ID performance,
and the poorest OOD performance. However, compared to the full BERT, these subnetworks still rely
much less on the dataset bias, reaching nearly 90% HANS accuracy at 50% sparsity. Jointly, these
results show that there consistently exist BERT subnetworks that are almost unbiased towards the
MNLI training set bias, under the three kinds of pruning and fine-tuning paradigms.

5 Refining the SRNets Searching Process

In this section, we study how to further improve the SRNets searching process based on mask training,
which generally performs better than IMP, as shown in Section 4.2 and Section 4.3.

5.1 The Timing to Start Searching SRNets

Compared with searching subnetworks from the fine-tuned BERT, directly searching from the pre-
trained BERT is more efficient in that it dispenses with fine-tuning the full model. However, the
former has a better overall performance, as we have shown in Section 4.4. This induces a question:
At which point of the BERT fine-tuning process, can we find subnetworks comparable to those
found after the end of fine-tuning using mask training? To answer this question, we perform mask
training on the model checkpoints f(θt) = At

Lstd
(f(θpt)) from different steps t of BERT fine-tuning.
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Figure 8: Comparison between fixed sparsity and gradual sparsity increase for mask training with the
standard fine-tuned full BERT. The subnetworks are at 90% sparsity.

Fig. 7 shows the mask training curves, which start from different f(θt). We can see that “ft step=0”
converges slower and to a worse final accuracy, as compared with “ft to end”, especially on the HANS
dataset. However, with 20,000 steps of full BERT fine-tuning, which is roughly 55% of the “ft to
end”, the mask training performance is very competitive. This suggests that the total training cost of
SRNet searching can be reduced, by a large amount, in the full model training stage.

To actually reduce the training cost, we need to predict the exact timing to start mask training. This is
intractable without information of all the training curves in Fig. 7. A feasible solution is adopting the
idea of early-stopping (see Appendix E.1 for detailed discussions). However, accurately predicting
the optimal timing (with the least amount of fine-tuning and comparable subnetwork performance to
fully fine-tuning) is indeed difficult and we invite follow-up studies to investigate this question.

5.2 SRNets at High Sparsity

As the results of Section 4 demonstrate, there is a sharp decline of the subnetworks’ performance
from 70% ∼ 90% sparsity. We conjecture that this is because directly initializing mask training to
90% reduces the model’s capacity too drastically, and thus causes some difficulties in optimization.
Therefore, we gradually increase the sparsity from 70% ∼ 90% during mask training, using the cubic
sparsity schedule [67] (see Appendix C.4 for ablation studies). Fig. 8 compares the fixed sparsity
used in the previous sections and the gradual sparsity increase, across varied mask training epochs.
We find that while simply extending the training process is conducive, gradual sparsity increase
achieves better results. In particular, “gradual” outperforms “fixed” with lower training cost on all the
three tasks, except for the PAWS dataset, A similar phenomenon is explained in Section 4.2.2.

6 Conclusions and Limitations

In this paper, we investigate whether sparsity and robustness to dataset bias can be achieved simulta-
neously for PLM subnetworks. Through extensive experiments, we demonstrate that BERT indeed
contains sparse and robust subnetworks (SRNets) across a variety of NLU tasks and training and
pruning setups. We further use the OOD information to reveal that there exist sparse and almost
unbiased BERT subnetworks. Finally, we present analysis and solutions to refine the SRNet searching
process in terms of subnetwork performance and searching efficiency.

The limitations of this work is twofold. First, we focus on BERT-like PLMs and NLU tasks, while
dataset biases are also common in other scenarios. For example, gender and racial biases exist in
dialogue generation systems [7] and PLMs [17]. In the future work, we would like to extend our
exploration to other types of PLMs and NLP tasks (see Appendix E.2 for a discussion). Second, as
we discussed in Section 5.1, our analysis on “the timing to start searching SRNets” mainly serves as
a proof-of-concept, and actually reducing the training cost requires predicting the exact timing.
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A More Information of Pruning and Debiasing Methods

A.1 Pruning Methods

A.1.1 Iterative Magnitude Pruning

Algo. 1 summarizes our implementation of IMP and IMP with weight rewinding. In practice, we set
the per time pruning ratio ∆s = 10% and the pruning interval ∆t = 0.1 · tmax.

A.1.2 Mask Training

As we described in Section 3.2.2 of the main paper, we realize mask training via binarization in
forward pass and gradient estimation in backward pass. Following [42, 32], we adopt a magnitude-
based strategy to initialize the real-valued masks. Specially, we consider two variants: The first
one (hard variant) identifies the weights in matrix W with the smallest magnitudes, and sets the
corresponding elements in m̂ to zero, and the remaining elements to a fixed value:

m̂i,j =

{
0 if Wi,j ∈ Mins(abs(W))

α× ϕ otherwise
(5)

where Mins(abs(W)) extracts the weights with the lowest absolute value, according to sparsity level
s. α ≥ 1 is a hyper-parameter. The second one (soft variant) directly utilizes the absolute values of
the weights for mask initialization:

m̂i,j = abs(Wi,j) (6)

To control the sparsity of the model, the threshold ϕ is adjusted dynamically at a frequency of ∆tϕ
training steps. In practice, we control the sparsity in a local way, i.e., all the weight matrices W ∈ θpr

should satisfy the same sparsity constraint s. Algo. 2 summarizes the entire process of mask training.
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Algorithm 1: Iterative Magnitude Pruning (+ weight rewinding)
Input: PLM f(θ0) w. θ0 = θft, maximum training steps tmax, pruning interval ∆t, per time

pruning ratio ∆s, target sparsity level s = k ·∆s (k ∈ {1, 2, · · · }), pruning method
p ∈ {imp, imp-rw}

Output: Pruned subentwork f(m⊙ θ
′

ft)

1 Initialize the pruning mask m = 1|θ0| and the number of pruning n = 0
2 while t < tmax do
3 if (t mod ∆t) == 0 then
4 # For imp, return the subnetwork after some further training
5 if n ·∆s == s and p==imp then
6 return f(m⊙ θt)
7 end
8 Prune ∆s · |θ0| from the remaining parameters m⊙ θt based on the magnitudes, and

update m accordingly
9 n← n+ 1

10 # For imp-rw, return the subnetwork directly after pruning
11 if n ·∆s == s and p==imp-rw then
12 return f(m⊙ θ0)
13 end
14 end
15 Update the remaining model parameters m⊙ θt via AdamW [33];
16 end

A.2 Debiasing Methods

We have introduced the PoE method in Section 3.3. Here we provide descriptions of the other two
debiasing methods, i.e., example reweighting and confidence regularization.

Example Reweighting directly assigns an importance weight to the standard CE training loss,
according to the bias degree β:

Lreweight = − (1− β)y · logpm (7)

Confidence Regularization is based on knowledge distillation [22]. It involves a teacher model
trained with the standard CE loss. The teacher model’s prediction pt is used as a supervision signal
to train the main model. To account for the bias degree of training examples, pt is smoothed using a
scaling function S (pt, β), and the final loss is computed as:

Lconfreg = −S (pt, β) · logpm

S (pt, β) =
(pj

t )
(1−β)∑K

k=1(p
k
t )

(1−β)

(8)

B More Experimental Setups

B.1 Datasets and Evaluations

We utilize eight datasets from three NLU tasks. The statistics of different dataset splits are summarized
in Tab. 1. If one dataset has a test set, we use it for evaluation, and otherwise we report results on the
dev set. For MNLI and QQP, since the official test server 5 only allows two submissions a day, we
instead evaluate on the dev sets, following [4, 32, 45]. For FEVER, we use the training and evaluation
data processed by [46] 6.

Tab. 2 shows the distribution of examples over classes. We can see that the distributions of the QQP
and PAWSqqp evaluation sets are imbalanced. Specially, in the OOD PAWSqqp, where a biased model

5https://gluebenchmark.com/
6https://github.com/TalSchuster/FeverSymmetric
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Algorithm 2: Mask Training
Input: PLM f(θ0) w. θ0 ∈ {θpt,θft}, maximum training steps tmax, frequency ∆tϕ, target

sparsity level s, threshold ϕ, hyper-parameter α, initialization method init ∈ {hard, soft}
Output: Pruned subentwork f(m⊙ θ0)

1 if init == hard then
2 Initialize the real-valued mask m̂ according to Eq. 5
3 Set threshold ϕ = 0.01
4 else
5 Initialize the real-valued mask m̂ according to Eq. 6
6 Set threshold ϕ according to the sparsity constraint
7 end
8 while t < tmax do
9 Get a mini-batch of B examples {(xb, yb)}Bb=1

10 Forward pass through binarization:

11 L(f(xb,m⊙ θ0), yb), where mi,j =

{
1 if m̂i,j ≥ ϕ

0 otherwise
12 Backward pass through gradient estimation:
13 m̂← m̂− η ∂L

∂m
14 if (t mod ∆tϕ) == 0 then
15 Update the threshold ϕ to satisfy the sparsity constraint
16 end
17 end
18 return f(m⊙ θ0)

Table 1: The number of examples in different dataset splits. The splits used for evaluation are
highlighted with red color. The dev set for MNLI is MNLI-m.

NLI Paraphrase Identification Fact Verification

MNLI HANS QQP PAWS-qqp PAWS-wiki FEVER FEVER-Symm1 FEVER-Symm2

Train 392,702 30,000 363,849 11,988 49,401 242,911 - -
Dev 9,815 30,000 40,432 677 8,000 16,664 - 708
Test - - - - 8,000 - 717 712

tends to predict most examples to the duplicate class, simply classifying all examples as non-duplicate
can achieve substantial improvement in accuracy (from 28.2% to 71.8%). To account for this, we use
the F1 score to evaluate the performance on the three paraphrase identification datasets. Specifically,
we calculate the weighted average of the F1 score of each class. However, the class imbalance
may still affect the evaluation on PAWS (as we discussed in Section 4.2.2) and therefore the OOD
improvement should be assessed by also considering the ID performance.

B.2 Software and Computational Resources

We use two types of GPU, i.e., Nvidia V100 and TITAN RTX. All the experiments are run on a single
GPU. Our codes are based on the Pytorch7 and the huggingface transformers library8 [58].

B.3 Training Details

B.3.1 Bias Model

As mentioned in Section 4.1.3, we train the bias model with spurious features. For MNLI and QQP,
we adopt the hand-crafted word overlapping features proposed by [5], which includes:

• Whether all the hypothesis words also belong to the premise.

7https://pytorch.org/
8https://github.com/huggingface/transformers
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Table 2: Data distribution over classes. The meaning of the abbreviations are: ent (entailment), cont
(contradiction), dulp (duplicate), supp (support), not-info (not-enough-info). “Eval” represents the
dataset split used for evaluation, as described in Tab. 1

MNLI HANS

Train
ent 33.3% 50%
cont 33.3% 50%
neutral 33.3% 0%

Eval
ent 35.4% 50%
cont 32.7% 50%
neutral 31.8% 0%

QQP PAWSqqp PAWSwiki

Train
dulp 36.9% 31.5% 44.2%
non-dulp 63.1% 68.5% 55.8%

Eval
dulp 36.8% 28.2% 44.2%
non-dulp 63.2% 71.8% 55.8%

FEVER Symm1 Symm2

Train
supp 41.4% - -
refute 17.2% - -
not-info 41.4% - -

Eval
supp 47.9% 52.9% 50%
refute 52.1% 47.1% 50%
not-info 0% 0% 0%

Table 3: Basic training hyper-parameters.
#Epoch Learning Rate Batch Size Max Length Eval Interval Eval Metric Optimizer

MNLI 3 or 5 5e-5 32 128 1,000 Acc AdamW
QQP 3 2e-5 32 128 1,000 F1 AdamW
FEVER 3 2e-5 32 128 500 Acc AdamW

• Whether the hypothesis appears as a continuous subsequence in the premise.

• The percentage of the hypothesis words wh = {wh
1 ,w

h
2 , · · · ,wh

|wh|} that appear in the

premise wp = {wp
1,w

p
2, · · · ,w

p
|wp|}. Formally |wh∩wp|

|wh| .

• The average of the maximum similarity between each hypothesis word and all the premise
words: 1

|wh| sum({max({sim(wp
i ,w

h
j )|∀w

p
j ∈ wp})|∀wh

i ∈ wh}), where the similarity
is computed based on the fastText word vectors [39] and the cosine distance.

• The minimum of the same similarities above: min({max({sim(wp
i ,w

h
j )|∀w

p
j ∈

wp})|∀wh
i ∈ wh}).

For FEVER, we use the max-pooled word embeddings of the claim sentence, which are also based
on the fastText word vectors.

B.3.2 Full BERT

The main training hyper-parameters are shown in Tab. 3, which basically follow [55]. Most of the
hyper-parameters are the same for different training strategies, except for the number of training
epochs (#Epoch) on MNLI. For the standard CE loss and example reweighting, the model is trained
for 3 epochs. For PoE and confidence regularization, the model is trained for 5 epochs.

B.3.3 Mask Training and IMP

Mask training and IMP basically use the same set of hyper-parameters as full BERT, except for longer
training. The number of training epochs for mask training and IMP is 5 on MNLI, and 7 on QQP and
FEVER. The hyper-parameters specific to mask training or IMP are summarized in Tab. 4. Unless
otherwise specified, we adopt the hard-variant of mask initialization (Eq. 5) and fix the subnetwork
sparsity to target sparsity s throughout the process of mask training. Some special experimental
setups are described as follows:

Subnetworks from Fine-tuned BERT When we search for subnetworks at low sparsity (e.g., 20%)
from a fine-tuned BERT, we find that mask training (with debiasing loss) stably improves the OOD
performance, while the ID performance peaks at an early point of training and then slightly drops
and recovers later. Therefore, the ID performance favors the early checkpoints, which are not good
at the OOD generalization. To address this problem, we select the best checkpoint after 0.7 · tmax
of training, but still according to the performance on the ID dev set. This strategy is only adopted
for mask training on fine-tuned BERT (for all sparsity levels), and in other cases we select the best
checkpoint across training based on ID performance.
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Table 4: Basic hyper-parameters related to pruning methods. tmax is the number of optimization steps
by training #Epoch epochs.

Mask Training IMP

Mask Init Sparsity Schedule ϕ α ∆tϕ ∆s ∆t

magnitude (hard) fixed to s 0.01 2 equal to Eval Interval 10% 0.1·tmax
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Figure 9: Results of subnetworks pruned from the CE fine-tuned BERT, with different debiasing
methods in pruning.

BERT Subnetworks Fine-tuned in Isolation When fine-tuning the searched subnetworks (with
their weights rewound to pre-trained values) in isolation, we use the same set of hyper-parameters as
full BERT fine-tuning.

Sparse and Unbiased BERT Subnetworks The OOD data is used in this setup. Specifically, we
utilize the training data of HANS and PAWS for NLI and paraphrase identification respectively. In
terms of the FEVER-Symmetric dataset, which does not provide a training set (see Tab. 1), we use
the dev set of FEVER-Symm2 and copy the data 10 times to construct the OOD training data. The
OOD and ID training data are then combined to form the final training set. Note that the evaluation
sets are the same as the other setups, and NO test data is used in mask training.

Gradual Sparsity Increase We mainly experiment with the gradual sparsity increase schedule
for subnetworks at 90% sparsity. Concretely, we increase the sparsity from 70% to 90% during the
process of mask training. The real-valued mask is initialized using the soft-variant (Eq. 6). This is
because we find that the hard-variant is difficult to optimize with sparsity increase.

C More Results and Analysis

C.1 More Debiasing Methods

In Section 4, we mainly experiment with the PoE debiasing method. Here, we combine mask training
with the other two debiasing methods, namely example reweighting and confidence regularization,
and search for SRNets from the CE fine-tuned BERT. Fig. 9 presents the results. As we can see: (1)
Pruning with different debiasing methods almost consistently improves the OOD performance over
the CE fine-tuned BERT. (2) The confidence regularization method (the grey lines) only achieves mild
OOD improvement over the full BERT, while it preserves more ID performance compared with the
other two methods. This phenomenon is in accordance with the results from [54], which propose the
confidence regularization method to achieve a better trade-off between the ID and OOD performance.

19



0.0 0.2 0.4 0.6 0.8
Sparsity

0.65

0.70

0.75

0.80

0.85

M
NL

I d
ev

 A
cc

bert-ft subnet
bert-pt subnet + ft
bert-pt subnet
full bert (std)
full bert (poe)
95% full bert (std)

0.0 0.2 0.4 0.6 0.8
Sparsity

0.6

0.7

0.8

0.9

1.0

HA
NS

 A
cc

0.0 0.2 0.4 0.6 0.8
Sparsity

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

QQ
P 

de
v 

F1

0.0 0.2 0.4 0.6 0.8
Sparsity

0.2

0.3

0.4

0.5

0.6

0.7

0.8

PA
W

S-
qq

p 
F1

0.0 0.2 0.4 0.6 0.8
Sparsity

0.4

0.5

0.6

0.7

0.8

0.9

PA
W

S-
wi

ki
 F

1

0.0 0.2 0.4 0.6 0.8
Sparsity

0.60

0.65

0.70

0.75

0.80

0.85

FE
VE

R 
de

v 
Ac

c
0.0 0.2 0.4 0.6

0.84

0.86

0.88

0.0 0.2 0.4 0.6 0.8
Sparsity

0.3

0.4

0.5

0.6

0.7

0.8

Sy
m

m
1 

Ac
c

0.0 0.2 0.4 0.6 0.8
Sparsity

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Sy
m

m
2 

Ac
c

0.0 0.2 0.4 0.6
0.64

0.66

0.68

0.70

Figure 10: Results of subnetworks found using the OOD information.
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Figure 11: Mask training curves starting from full BERT checkpoints fine-tuned for varied steps. The
sparsity levels are 70%, 70% and 90% for MNLI, QQP and FEVER respectively. At these sparsity
levels, the gap between “ft step=0” and “ft to end” is the largest, according to Fig.5 of the main paper.

C.2 Sparse and Unbiased Subnetworks

Fig. 10 shows the results of mask training with the OOD training data. We can see that the general
patterns in paraphrase identification and fact verification datasets are basically the same as the NLI
datasets. Although the identified subnetworks cannot achieve 100% accuracy on PAWS and FEVER-
Symmetric as on HANS, they substantially narrow the gap between OOD and ID performance, as
compared with the full BERT. An exception is on the Symm2, where the upper bound of SRNets
seems not very high. This is probably because we do not have enough examples (708 in total) to
represent the data distribution of the FEVER-Symmetric dataset. Therefore, we conjecture that the
existence of sparse and unbiased subnetworks might be ubiquitous.

C.3 The Timing to Start Searching SRNets

Fig. 11 shows the mask training curves on all the 8 datasets. Similar to the NLI datasets, mask
training on the other two tasks can achieve comparable results as “ft to end” by starting from an
intermediate checkpoint of BERT fine-tuning. For QQP, we can start from 15,000 steps of full BERT
fine-tuning (44% of tmax). For FEVER, we can start from 10,000 steps (44% of tmax).
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Table 5: Ablation studies of the gradual sparsity increase schedule. The number of training epochs
are 3, 5 and 5 for MNLI, QQP and FEVER respectively. The subnetworks are at 90% sparsity. The
numbers in the subscripts are standard deviations.

MNLI HANS

fixed hard 72.090.92 52.560.92
soft 72.630.31 52.820.47

gradual
0.2∼0.9 73.610.28 53.900.87
0.5∼0.9 75.060.31 54.991.28
0.7∼0.9 76.840.46 56.720.75

QQP PAWSqqp PAWSqqp

fixed hard 71.641.85 55.701.92 49.591.84

soft 77.080.66 46.483.55 49.380.98

gradual
0.2∼0.9 75.790.39 51.570.69 47.940.98

0.5∼0.9 77.540.47 50.920.97 48.860.89

0.7∼0.9 79.490.58 46.591.81 51.150.73

FEVER Symm1 Symm2

fixed hard 49.565.09 27.452.94 29.754.40

soft 72.800.95 46.670.73 52.330.75

gradual
0.2∼0.9 73.531.36 46.471.66 52.421.39

0.5∼0.9 77.010.43 49.870.95 56.570.22

0.7∼0.9 79.010.68 51.740.71 58.170.33

Table 6: Results of RoBERTa-base and BERT-large on the NLI task. We conduct mask training
with PoE loss on the standard fine-tuned PLMs. “0.5∼0.7" denotes gradual sparsity increase. The
numbers in the subscripts are standard deviations.

RoBERTa-base MNLI HANS

full model std 87.140.21 68.330.88

poe 86.560.18 76.151.35

mask train
0.5 85.400.14 75.170.55

0.7 83.480.29 68.631.33
0.5∼0.7 84.410.15 71.951.23

BERT-large MNLI HANS

full model std 86.840.13 69.442.39

poe 86.250.17 76.271.55

mask train
0.5 85.470.28 75.400.64

0.7 77.546.10 60.197.56

0.5∼0.7 84.830.26 70.182.24

C.4 Ablation Studies on Gradual Sparsity Increase

As we mentioned in Appendix B.3.3, we increase the sparsity from 70% to 90% and adopt the
soft variant of mask initialization. To explain the reason for using this specific strategy, we present
the ablation study results in Tab. 5. We can observe that: (1) Replacing the hard variant of mask
initialization with the soft variant is beneficial, which leads to obvious improvements on the QQP,
FEVER, Symm1 and Symm2 datasets. (2) Gradually increasing the sparsity further promotes the
performance, with the 0.7∼0.9 strategy achieving the best results on 7 out of the 8 datasets.

C.5 Results on RoBERTa-base and BERT-large

It has been shown by [21, 53] that pre-trained model RoBERTa [29] have better OOD generalization
than BERT. [53] also shows that larger PLMs, which are more computationally expensive, are more
robust. To examine whether our conclusions can generalize to RoBERTa and larger versions of BERT,
we conduct mask training on the standard fine-tuned RoBERTa-base and BERT-large models and use
the PoE debiasing loss in the mask training process.

The results are shown in Tab. 6. We can see that, for RoBERTa-base: (1) At 50% sparsity, the searched
subnetworks outperform the full RoBERTa (std) by 6.84 points on HANS, with a relative small
drop of 1.74 on MNLI, validating that SRNets can be found in RoBERTa. (2) At 70% sparsity, the
vanilla mask training produces subnetworks with undesirable ID performance and OOD performance
comparable to full model (std). In comparison, when we gradually increase the sparsity level from
50% to 70%, the ID and OOD performance are improved simultaneously, demonstrating that gradual
sparsity increase is also effective for RoBERTa.

When it comes to BERT-large, the conclusions are basically the same as BERT-base and RoBERTa-
base: (1) We can find 50% sparse SRNets from BERT-large using the original mask training. (2)
Gradual sparsity increase is also effective for BERT-large. Additionally, we find that the original
mask training exhibits high variance at 70% sparsity because the training fails for some random seeds.
In comparison, with gradual sparsity increase, the searched subnetworks have better performance and
low variance.

D Related Work on Model Compression and Robustness

Some prior attempts have also been made to obtain compact and robust deep neural networks. We
discuss the relationship and difference between these works and our paper from three perspectives:
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Robustness Types There are various types of model robustness, including generalization to in-
distribution unseen examples, robustness towards dataset bias [2, 37, 65, 46] and adversarial attacks
[14], etc. Among the researches on model compression and robustness, adversarial robustness
[16, 60, 48, 10, 59] and dataset bias robustness [62, 8] are the most widely studied. In this paper, we
focus on the dataset bias problem, which is more common than the worst-case adversarial attack, in
terms of real-world application.

Compression Methods A major direction in robust model compression is about the design of
compression methods. [47] investigate the effect of magnitude-based pruning on adversarially trained
models. [16, 60] treat sparsity and adversarial robustness as a constrained optimization problem, and
solve it using the alternating direction method of multipliers (ADMM) framework [63]. [48, 62, 34]
combine learnable weight mask (i.e., mask training) and robust training objectives. Our study
investigates the use of magnitude-based pruning and mask training, which are also widely employed
in the literature of BERT compression.

Application Fields Despite the topic of model compression and robustness has been proposed for
years, it is mostly studied in the context of computer vision (CV) tasks and models, and few attention
has been paid to the NLP field. Considering the real-world application potential of PLMs, it is critical
to study the questions of PLM compression and robustness jointly. To this end, some recent studies
extend the evaluation of compressed PLMs to consider adversarial robustness [59] and dataset bias
robustness [8].

Although our work shares the same topic with [8], we differ in several aspects. First, the scope
and focus of our research questions are different. They aim at analyzing the impact of different
compression methods (pruning and knowledge distillation [22]) on the OOD robustness of standard
fine-tuned BERT. By contrast, we focus on subnetworks obtained from different pruning and fine-
tuning paradigms and consider both standard fine-tuning and debiasing fine-tuning. Second, our
conclusions are different. The results of [8] suggest that pruning generally has a negative impact on
the robustness of BERT. In comparison, we revel the consistent existence of sparse BERT subnetworks
that are more robust to dataset bias than the full model.

E More Discussions

E.1 How to Predict the Timing to Start Searching SRNets?

A feasible way of solution is to stop full BERT fine-tuning when there is no significant improvement
across several consecutive evaluation steps. The patience of early-stopping can be determined based
on the computational budget. If our resource is limited, we can at least directly training the mask on
θpt, which can still produce SRNets at 50% sparsity (as shown by Section 4.4.2).

E.2 How to Generalize to Other Scenarios?

In this work, we focus on NLU tasks and PLMs from the BERT family. However, the methodology
we utilize is agnostic to the type of bias, task and backbone model. Theoretically, it can be flexibly
adapted to other scenarios by simply change the spurious features to train the bias model (for the
three debiasing methods considered in this paper) or combine the pruning method with another kind
of debiasing method that also involves model training. In the future work, we would like to extend
our exploration to other types of PLMs (e.g., language generation models like GPT [41] and T5 [43])
and other types of NLP tasks (e.g., dialogue generation).
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