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ABSTRACT

Distributed adaptive stochastic gradient methods have been widely used for large
scale nonconvex optimization, such as training deep learning models. However,
their iteration complexity on finding ε-stationary points has rarely been analyzed
in the nonconvex setting. In this work, we present a novel communication-efficient
distributed Adam in the parameter-server model for stochastic nonconvex optimiza-
tion, dubbed Efficient-Adam. Specifically, we incorporate a two-way quantization
scheme into Efficient-Adam to reduce the communication cost between the workers
and the server. Simultaneously, we adopt a two-way error feedback strategy to
reduce the biases caused by the two-way quantization on both the server and work-
ers, respectively. In addition, we establish the convergence rate for Efficient-Adam
with a class of quantization operators and further characterize its communication
complexity between the server and workers when a ε-stationary point is achieved.
Finally, we solve a toy stochastic convex optimization problem and train deep
learning models on real-world vision tasks. Extensive experiments together with a
theoretical guarantee justify the merits of Efficient Adam.

1 INTRODUCTION

Let X be a finite-dimensional linear vector space. We focus on a stochastic optimization problem:

min
x∈X

F (x) = Eξ∼P[f(x, ξ)], (1)

where F : X→ R is a proper, lower semi-continuous smooth function that could be nonconvex, and ξ
is a random variable with an unknown distribution P. Stochastic optimizations commonly appear in
the fields of statistical machine learning (Bishop, 2006), deep learning (Goodfellow et al., 2016), and
reinforcement learning (Sutton & Barto, 2018), which include sparse learning (Hastie et al., 2015),
representation learning (Bengio et al., 2013), classification (Deng et al., 2009), regression, etc.

Due to the existence of expectation over an unknown distribution, the population risk Eξ∼P[f(x, ξ)]
with a complicated function F is approximated via an empirical risk function 1

n

∑n
i=1[fi(x, ξi)] via

a large number of samples {ξi}. For example, we will use the ImangeNet dataset for the image
classification task (Deng et al., 2009), the COCO dataset for the object detection task (Lin et al.,
2014), and the GLUE dataset for the natural language understanding task (Wang et al., 2018),
respectively. Meanwhile, to learn appropriate distributions for different tasks, it is hard to design
the exact mathematical formulation of f . Thus, an effective way is to set a complicated deep neural
network as a surrogate function with a large number of parameters/FLOPs, making problem equation 1
an ultra-large-scale nonconvex stochastic optimization.

However, it could be impossible to train a deep neural network with a large number of parameters
over a large-scale dataset within a single machine. Fortunately, we have some promising approaches
to tackle this problem. One of them is to extend the stochastic gradient descent (SGD) method
to one distributed version (Li et al., 2014b). Then using the distributed SGD method, we train a
deep learning model with multiple machines in a distributed mode (Goyal et al., 2017; You et al.,
2019). However, for the vanilla SGD method, how to tune a suitable learning rate for different tasks
remains challenging. This dilemma is more serious for distributed SGD methods since there are
multiple learning rates needed to be tuned for multiple machines. Moreover, the communication
overhead is another issue in distributed methods. How to reduce the communication cost among
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Figure 1: The workflow of Efficient-Adam in the Parameter-Server model. For each worker, parame-
ters are updated via Adam. For the server, information is gathered and averaged to update parameters.
There exists a two-way quantization scheme to reduce the communication cost between each worker
and server. Moreover, a two-way error feedback strategy compensates for quantization errors for both
the workers and server.

multiple machines is also challenging. Recently, Hou et al. (2019) proposed a distributed Adam
(Kingma & Ba, 2014) with weights and gradients being quantized to reduce the communication cost
between the workers and the server. However, their theoretical analysis is merely restricted to the
convex setting, and they didn’t provide the bit-communication complexity either, which hampers
the potential applications. In addition, both the weights and gradients quantization techniques will
introduce additional errors, which may degrade the performance of the vanilla Adam optimizer. On
the other hand, distributed Adam has already been built in several deep learning platforms, such as
PyTorch (Paszke et al., 2019), TensorFlow (Abadi et al., 2016), and MXNet (Chen et al., 2015), and
it has since been broadly used for training deep learning models. However, its iteration complexity
and communication complexity under the distributed mode have rarely been analyzed in both convex
and nonconvex settings.

In this work, we propose a communication-efficient distributed adaptive stochastic gradient descent
method by incorporating a two-way quantization of updates and a two-way error feedback strategy,
dubbed Efficient-Adam, to solve the stochastic problem equation 1. As it is illustrated in Figure 1,
the architecture of Efficient-Adam belongs to a Parameter-Server (Smola & Narayanamurthy, 2010;
Li et al., 2014a) distributed system. For each worker, in each iteration, we first sample a stochastic
gradient of problem equation 1. Then, we calculate the updates with Adam optimizer. Next, we
quantize the updates based on a specifically designed quantization mapping and an error term and
send the quantized updates to the server. After that, we update local error terms with the updates,
quantization mapping, and error term. At last, we receive the averaged updates from the server and
update local iterates. On the other hand, in the server, we first gather and average the compressed
updates from each worker. Then, we quantize the average updates and broadcast them to each worker.
Next, we update iterate and error feedback terms. From the workflow of Efficient-Adam in Figure 1,
it can be seen that communicated bi-directional information is all quantized in advance. With the
proper quantization mapping, communication costs can be reduced largely. In addition, error terms in
workers and the server can compensate for errors that are introduced by the two-way quantization
steps between all workers and the server, which help accelerate the convergence of Efficient-Adam
for problem equation 1.

Moreover, we explore the iteration complexity for Efficient-Adam with a class of quantization
operators when an ε-stationary point is achieved. For a carefully designed quantization mapping,
we further characterize its overall communication complexity in terms of bits between the server
and workers. On the other hand, when the quantization mapping is generalized to a compressor
as (Stich & Karimireddy, 2019; Stich et al., 2018; Zheng et al., 2019), Efficient-Adam can enjoy
the same convergence rate as full-precision Adam in (Zou et al., 2019). Experimentally, we apply
Efficient-Adam to train deep learning models on computer vision and natural language processing
tasks to demonstrate its efficacy. To the end, we summarize our contribution in four-fold:

• We propose a communication-efficient distributed Adam to the solve stochastic nonconvex
optimization problem equation 1. We dub it Efficient-Adam which utilizes a two-way
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quantization scheme to reduce the communication cost and a two-way error feedback
strategy to compensate for quantization errors.

• We characterize the iteration complexity of Efficient-Adam in the non-convex setting. Under
proper assumptions, we further characterize its overall communication complexity in terms
of bits between the server and workers via a specifically designed quantization mapping.

• We show that the convergence rate of Efficient-Adam can further be improved to the same
order of vanilla Adam, i.e., O(1/

√
T ), once we generalize the quantization mapping in

Efficient-Adam to a compressor mapping as (Stich & Karimireddy, 2019; Stich et al., 2018).

• We conduct several experiments on computer vision tasks to demonstrate the efficacy of the
proposed Efficient-Adam, as well as the related two-way quantization and error feedback
techniques.

2 RELATED WORK

Optimizing a large-scale stochastic non-convex function has been studied for many years, in which
the distributed SGD method has been widely explored. For distributed SGD, its convergence rate has
been established on both the Parameter-Server model (Agarwal & Duchi, 2011) and decentralized
model (Lian et al., 2017). For the variant method of SGD, distributed SGD with momentum (Liu et al.,
2020), and distributed Adam (Reddi et al., 2020) are proposed and establish their convergence results.
To reduce the communication cost, compression on the communication has been added into the
distributed stochastic methods, such as QSGD (Alistarh et al., 2017) and Sign SGD (Bernstein et al.,
2018). However, due to the error introduced by compression, most of the distributed methods will
fail to converge with compressed communication. Several works (Jiang & Agrawal, 2018; Wangni
et al., 2018; Wen et al., 2017) have tried to use unbiased compressors to remove errors brought by
compression and provide related convergence analyses. However, with some biased compressors
(e.g. SignSGD), the SGD method empirically achieves a good solution, which cannot be explained
by those works. To deal with biased compression, Karimireddy et al. (2019) firstly introduced error
feedback into the SignSGD method, and established its convergence. However, their analysis only
focuses on the setting in a single machine. In addition, there exist several decentralized SGDs that try
to utilize error feedback to reduce compression errors, such as ChocoSGD (Koloskova et al., 2019)
and DeepSqueeze (Tang et al., 2019).

Further, for the parameter-server model, Zheng et al. (2019) introduced a two-way error feedback
technique into SGD with momentum and showed its convergence in the nonconvex setting. Moreover,
they use a block-wise compressor to meet the compressor assumption. However, even with the
block-wise compression, their assumption still does not hold when the gradient goes to 0. Besides,
the learning rate for each worker may be hard to tune when the number of works is large. On the
other hand, Hou et al. (2019) adapted the distributed Adam with quantized gradients and weights to
reduce the communication overhead, and gave the convergence bound for the convex case. However,
in their work, they considered an unbiased quantization function and did not consider error feedback
terms, which may limit the use of the analysis.

Different from these existing works, we propose an adaptive distributed stochastic algorithm with a
two-way quantization/compressor and a two-way error feedback strategy, dubbed Efficient Adam.
We also establish its iteration complexity and communication complexity in terms of bits under some
specialized designed quantization mappings in the non-convex setting. In the following Table 1, we
summarize the differences between our proposed Efficient-Adam and several existing communication-
efficient distributed SGD methods in the parameter-server model.

3 PRELIMINARIES

For presenting and analyzing the proposed Efficient-Adam in the following sections, we first give
several basic definitions and assumptions. First, we denote the stochastic estimation of F (x) =
Eξ[f(x, ξ)] as g = ∇xf(x, ξ) with a given sample ξ. In addition, we summarize a few necessary
assumptions on function F and stochastic estimate g, and define ε-stationary point of problem
equation 1.
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Table 1: Comparison against existing methods. Notably, Zheng et al. (2019) merely supported com-
pressor mapping while Efficient-Adam can support both the compressor and quantization mappings.

Method non-convex adaptive lr compression error feedback momentum
Distributed SGD

√
× × × ×

Alistarh et al. (2017)
√

×
√

× ×
Karimireddy et al. (2019)

√
× one side

√
×

Hou et al. (2019) ×
√ √

× ×
Zheng et al. (2019)

√
×

√ √ √

Efficient-Adam
√ √ √ √ √

Assumption 1. Function F (x) is assumed to be lower bounded, i.e., F (x) ≥ F ∗ > −∞ for some
give constant F ∗. Gradient∇F is assumed to be L-Lipschitz continuous, i.e., ‖∇F (x)−∇F (y)‖ ≤
L‖x− y‖. Besides, we assume that for given x, g is an unbiased estimator of gradient with bounded
second moment, i.e., Eξ(g) = ∇F (x) = ∇xEξ(f(x, ξ)) and ‖g‖ ≤ G.
Definition 1. We denote x∗ ∈ X as ε-stationary point of problem equation 1, if it satisfies
E‖∇F (x∗)‖2 ≤ ε.

Assumption 1 is widely used for establishing convergence rates of adaptive SGD methods towards
ε-stationary points, such as Adam/RMSProp (Zou et al., 2019), AdaGrad (Ward et al., 2018; Zou
et al., 2018; Défossez et al., 2020), and AMSGrad (Reddi et al., 2019; Chen et al., 2018).

Below, we define a class of quantization mappings that are used to quantize the communicated
information between the workers and server in Figure 1 to reduce the communication cost.
Definition 2. We call Q : X→ X a quantization mapping, if there exist constants δ > 0 and δ′ ≥ 0
such that the two inequalities hold: ‖x−Q(x)‖ ≤ (1− δ)‖x‖+ δ′ and ‖Q(x)‖ ≤ ‖x‖.

We give a few quantization mappings that satisfy the above definition. In addition, we give the bit
analysis that the quantization function needs in one communication round.
Example 1. Let M={0, 1

B , · · · ,
GB−1
B , GBB } and Q(xi)=sign(xi)maxyi∈M, yi≤|xi|{yi}. Given

x ∈ X, we define Q(x)i=Q(xi). Besides, to transmit Q(x), d(log(GB + 1) + 1) bits are needed.

Example 2. Let M1 =
{
0, 2−K , 2−K+1, · · · , 20, 21, · · · , 2blog(G)c}, M2 ={

0, 1
2m−1 ,

2
2m−1 , · · · ,

2m−2
2m−1 , 1

}
, Q1(xi) = maxyi∈M1,yi≤|xi|{yi}, and Q2(xi) =

maxyi∈M2,yi≤|xi| yi. Given x ∈ X, we define Q(x)i = sgn(xi)Q1(‖x‖∞)Q2(xi/‖x‖∞).
Besides,to transmit Q(x),

(
log(log(G) +K + 1) + dm

)
bits are needed.

Example 3. Let M = {0, 1, 2, · · · , 2m − 1}, E = {−K,−K + 1, · · · ,−1, 0, 1, 2, · · · , log(G)},
and e(x) = max(blog(x)c,−K). Given x ∈ X, we define

Q(xi) = sgn(xi)× 2e(xi) ×

{
maxyi∈M,yi∗2e(xi)−m≤|xi|{2

−myi}, if |xi| < 2e(xi)

maxyi∈M,yi∗2e(xi)−m≤|xi|−2e(xi){2−myi + 1}, otherwise.

We define Q(x)i = Q(xi). Besides, to transmit Q(x), d(m+ log(log(G)+K+1)) bits are needed.
Proposition 1. All of the quantization mappings defined via Examples 1-3 satisfy Definition 2.

There exist several works that utilize compressor mappings (Stich et al., 2018; Stich & Karimireddy,
2019) to reduce the communication cost for distributed SGD in the Parameter-Server model. Formally,
compressor mapping is defined as follows.
Definition 3. We call Q : X→ X as Compressor mapping (Stich et al., 2018; Stich & Karimireddy,
2019; Zheng et al., 2019), if there exists a positive value δ such that the inequality holds: ‖x −
Q(x)‖ ≤ (1− δ)‖x‖.
Remark 1. Most of the quantization mappings do not belong to the class of compressors, since, with
a finite set as range, quantization mapping cannot achieve the condition of compressors for arbitrarily
small parameter x. Therefore, we cannot find any quantization function that satisfies the definition of
the compressor in Definition 3. Moreover, when δ′ is much smaller than the precision which we want
to achieve, we can ignore it and reduce the condition to the compressor condition. Meanwhile, we
have an additional condition ‖Q(x)‖ ≤ ‖x‖, which can be easily achieved by replacing rounding
to flooring. Therefore, we give a more practical condition for analyzing communication complexity.
Moreover, the convergence of Efficient-Adam with quantization can be easily extended to compressors.
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4 EFFICIENT ADAM

In this section, we describe the proposed Efficient-Adam, whose workflow has already been displayed
in Figure 1. To make the presentation clear, we split Efficient-Adam into two parts: the parameter
server part (Algorithm 1) and N -workers part (Algorithm 2). To reduce the communication overhead
among the server and workers, we introduce a two-way quantization mapping. We denote the
quantization function in the parameter server asQs(·) and the quantization function in the workers as
Qw(·), respectively. The detailed iterations of Efficient-Adam are presented in the following.

Algorithm 1 Efficient-Adam: server
Parameters: Choose quantization mapping Qs(·)
via Definition 2. Initialize x1 ∈ X and error term
e1 = 0.

1: Broadcasting x1 to all workers;
2: for t = 1, 2, · · · , T do
3: Gathering and averaging all updates from

workers δ̂t = 1
N

∑N
i=1 δ

(i)
t ;

4: Broadcasting δ̃t = Qs(δ̂t + et);
5: et+1 = δ̂t + et − δ̃t;
6: xt+1 = xt − δ̃t;
7: end for

Output: xT+1.

In the parameter server (see Algorithm 1), the
initial value of x will be broadcast to each
worker at the initialization phase. Then in each
iteration, the server gathers the update from each
worker, calculates the average of these updates,
and then broadcasts this average after a quanti-
zation function.

In each worker (see Algorithm 2), at the ini-
tial phase, the initial value of x will be re-
ceived. In each update iteration, a worker
will sample a stochastic gradient gt and cal-
culate the update vector δt. Then it will
send the update vector to the server with a
quantization mapping and receive the aver-
age update vector from the server. Finally,
the worker will update its local parameters.

4.1 COMPLEXITY ANALYSIS

Algorithm 2 Efficient-Adam: i-th worker
Parameters: Choose hyperparameters {αt}, β, {θt},
and quantization mappingQw(·) satisfying Definition
2. Set initial values m(i)

0 = 0 , v(i)0 = ε, and error
term e

(i)
1 = 0.

1: Receiving x1 from the server;
2: for t = 1, 2, · · · , T do
3: Sample a stochastic gradient of f(xt) as g(i)t ;
4: v

(i)
t = θtv

(i)
t−1 + (1− θt)

[
g
(i)
t

]2
;

5: m
(i)
t = βm

(i)
t−1 + (1− β)g(i)t ;

6: Sending δ(i)t = Qw
(
αtm

(i)
t /

√
v
(i)
t + e

(i)
t

)
;

7: e
(i)
t+1 = αtm

(i)
t /

√
v
(i)
t + e

(i)
t − δ

(i)
t ;

8: Receiving δ̃t from the server;
9: xt+1 = xt − δ̃t;

10: end for

In this subsection we give iteration complex-
ity analysis and bit communication complex-
ity analysis in order to obtain an ε-stationary
solution of problem equation 1 in Definition
1, i.e., E‖∇F (x)‖2 ≤ ε. We denote δs and
δ′s as the constants defined in Definition 1 for
Qs(), and δw, δ′w for Qw(). In addition, we
further make another assumption on hyperpa-
rameters θt and αt.

Assumption 2. For a given maximum num-
ber of iterations T , we define the exponential
moving average parameter θt = 1− θ

T , and
base learning rate αt = α√

T
. Besides, we

define γ = β/(1− θ
T ).

Below, we characterize the iteration com-
plexity of Efficient-Adam to achieve an ε-
stationary solution of the problem equation 1.
In the corollary, we characterize the overall
bit communication complexity of Efficient-
Adam with the quantization mapping defined in Example 3.

Theorem 1. Let {xt} be the point generated by Algorithm 1 and Algorithm 2. In addition, assume that
all workers work identically and independently. Let xTτ be the random variable xτ with τ taking from
{1, 2, · · · , T} with the same probability. For given ε, when T ≥ 4(G2+εd)

(1−β)2α2ε2 (F (x1)− F
∗ + C2)

2,
it always holds that

E[‖∇F (xTτ )‖2] ≤ ε+
(
δ′s
δs

+
δ′w
δsδw

)
2L
√
G2 + εdC3

(1− β)
,
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where C1 =

(
β/(1−β)√
(1−γ)θ1

+ 1

)2

, C2 = d
1−√γ

(
α2L

θ(1−√γ)2δwδs + 2C1Gα√
θ

) [
log
(
1 + G2

εd

)
+ θ

1−θ

]
,

and C3 =

√
d

θ(1−√γ)4

[
log
(
1 + G2

εd

)
+ θ

1−θ

]
.

Proof Sketch

First, we establish the bound of error term ‖et‖ by ‖αtmt/
√
vt‖.

Then, by the Lipschitz of f , f(xt+1) ≤ f(xt) + 〈∇f(xt),−αtmt/
√
vt〉+ L

2 ‖αtmt/
√
vt‖2.

By bounding terms
∑T
t=1〈∇f(xt),−αtmt/

√
vt〉+ L

2 ‖αtmt/
√
vt‖2 ≤ −O(1)

∑T
t=1 ‖∇f(xt)‖22 +

O(
√
T ). And we can get the desired result.

Corollary 1. With the quantization function in Example 3, when we want to get an
ε-stationary solution we need at most C5 bits per-iteration on the workers and the
server. Besides, to achieve an ε-stationary point, we need 16(G2+εd)

(1−β)2α2ε2 (F (x1)− F
∗ + C4)

2

iterations, where C4 = d
1−√γ

(
4α2L

θ(1−√γ)2 + 2C1Gα√
θ

) [
log
(
1 + G2

εd

)
+ θ

1−θ

]
, C5 =

d
(
1 + log

(
log(G) + log

(
32Ld2

√
G2+εdC3

ε(1−β)

)
+1
))

, and C1, C3 are defined in Theorem 1.

From the above theorem and corollary, we can reduce the bits of communication by two-way
quantization and error feedback. In addition, the bit communication complexity and iteration
complexity are O(d log log d3

ε ) and O(d
2

ε2 ), respectively. Moreover, it can be seen that adding
compression in both sides can converge to an arbitrary ε-stationary point, when we have large enough
communication bandwidth, and sufficient iterations. There is a limited influence when we add
quantization into communication if we can have a small additional error δ′w. Below, we show that if
we replace the quantization mapping in Definition 2 as Compressor in Definition 3 in Algorithms
1-2, Efficient-Adam can attain the same order of iteration complexity as original Adam without
introducing additional error terms.
Theorem 2. Let {xt} be the point generated by Algorithm 1 and Algorithm 2 with the quantization
mapping replaced by compressor in Definition 3. In addition, assume that all workers work identically
and independently. Let xTτ be the random variable xτ with τ taking from {1, 2, · · · , T} with the
same probability. For given ε, when T ≥ 4(G2+εd)

(1−β)2α2ε2 (F (x1)− F
∗ + C6)

2, it always holds:

E[‖∇F (xTτ )‖2] ≤ ε,

where C1=
(
β/(1−β)√
(1−γ)θ1

+ 1
)2

, and C6=
d

1−√γ

(
(2−δw)(2−δs)α2L
θ(1−√γ)2δwδs + 2C1Gα√

θ

) [
log
(
1 + G2

εd

)
+ θ

1−θ

]
.

From the above theorem, it can be shown that the convergence rate of Efficient-Adam matches the
convergence rate of the original Adam. Thanks to the two-way error feedback techniques employed
in Efficient-Adam, the convergence rate will not be hurt by the introduced bi-direction compressor as
defined in Definition 3, which merely affects the speed of convergence at the constant level.

5 EXPERIMENTS

In this section, we apply our algorithms to handle several vision and language tasks. First, to
accurately test the theorem on E‖∇f(xt)‖2, we apply the algorithms to a simple stochastic convex
case. Then we apply our algorithm for training neural networks on the image classification task.

5.1 STOCHASTIC CONVEX CASE

In this section, we first optimize the following toy stochastic convex optimization problem:

min
x

Eξ‖ξ − x‖2,

where e = [1, 1, · · · , 1]T , x∗ randomly takes from U(0, e), and ξ ∼ U(0, e) + x∗. We start from the
initial point x1 = 0. Then, we set β = 0.9, T = 200000, θt = 1− 1/T , and αt = 1e− 2/

√
T . We
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Figure 2: Results of the stochastic convex case for N = 10. In the figure the triple represents
(G,E,M), and "err_worker" means running the algorithm without error feedback on the workers and
"err_server" means running the algorithm without error feedback on the server. The x-axis represents
the iterations we do the optimization. The y-axis represents the norm of expected gradient.

use type float32 as the baseline to compare the results. In this experiment, the quantization mapping
is used as Example 3. We use G as the maximum value we can transmit, when the function value is
larger than G we will clip it to G. We use E to represent the bit need for represent set E in Example
3, which is log(log(G) +K +1), and M represents the bit needed to represent set N in the Example
3. We use N to denote the number of workers. Besides, we turn off the error feedback from the server
to the worker’s side or workers to the server’s side to see whether error feedback help accelerate
the convergence. We run each setting 10 times with 10 workers and give the results of the average
expected gradient norm in Figure 2. When E and M go large, we can converge to a better solution.
With the smaller G, when we keep the same E, we can get a larger K. That is why we can get a
better solution in the end. However, when G goes to zero, which means only a small step we can
move, the convergence speed will be affected. Then we change the dimension of x from 100 to 500.
As shown in the figure when the dimension grows, the solution algorithms find gets worse, which
complies with the theorem. Besides, we find that error feedback on workers is more important than it
on the server because without error feedback on the workers the algorithm achieves a worse result
than what it does on the server.

Further, We compare our algorithm with Wen et al. (2017), Zheng et al. (2019) and Bernstein et al.
(2018). To fairly compare with the other compression methods, we use the Example 2 instead of
3 in the experiment because Wen et al. (2017) and Zheng et al. (2019) are used the Example 2 as
compression functions. The results are shown in figure 3. It can be seen that our algorithm converges
faster and can converge to a more accurate point than SignSGD and TernGrad. and can converge
faster than Zheng et al. (2019).

Figure 3: Results of the stochastic convex case for N = 10 for different method.

5.2 IMAGE CLASSIFICATION

In this section, we apply our method to an image classification task. We train a ResNet-18(He et al.,
2016) on the dataset CIFAR100(Krizhevsky, 2009). The CIFAR100 dataset contains 60,000 32× 32
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images with RGB channels, and they are labeled into 100 classes. In each class, there are 600 images,
of which 500 images are used for training and 100 images are used for the test. ResNet18 contains 17
convolutional layers and one fully-connected layer. Input images will be downscaled into 1/8 size of
its original size and then fed into a fully connected layer for classification training and testing. For
the convolutional layers, we have 64 channels in the 1-5 convolutional layers, 128 channels in the 6-9
layers, 256 channels in the 10-13 layers, and 512 channels in the 14-17 layers. With the batch size
32, we train a network for 78200 iterations. We use cross-entropy loss with regularization to train
the network. The weight of `2 regularization we used is 5e− 4. For the other hyper-parameter, we
use β = 0.9, θt = 0.999. In addition, we set αt = 1e− 4 in the beginning and reduce it into 0.2αt
after every 19,550 iterations, which is often used in deep learning settings to get better performance.
For the communication part, the baseline model is float32, and we test quantization functions with 6
bits and 5 bits. For the 6 bits quantization function, we use G = 1, E = 4, and M = 1, while for the
5 bits quantization function, G = 0.0625, E = 3, M = 1, where the definitions of G, E, andM
are the same as them in Section 5.1. The results are shown in Figure 4. It is shown in the results
that we can have similar training errors with both 6 bits and 5 bits. However, when we test the
network 6-bits version performs better than the 5-bits version, even though the 6-bits version beats
the float32 version in the test. This may be because adding the quantization in the communication
limits the range of parameters, which can be seen as regularization, and with proper regularization,
the generality of the network will become better. Meanwhile, we test whether the error feedback term
helps the convergence. As it is shown in the middle column of Figure 4, without error feedback, the
model performs worse on both the training phase and the test phase. The right column shows the
result when we test on different workers. In the training part, the more workers we use, the faster
convergence we obtain. However, we will have a worse testing accuracy. This is an issue related to
the generalization of the network when the batch size gets larger, and we will not discuss it here, due
to the space limit.

Figure 4: Results of image classification. The upper row shows the training loss and the bottom row
shows the testing accuracy. "err_s", represents Efficient-Adam without error feedback on server and
"err_w" represents Efficient-Adam without error feedback on workers.

6 CONCLUSION

We proposed a communication efficient adaptive stochastic gradient descent algorithm for optimizing
the non-convex stochastic problem, dubbed Efficient-Adam. In the algorithm, we used a two-side
quantization to reduce the communication overhead and two error feedback terms to compensate
for the quantization error to encourage the convergence. With the more practical assumptions,
we established a theoretical convergence result for the algorithm. Besides, we established the
communication complexity and iteration complexity under some certain quantization functions. On
the other hand, when the quantization operators are generalized to compressors, Efficient-Adam can
achieve the same convergence rate as full-precision Adam. Lastly, we applied the algorithm to a
toy task and real-world image task. The experimental results confirm the efficacy of the proposed
Efficient-Adam.
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