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Abstract
Identifying the subset of events that influence events of interest from continuous time datasets is
of great interest in various applications. Existing methods however often fail to produce accu-
rate and interpretable results in a time-efficient manner. In this paper, we propose a neural model
– Influence-Aware Attention for Multivariate Temporal Point Processes (IAA-MTPPs) – which
leverages the powerful attention mechanism in transformers to capture temporal dynamics between
event types, which is different from existing instance-to-instance attentions, using variational in-
ference while maintaining interpretability. Given event sequences and a prior influence matrix,
IAA-MTPP efficiently learns an approximate posterior by an Attention-to-Influence mechanism,
and subsequently models the conditional likelihood of the sequences given a sampled influence
through an Influence-to-Attention formulation. Both steps are completed efficiently inside a B-
block multi-head self-attention layer, thus our end-to-end training with parallelizable transformer
architecture enables faster training compared to sequential models such as RNNs. We demonstrate
strong empirical performance compared to existing baselines on multiple synthetic and real bench-
marks, including qualitative analysis for an application in decentralized finance.
Keywords: Graphical Event Model, Multivariate Temporal Point Process, Variational Inference,
Transformer, Attention Mechanism

1. Introduction

Many real world phenomena and human activities consist of sequences of events where events be-
longing to some discrete set happen irregularly in continuous time. A multivariate temporal point
process (MTPP) (Daley and Jones, 2003) provides an elegant mathematical tool for modeling event
sequences. For example, MTPPs are frequently used to model neural spike training in neuroscience
and user activities in social networks. A classical approach to model event sequences as an MTPP
is through a Hawkes process (Hawkes, 1971) where a particular parametric form is given to cap-
ture the dynamics of the events and interactions among different event types. The past few years
have witnessed the rise of neural MTPP models and their state-of-the-art performance on standard
benchmarks for predictive tasks (Du et al., 2016; Mei and Eisner, 2016; Xiao et al., 2017b; Omi
et al., 2019; Shchur et al., 2019; Zuo et al., 2020).

In this work, we focus on identifying influencing events for MTPP data because knowledge
about such interaction among different types of events has a wide range of applications. Our work is
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closely related to and inspired by graphical models for MTPPs that capture process (in)dependence
between each individual event process – these are known as graphical event models (GEMs) or
local independence graphs (Didelez, 2008; Gunawardana and Meek, 2016; Bhattacharjya et al.,
2018). The parents of an event type in an underlying GEM graph provides its direct influencing
events. Such a model has numerous real-world applications. For instance, accurate identification of
how a group of users interact with each other in a social network can help a platform design socially
enhanced applications to improve security and performance for email, web browsing and overlay
routing (Wilson et al., 2009), or counter coordinated activities from malicious accounts that manip-
ulate public opinion (Sharma et al., 2020). Another motivating example is learning how different
types of actions that users make around cryptocurrency transactions influence each other; in par-
ticular, what previous actions lead to liquidation is of interest to researchers studying decentralized
finance.

Multivariate Hawkes processes (MHP) naturally embed how one event influences another through
its infectivity matrix (Zhou et al., 2013; Linderman and Adams, 2014; Eichler et al., 2017; Liu et al.,
2018). The drawback of MHPs for real applications is that they assume certain parametric form
which may be inadequate or unsuitable for capturing the dynamics and interaction among different
events. Various types of neural TPP models have thus been proposed to learn more complex dy-
namics over the years by using a recurrent neural network (RNN), or its variants (Du et al., 2016;
Mei and Eisner, 2016; Omi et al., 2019; Xiao et al., 2017b; Shchur et al., 2019). Zhang and Yan
(2021) propose a neural relation inference model namely NRI-TPP for event sequences by using
message passing graph and RNN. Zhang et al. (2020b) propose CAUSE model for learning Granger
causality between event types by attribution methods with RNN-based neural point process models.
However, RNNs often fail to capture the long-term, nonsequential dependencies of contexts. In
addition, they are inefficient to train on long sequences as training cannot be parallelized. Advances
in neural machine translation (Vaswani et al., 2017) further introduce transformers for modeling
MTPPs and they have shown state-of-the-art performance on prediction tasks (Zhang et al., 2020a;
Zuo et al., 2020; Gu, 2021). Yet transformers have not been directly applied to solve type-to-type
inference problems because they only capture instance-to-instance interaction, which motivates our
use of transformer-based attention models for discovering influencing event types for a given event
of interest in multivariate event sequences. To fill the gap, we propose influence-aware attention
for MTPPs to identify the influencing event types, which is a faster and more accurate approach
as compared to existing RNN-based approaches. To the best of our knowledge, ours is the first
non-trivial implementation for determining type-wise inference. Our contributions are as follows:

• We design a novel paradigm which connects a variational inference framework with an atten-
tion mechanism for learning and identifying influencing events in MTPPs.

• We propose a concise formulation for modeling event type relations into attention mecha-
nisms, which integrates the probabilistic aspect into attention through attention-to-influence
and influence-to-attention transformations within the transformer architecture.

• We show our model is more efficient and accurate than previous work and state-of-the-art
performance is demonstrated through extensive experiments on simulated data and two real
world applications.
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2. Background

2.1. Multivariate Temporal Point Process

Multivariate temporal point processes are often used to model event streams in which discrete events
take place in the continuous time domain (Daley and Jones, 2003). A D-variate temporal point pro-
cess is a stochastic process that generates a sequence S of timestamps and labels namely {ti, yi}ni=1

where ti is the time of occurrence of ith event and yi is the label of the event which belongs to a
label set L whose cardinality is D. Strictly temporally ordered timestamps are usually assumed in
a given window of observation [0, T ], i.e. ti < tj for i < j where ti ∈ [0, T ] for all i ∈ [1, 2, ..., n].
A general temporal point process can be characterized by its conditional intensity function(CIF):
λ(t) = lim∆t→0

E(N (t+∆t|Ht)−N (t|Ht))
∆t where N (t|Ht) counts the number of events prior to his-

tory Ht until time t. MTPP on the other hand models CIF for each event type λe(t). Classical
MTPP models such as Hawkes process assume some parametric form of the conditional intensity
function while neural MTPPs are more flexible to capture the underlying dynamics in a data-driven
manner. Both approaches are commonly trained to minimize the negative log-likelihood. The log-
likelihood of observing a sequence S is the sum of log-likelihood of events and non-events and can
be expressed as the following (assuming the starting time is t0):

log p(S) =
n∑

i=1

D∑
e=1

logλe(ti)−
n∑

i=0

∫ t

ti

D∑
e=1

λe(t)dt (1)

It is worth noting that usually analytical form in the second term in equation 1 is not available.
Other alternatives are proposed: Wasserstein distance (Xiao et al., 2017a), adversarial losses (Yan
et al., 2018) and reward function in inverse reinforcement learning (Li et al., 2018) are proposed
and shown to achieve good results on benchmark datasets.

2.2. Multivariate Hawkes Process and Infectivity Matrix

Most classical approaches for relational inference on marked event sequences are through the learn-
ing of the infectivity matrix of an MHP, which embodies trigger coefficients among different event
types. The conditional intensity function of the ith dimension of a D-dimensional MHP has the
following parametric form:

λi(t) = µi +

D∑
j=1

∑
k:tj,k<t

Wijg(t− tj,k) (2)

where µi ∈ R+ is base intensity and g(t) ∈ R+ is a kernel function representing the extent of
influence of an event. Exponential and powerlaw kernel are usually specified to model the decay of
influence from an event instance on an event type over time. The matrix W ∈ RD×D

+ is the infectiv-
ity matrix and its entry Wij signifies the magnitude (or nonexistence if Wij = 0) of how event type
j triggers event type i. The infectivity matrix has been studied extensively for learning Granger-
causality (Xu et al., 2016; Eichler et al., 2017). For example, Eichler et al. (2017) prove that the
absence or existence of a causal influence from process j on process i is equivalent to the entry Wij

being 0 or not. Common learning paradigms of MHPs utilize the Expectation-Maximization (EM)
framework. Zhou et al. (2013) introduce nuclear and l1 norm to regularize the likelihood function
to learn a sparse and low-rank infectivity matrix. They leverage a combination of alternating di-
rection method of multipliers and majorization minimization (ADM4) for optimization. Linderman
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and Adams (2014) combine Hawkes processes and random network models by masking the infec-
tivity matrix with a binary adjacency matrix to learn the latent relational graph. Other related work
focuses on applying appropriate constraints. Liu et al. (2018) impose graph regularization to the
objective by leveraging spatial information for spatio-temporal event data. Salehi et al. (2019) take
a variational approach to tackle the problem through variational EM.

2.3. Neural MTPP for Learning Influencing/Infectivity Matrix

Zhang and Yan (2021) propose a relational inference model namely NRI-TPP in a recent study. Al-
though their work provides the first neural probabilistic relation mining for MTPP data, the message
passing graph is not efficient since messages are passed stepwise for each timestamp. Furthermore,
the use of RNNs to update latent states (nodes) of the graph fails to capture long-term dependen-
cies because the interactions between events far away in time are always weakly linked within
any recurrent structure (Hochreiter et al., 2001). Another recent model, CAUSE by Zhang et al.
(2020b) for event data although enjoys the elegant theoretical property from attribution method, is
not end-to-end: it heavily relies on the learning of a neural point processes model (with RNN) and
granger-causality then is derived from such process.

2.4. Transformers on Event Data

Attention and transformer models have been used to model event data in recent years (Xiao et al.,
2019; Zhang et al., 2020a; Zuo et al., 2020; Gu, 2021). The self-attention mechanism, in our context,
relates different event instances of a single sequence in order to compute a representation of the
sequence. The architecture of transformers for MTPPs consists of an embedding layer and a self-
attention layer. In Transformer Hawkes Processes (THP) (Zuo et al., 2020), for example, time
embedding is through

[z(tj)]i =

{
cos(tj/10000

i−1
M ) if i is odd

sin(tj/10000
i
M ) if i is even

(3)

where tj is a timestamp and M is the dimension of encoding. Time embedding and one-hot
encoded types are combined to form the embedded input X. For sequence S = {ti, yi}Li=1, time
embedding zi for each instance is specified in Equation 3 and for the entire sequence with length L,
the embedding is Z ∈ RM×L . Type embedding are through the product of a trainable embedding
matrix U ∈ RM×K and one hot encoded vectors yi’s for all type instances, i.e. X = (UY + Z)T

where Y = [y1,y2, ...,yL]. Q, K, V are query, key and value matrix; they are linear transfor-
mations of X, i.e. Q = XWQ, K = XWK , V = XWV where WQ, WK , WV are trainable
weights.

Attention output C is computed by the following:

C = softmax(
QKT

√
Mk

)V = AsV (4)

where As denotes attention score matrix. The output C is then fed into a pointwise feed forward
neural network (FFN) (commonly with residual connection) to learn a high level representation of
the sequence for modeling the conditional intensity function.
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2.5. Further Remarks

Most attention and transformer based TPP models achieve state-of-the-art performance for predic-
tive tasks, which demonstrates the effectiveness of these models on capturing complex dependencies
among different events. To address the vague interpretation of attention (Jain and Wallace, 2019;
Wiegreffe and Pinter, 2019), we propose a model namely Influence-Aware Attention for Temporal
Point Process (IAA-MTPP) which inherits the interpretability of neural probabilistic relation min-
ing for MTPP and the power and efficiency of self-attention mechanism in transformers to model
the dynamics. To our best knowledge, we are the first to bridge neural probabilistic modeling with
transformer models for event data.

3. Model Formulation: IAA-MTPP

We propose a probabilistic attention model that helps identify influencing events among different
event types. Our IAA-MTPP model consists of two parts: an attention encoder and a influence-
aware attention decoder as shown in Figure 1. The former leverages attention-mechanism in trans-
former architecture to model the interaction of event types and the latter learns a dynamical model
given an influence matrix. Let A be a binary random matrix whose entries encode how one event
type influences another. By leveraging variational inference (Zhang et al., 2018), our model seeks to
find a posterior distribution of influencing matrix A given sequence S, p(A|S) which can be approx-
imated by a global variational distribution qϕ(A|S) (parametrized by attention encoder with ϕ). For
ease of computation, we use a prior which is of entry-wise product, i.e. p(A) =

∏
i,j p(Aij = 1).

Consider a realization of A, A ∈ {0, 1}D×D; each entry (i, j) of A indicates the existence of influ-
ence from type j to i. Naturally, the evidence lower bound (ELBO) (Hoffman et al., 2013) can be
expressed as:

L(θ, ϕ;S) = Eqϕ [log
p(A)

qϕ(A|S)
] + Eqϕ [logpθ(S|A = A)] (5)

which is the sum of negative KL-divergence between qϕ(A|S) and p(A) and the expected condi-
tional likelihood of observing the sequence for a given relation parametrized by attention decoder
with ϕ. Different from neural relation inference literature (Kipf et al., 2018; Zhang and Yan, 2021),
our model is capable of modeling the diagonal components Aii’s since future event instances i can
also attend to past instances of i. This “self-relation” turns out to be important in graphical event
models (GEMs) (Gunawardana and Meek, 2016; Bhattacharjya et al., 2018; Gao et al., 2020), as it
describes how past events of a particular type influence the occurrence of events of the same type in
the future.

3.1. Encoder

The encoder is designed to infer the influencing events given a sequence S with length L. We
follow a similar procedure as described in Transformer Hawkes Processes (Zuo et al., 2020) to
apply B blocks of multi-head self-attention to obtain a high level representation of the sequence.
The attention encoder then outputs an attention score matrix from Bth block namely S

(B)
enc . Each

entry (i, j) of S(B)
enc ∈ RL×L

+ signifies past influence of event instance j on event instance i through
attention mechanism as captured similarly to As in Equation 4. Our approach in fact naturally
embeds the following:
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Figure 1: Neural architecture of IAA-MTPP. The attention encoder takes an event sequence S and
outputs an approximate posterior qϕ(A|S) of latent relation; the attention decoder takes
the same sequence and a sample A from qϕ(A|S) and outputs a influence-aware high
level representation to be used for modeling the likelihood given influencing matrix A.

Theorem 1 Any event instance i in a sequence S only attends to past instance j where j ∈ L. j
and i can be of the same type.

Proof sketch: Consider imposing a strictly lower triangular attention mask on As in Equation 4,
i.e. As ⊙ Il (entry-wise product), the attention score of any event in the past does not contribute to
overall result in the matrix multiplication, and thus does not help future prediction in the FFN.

Attention-to-Influence. We summarize how event type j influences event type i based on our
proposed Attention-to-Influence (A2I) formulation in the following to obtain an unscaled score
matrix:

A2I(S(B)
enc) = P⊺S(B)

encP (6)

where P ∈ {0, 1}L×D is a binary indicator matrix which specifies the type of events occurring in
S for the L event instances 1. In particular, each row of P is an D-dimensional one-hot vector.
We emphasize the above equation captures the transformation from instance-instance interaction
to type-type interaction in a concise and computationally efficient form. Furthermore, to be more
general, we model the relation by a modified weighted score matrix:

S̃(B)
enc = S(B)

enc ⊙ exp−γ∆T (7)

where ∆T is the inter-event times for events in sequence S, γ is a hyper-parameter which controls
the decay of influence of event j on i. The Attention-to-Influence output A2I (S̃(B)

enc) ∈ RD×D
+

does not immediately specify a proper probability distribution as some entries may be well beyond

1. In practice, we add an extra dimension 0 for padded events.
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unity. We search for a class of functions that projects each nonnegative entry in the matrix to an
element in the interval [0, 1], i.e. f : R+ → [0, 1] while maintaining the relative order. Many
candidate functions are possible, however we select a shifted version of sigmoid function as it is
most commonly used as non-linear activation function in neural network. Thus the variational
distribution qϕ(A|S) can be component-wise expressed as

qϕ(Aij = 1|S) := 2σ(A2I(S̃(B)
enc,ij))− 1 (8)

where σ specifies the sigmoid function: σ(x) = 1
1+e−x . Sampling from qϕ(A|S) is straightforward,

however since the distribution is discrete, Gumbel-Softmax (Maddison et al., 2017; Jang et al.,
2016) is used to provide differentiable samples for back-propagation in our neural network.

3.2. Decoder

The goal of the attention decoder is to model the dynamics by leveraging sampled influence. In
particular, we incorporate influence into the learning of the dynamics. We make the following
simplifying assumptions which describe the relation between attention and influence matrix.

Assumption 1 For any pair of events (i, j) in a sequence S, event instance i attends to event
instance j if and only if event type j directly influences event type i, i.e. their influence value is
nonzero. Event type j directly influences event type i if j is a parental process of i.

The above assumption can be viewed as analogous to the one in GEMs (Didelez, 2008; Bhattachar-
jya et al., 2018; Yu et al., 2020): only parent processes j’s can affect child process i; and other
processes are considered to be locally independent from the child process.

Influence-to-Attention. We propose the learning of influence-aware attention in the following.
For each event instance in the sequence S, we check the event type it influences given a sampled
influence A, and construct influence indicator I ∈ {0, 1}L×L:

I = PAP⊺ (9)

where P is the binary indicator matrix same as in Equation 6. We combine an attention score matrix
in the decoder Sdec with relation indicator I to derive the influence-aware attention score:

S̃dec = Sdec ⊙ I (10)

A representation from the attention module is obtained directly by modifying Equation 4:

S̃ = softmax(
QKT

√
Mk

)V = S̃decV (11)

For an h-head influence-aware attention module in the ith block, we concatenate the above represen-
tation from each head and multiplied by a trainable weight matrix WO to form a new representation:
S̃(i) = [S̃

(i)
1 , S̃

(i)
2 , ..., S̃

(i)
h ]WO In the B-block multi-head self-attention layer, the ith block outputs a

high level influence-aware representation H̃(i) from FFN with trainable weights and biases WFC
i ’s

and bi’s:
H̃(i) = ReLU(S̃(i)WFC

1 + b1)W
FC
2 + b2 (12)

Each H̃(i) is then sequentially fed into i+ 1th block until the Bth block is reached.
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Likelihood. The modeling of conditional intensity is similar to THP (Zuo et al., 2020), except the
high-level event representation in our case is the Bth block influence-aware representation vector
H̃(B). The conditional intensity for type-k event takes the following form:

λk(t|Ht) = fk(αk
t− tj
tj

+wk
T H̃(B)(j, :) + bk) (13)

where Ht = {(tj , yj) : tj < t} is the history up to t. αk is a parameter modulates the importance of
current influence, Wk and bk are the weights and bias that characterize the historical and base influ-
ence. fk(x) is the softplus function. The total conditional intensity is modeled as the sum of condi-
tional intensity in each dimension. Conditional log-likelihood pθ(S|A) is computed based on Equa-
tion 1 for a given relation matrix. The computation of non-event likelihood is through Monte Carlo
approximation (Robert and Casella, 2013). Our proposed attention-to-influence and influence-to-
attention formulation captures the conversion between instance-wise interaction to type-wise influ-
ence in very concise forms. The power of this key insight makes transformer models applicable
to many other structural/relational/causal inference problems in sequential data. Previous work has
only used instance-wise attention. Using Theorem 1 and Assumption 1, we state the following re-
sult. (Please see the Appendix for proof sketches). It is worthy noting that our approach of learning
a causal graph is implicit; yet the posterior quantifies the extent of influence which is similar to
methods of using an infectivity matrix for Granger causality.

Theorem 2 A learned qϕ(A|S) from 1-block 1-head transformer architecture without residual con-
nection, for a given threshold τ , encodes the graph structure of events where each nonzero entry is
a parent process.

3.3. Training

The variational training is performed jointly on the encoder and decoder by mini-batch stochastic
gradient descent given N sequences {Si}Ni=1. The procedure is fully described by Algorithm 1. Note
the computation of the ELBO L is straightforward, as the negative KL term for discrete distribution
can be computed in closed-form and conditional likelihood is estimated as the average from a total
of F samples:

L(θ, ϕ) =
∑

qϕ(A)log
p(A)

qϕ(A|S)
+

1

F

F∑
f=1

logpθ(S|Af ) (14)

4. Empirical Experiments

We follow standard implementation of transformer architecture for our model and give more details
in Appendix. In addition, we use uniform (p(Aij = 1) = 0.5) and sparse (p(Aij = 1) = 0.2) prior
namely IAA-MTPP-unif and IAA-MTPP-sparse in our experiments.

Baselines. We compare our models against state-of-the-art models for learning Granger-causal
infectivity matrix. Training of baselines follows the recommended setting.

Hawkes-based models: Hawkes process with exponential kernel (Hawkes-exp) and ADM4.
Standard implementation of Hawkes-exp and ADM4 are available from the tick module 2.

2. https://x-datainitiative.github.io/tick/modules/hawkes.html
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Algorithm 1 Training Procedure for IAA-MTPP
Input: Given sequences S = {Si}Ni=1, sample size F , prior p(A), mini-batch size b, training epochs

K
Output: Approximate posterior qϕ(A|S)
for epoch← 1 to K do

for iteration← 1 to ⌈Mb ⌉ do
Sample a batch of sequences S′ from S
Compute qϕ(A|S) via Attention-to-Influence
Sample A, ..., AF ∼ qϕ(A|S)
Compute logpθ(S′|Af ) via Influence-to-Attention
Compute ELBO L:

∑
qϕ(A|S′)log p(A)

qϕ(A|S′) +
1
F

∑F
f=1 logpθ(S′|Af )

Back-propagate with gradient∇θ,ϕL
Update parameters of network θ, ϕ

end
end
Return: qϕ(A|S)

RNN-based models: CAUSE and NRI-TPP with sparse prior. The implementation for CAUSE
is publicly available 3. While NRI-TPP codes are not provided, we implement according to Zhang
and Yan (2021).

Transformer-based models: Self-attentive Hawkes process (ATTN-SAHP) and transformer Hawkes
Process (ATTN-THP). Both implementations are available 4 5. The inferred infectivity matrix is
computed through Attention-to-Influence transformation for transformer-based baselines as post-
processing.

Evaluation Metrics. We threshold at each percentile of entries in the learned influence matrix
and compare against the binarized ground truth to compute the corresponding F1-scores and select
the maximum for final comparison.

4.1. Synthetic Datasets

We perform two sets of synthetic experiments based on Hawkes process and graphical event models;
each set contains 5 simulations. More details around data generation can be found in Appendix A.

MHP-Exp. We generate synthetic datasets of 100 dimensions from Hawkes processes ac-
cording to previous studies (Zhang and Yan, 2021; Zhang et al., 2020b). The exponential kernel
g(t) = βexp(−βt) is used to generate 2,000 sequences on the time interval [0, 20], with β = 2.5.
A binary ground-truth causality matrix was constructed from the infectivity matrix.

PGEM. We use a proximal graphical event model (PGEM) (Bhattacharjya et al., 2018) genera-
tor to generate 10 sequences in time horizon [0, 1000]; please see the Appendix for details about the
ground truth model (Bhattacharjya et al., 2022). Influencing sets for each event type are its parental
nodes in the underlying graph, which provide a binary ground-truth matrix.

3. https://github.com/razhangwei/CAUSE
4. https://github.com/QiangAIResearcher/sahp repo
5. https://github.com/SimiaoZuo/Transformer-Hawkes-Process
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Results. Table 1 shows that our model IAA-MTPP-sparse achieves the best results among all base-
lines in recovering the latent graph as indicated by high F1 scores for both experiments. Specifically,
sparse prior performs better than uniform prior; this echos the sparsity of ground truth matrix. The
superior performance is partially due to the use of multi-head self-attention and the modeling of the
conditional intensity with Equation 13 being effective for capturing the dynamics. While CAUSE
is a close competing model in the synthetic experiments, it is much worse in learning influencing
(sub)sets from real benchmarks as we show in the following.

Table 1: F1 scores and their standard deviation on two datasets. Best results are shown in bold.
Second best ones are in italics.

Model/Dataset MHP-Exp PGEM

Hawkes-exp 0.76(0.01) 0.51(0.05)
ADM4 0.85(0.00) 0.49(0.09)
ATTN-SAHP 0.69(0.01) 0.49(0.10)
ATTN-THP 0.82(0.00) 0.50(0.06)
NRI-TPP-sparse 0.89(0.00) 0.52(0.03)
CAUSE 0.99(0.00) 0.48(0.00)
IAA-MTPP-unif 0.89(0.00) 0.53(0.02)
IAA-MTPP-sparse 0.90(0.00) 0.52(0.05)

4.2. Real Applications

We consider 2 real world event datasets in the domains of healthcare and decentralized finance. A
brief description of the datasets follows:

Diabetes contains daily events for meal intake, exercise activity, insulin dosage and changes in
blood glucose measurements for 67 diabetes patients 6. A partial relation is given by domain experts
(Acharya, 2014).

DEFI contains user trading events from Aave website7. We filter out irrelevant features so that
our data only consists of timestamp, (trans)action types for each event.

While our focus is on accurately learning the latent influence matrix, ground truth from real data
is often inaccessible. We select parts of the learned influence matrix that corresponds to the partially
known structure on Diabetes and evaluate by F1-score, following previous studies (Bhattacharjya
et al., 2021; Gao et al., 2021). Furthermore, we provide a qualitative interpretation of the learned
interactions on DEFI.

Results on Diabetes. IAA-MTPP-unif achieves highest F1-score as shown in Table 2. A sparse
prior in this dataset may not be appropriate because relations among events in health and disease
system are more complex in nature and are more likely to result in a non-sparse interaction network;
and certain deep interactions may escape domain experts (our models are trained to learn all inter-
actions, but only partially are evaluated). ATTN-SAHP can be considered to use a uniform prior
since it incorporates no prior knowledge of the relation in the learning. Then noticeably, uniform
priors are much better than their sparse counterparts. It is worth noting that neural models are much

6. https://archive.ics.uci.edu/ml/datasets/diabetes
7. aave.com
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better at learning the latent relation than classical approaches on this real dataset. Additionally, even
with sparse prior, IAA-MTPP still roughly improves performance by 10% over its close competitor
NRI-TPP.

Table 2: F1 score on Diabetes. Best Result is in bold.Second best is in italics.
Hawkes-exp ADM4 ATTN-SAHP ATTN-THP NRI-TPP-sparse CAUSE IAA-MTPP-unif IAA-MTPP-sparse

0.200 0.286 0.389 0.345 0.345 0.272 0.419 0.375

Results on DEFI. Figure 2 shows the extracted interaction for DEFI. Each square represents an
entry (i, j) in the binarized relation matrix and indicates whether event j influences event i. Beige
indicates existence of such influence while black indicates nonexistence. Our model captures key
interactions within DEFI lending. Aave is over-collateralized, so users must ”deposit” coins before
they can ”borrow”. We see ”deposits” influence ”redeems” of borrowed coins. To ”repay” a loan,
users must ”deposit” and ”borrow” so both influence ”repays” of loans. If users no longer have
sufficient deposits for collateral (e.g from ”redeem” of the loan), the loan goes into ”liquidation”
and the collateral is used to payback the principal. ”Swap” changes the cryptocurrency used in
deposits. The fact that ”swap” influences ”redeems”, ”deposits”, ”repays” and ”borrows” provides
insights into how users use ”swaps”, an intriguing finding since there is no analog to swaps in
traditional banking.

Figure 2: Possible interactions among 6 event
types in DEFI inferred by IAA-MTPP-
sparse.

IAA-MTPP-sparse is able to unravel influ-
ences and patterns in complex DEFI transaction
protocols without any prior knowledge. Thus
our proposed models could be very valuable to
understand usage and predict transactions in the
rapidly evolving space of both existing and fu-
ture DEFI protocols. Future work is needed
to enhance IAA-MTPP models to incorporate
additional information that influence transac-
tions such as coin-types, transaction amounts,
transaction fees, interest rates, and transaction
prices.

4.3. Ablation Studies

4.3.1. ABLATION

I: EFFICIENCY VS. NRI-TPP

We generate higher dimension version of
MHP-Exp datasets accordingly, and test the ef-
ficiency of two models: IAA-MTPP and NRI-
TPP with sparse prior. Training is on Google
Colab with GPU and high-RAM, more specif-
ically with Tesla P100-PCIE-16GB and 52GB
RAM. Both models are trained with same mag-

nitude of parameters for 10 epochs for a fair comparison. We evaluate the accuracy of relation
inference in higher dimensions by F1-score. As shown in Table 3, while the accuracy of our at-
tention model is higher for all dimensions compared to NRI-TPP-sparse, our model is at least 10
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times more efficient. This agrees with the general trend of using parallelizable structure rather than
recurrent model for faster and potentially more accurate learning. The possible reason for fast con-
vergence of our model is that transformer component in IAA-MTPP is efficient in both model size
and training speed as shown Appendix A.1 in Zuo et al. (2020). Furthermore, in our study we used
a very small model for all experiments (precisely 50210 parameters, only half of the smallest setting
of THP model on twitter dataset).

Table 3: Comparing IAA-MTPP and NRI-TPP. IAA-MTPP is faster and more accurate.

Accuracy (F1) Efficiency (seconds)

Dim NRI-TPP IAA-MTPP NRI-TPP IAA-MTPP

100 0.879 0.893 1576 105
200 0.781 0.783 5914 208
300 0.774 0.777 15267 383
400 0.651 0.687 22636 560

4.3.2. ABLATION II: EFFECT OF PRIOR VS. SAMPLE SIZE

We generate MHP-Exp data of differing sample sizes according to the procedure described in sec-
tion 4.1 and test the effect of sample size on the performance of IAA-MTPP models with the two
priors. Figure 3 depicts the general trend: the more samples used for training, the more accurate
the recovered relation is as indicated by higher F1 scores. With fewer samples, IAA-MTPP-sparse
outperforms IAA-MTPP-unif; with higher samples, both models become equally good. This result
is more-or-less consistent with general understanding of the role of priors in maximum-a-posteriori
inference: it becomes less crucial as sample size gets larger, and data eventually overwhelms the
prior (Murphy, 2012).

Figure 3: Structure discovery with two different priors and varying sample sizes. Larger samples
boost performance.
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5. Conclusion

We have proposed a contemporary neural relational inference model for multivariate temporal point
processes and demonstrated its value for various applications including diabetes and cryptocurrency
(DEFI) applications. To the best of our knowledge, our model reflects a novel integration of a prob-
abilistic aspect into a typical deterministic attention mechanism, resulting a type-to-type attention
mechanism (different from existing instance-to-instance attentions). Our work enjoys the efficiency
and accuracy that attention models provide as well as the interpretability that graphical models of-
fer. Importantly, the proposed model is potentially capable of capturing Granger-causal relations
among events due to the underlying assumptions in our framework; this aspect is also relevant for
causal inference between event pairs from event datasets (Gao et al., 2021). Furthermore, the use
of attention mechanism in our model is quite general which makes it very flexible to be adapted to
other types of cutting-edge attention models. For example, one can equip a memory-efficient form
of transformer (Beltagy et al., 2020; Kitaev et al., 2019) for estimating influences in future work
while retaining or even improving upon the accuracy and time-efficiency of the proposed model.
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Oleksandr Shchur, Marin Biloš, and Stephan Günnemann. Intensity-free learning of temporal point
processes. arXiv preprint arXiv:1909.12127, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-
tion Processing Systems, 30, 2017.

Sarah Wiegreffe and Yuval Pinter. Attention is not not explanation. arXiv preprint
arXiv:1908.04626, 2019.

Christo Wilson, Bryce Boe, Alessandra Sala, Krishna PN Puttaswamy, and Ben Y Zhao. User
interactions in social networks and their implications. In Proceedings of the 4th ACM European
Conference on Computer Systems, pages 205–218, 2009.

Shuai Xiao, Mehrdad Farajtabar, Xiaojing Ye, Junchi Yan, Le Song, and Hongyuan Zha. Wasser-
stein learning of deep generative point process models. arXiv preprint arXiv:1705.08051, 2017a.

Shuai Xiao, Junchi Yan, Xiaokang Yang, Hongyuan Zha, and Stephen M Chu. Modeling the in-
tensity function of point process via recurrent neural networks. In AAAI Conference on Artificial
Intelligence, pages 1597–1603, 2017b.

Shuai Xiao, Junchi Yan, Mehrdad Farajtabar, Le Song, Xiaokang Yang, and Hongyuan Zha. Learn-
ing time series associated event sequences with recurrent point process networks. IEEE Transac-
tions on Neural Networks and Learning Systems, 30(10):3124–3136, 2019.

Hongteng Xu, Mehrdad Farajtabar, and Hongyuan Zha. Learning Granger causality for Hawkes
processes. In International Conference on Machine Learning, pages 1717–1726. PMLR, 2016.

Junchi Yan, Xin Liu, Liangliang Shi, Changsheng Li, and Hongyuan Zha. Improving maximum
likelihood estimation of temporal point process via discriminative and adversarial learning. In
International Joint Conference on Artificial Intelligence, pages 2948–2954, 2018.

Xiufan Yu, Karthikeyan Shanmugam, Debarun Bhattacharjya, Tian Gao, Dharmashankar Subrama-
nian, and Lingzhou Xue. Hawkesian graphical event models. In International Conference on
Probabilistic Graphical Models, pages 569–580. PMLR, 2020.
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Appendix A. Synthetic Data Generation

Hawkes-exp. We set the true infectivity matrix W = UVT , where U and V are initialized as
zero matrices of dimension 100 × 9. We sample from a uniform distribution for certain entries,
i.e. U10(i−1)+1:10(i+1),i ∼ Uniform(0.1, 0.2) for i = 1, ..., 9; same sampling is performed on V.
The spectral radius of W is scaled to 0.8. Baseline intensities µi’s are also drawn from uniform
distribution, µi ∼ Uniform(0, 0.02), for i = 1, ..., 100. W, µ and the following specified kernels
are used to generate synthetic datasets. The generated events in the dataset are 186700. To mimic
real world data, We add noise to every timestamp ti, i.e. t̃i = ti + ϵi ∼ N(0, 0.01). We accept it if
t̃i > 0; otherwise we repeat sampling ϵi until t̃i > 0. All timestamps are rescaled to [0, 1].

PGEM. We describe the windows and conditional intensity parameters for the PGEM generator.
They are listed in the following format: windows corresponding to the parents are listed in the same
order as parents, and binary vectors are used to indicate parental states in the same order as listed
parents as well. Figure 4 shows the graph structure of the ground truth of event dependence.

• Parents = {A: [A], B: [A, C], C: [C], D: [A, E], E: [C, D]}

• Windows = {A: [15], B: [30, 30], C: [15], D: [15, 30], E: [15, 30]}

• Lambdas = { A: {[0]: 0.1, [1]: 0.3}, B: {[0,0]: 0.01, [0,1]: 0.05, [1,0]: 0.1, [1,1]: 0.5}, C:
{[0]: 0.2, [1]: 0.4}, D: {[0, 0]: 0.05, [0, 1]: 0.02, [1, 0]: 0.2, [1, 1]: 0.1}, E: {[0, 0]: 0.1, [0,
1]: 0.01, [1, 0]: 0.3, [1, 1]: 0.1} }

Figure 4: Graph of events from PGEM. Green (red) arcs indicate amplification (inhibition) effects,
i.e. when a parent increases (decreases) a child’s conditional intensity rate.
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Appendix B. Real Datasets

We introduce 3 more datasets for evaluating model fitting by log-likelihood in the following. A
summary of datasets are described in Table 4.

MIMIC-II includes patient-level electronic health records with clinical visits in Intensive Care
Unit for 7 years. Each patient has a sequence of hospital visit events, and each event records its time
stamp and diagnosis, which serves as the event label.

Stack Overflow is a question-answering website where users get engaged in the online com-
munity. Each user receives a sequence of badges over a two-year period.

Cosmetics is from Kaggle’s e-Commerce Events History in Cosmetics Shop 8. The original file
consists of 20M users and their 5-month shopping behavior data from a medium cosmetics online
store from October 2019 to February 2020. For each transaction related event, there are 4 categories
view, cart, remove from cart and purchase. We filter out sequences with missing data or length
shorter than 10 events.

Table 4: A summary of datasets used in our experiments. Train seq: number of sequences in train-
ing; test seq: number of sequences in test data; train events: number of events in training
data; test events: number of events in test data. A Github repository with DEFI data with
full description will be released on publication.

Data train seqs test seqs train events test events classes

MIMIC II 520 130 1915 504 75
DEFI 4626 1156 159319 38046 6
Cosmetics 3659 914 198977 50963 4
Stack Overflow 5307 1326 386316 94098 22
Diabetes 54 13 20582 5974 12

Table 5: Evaluation on four real datasets by LL/event. RAA-TPP-sparse achieves the best results
on DEFI, Cosmetics, and Stack Overflow; RAA-TPP-unif outperforms others on MIMIC
II. * indicates ADM4 fails in completing the run.

Model/Data Hawkes-exp ADM4 ATTN-SAHP NRI-TPP-sparse RAA-TPP-unif RAA-TPP-sparse

MIMIC II 0.004 N/A* 0.740 0.693 0.749 0.744
DEFI 0.072 0.000 2.345 3.018 5.327 5.328
Cosmetics 2.160 0.000 0.156 3.488 3.851 3.852
Stack Overflow 0.006 0.000 2.975 2.333 4.482 4.491

Appendix C. Implementation Details

We train IAA-MTPP with standard Pytorch implementation of multi-head attention module in the
encoder and our influence-aware attention in the decoder. The attention module in the encoder and

8. https://www.kaggle.com/mkechinov/ecommerce-events-history-in-cosmetics-shop
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decoder is adapted from Transformer Hawkes Processes 9, and we modify accordingly by designing
Influence-to-Attention and Attention-to-Influence components to make a unified variational infer-
ence model. The experiments are mostly performed on a Rensselaer IDEA Cluster Node 2 10 and
we train with CPUs; except in ablation study (Efficiency vs. NRI-TPP) we run on Google Colab
with High RAM setting.

Parameter tuning. The parameters are selected based on the overall ELBO value in equation 14
from the training subset. Empirically we find the following neural architecture results in the best
performing model and used in all experiments: number of heads = 6, number of layers = 4, dmodel

(the dimensionality of the representations used as input to the multi-head attention) = 30, dinner (the
dimensionality of the hidden layer of the feed forward neural network) = 16, dv(the dimensionality
of the linearly projected values) = 6, dk (the dimensionality of the linearly projected keys) = 6,
learning rate = 0.002, and number of samples = 2, decay rate (γ ) = 35 (in equation 7).

Appendix D. Sketch Proof of Theorem 2

Proof sketch: For a simple transformer architecture, i.e., 1-block 1-head without residual connec-
tion, an attention score matrix As in equation 4, by Assumption 1 and 2, contains nonzero entries
wherever a parental event for a specific event occurs in the past history, and zero entries for non
parental events. Entries of non-parental events remain the same order through sigmoidal transforma-
tion in equation 8, since (shifted) sigmoid is monotonically increasing. Our Attention-to-Influence
procedure is to aggregate such entries by summation. There must exist a threshold τ that separates
aggregated scores of nonparental events (effectively zeros) and those of parental events, because
positive numbers are dense. Hence qϕ(Aij |S) effectively learns decomposed parents for each event
as we assume pairwise influence.

9. https://github.com/SimiaoZuo/Transformer-Hawkes-Process
10. https://idea.rpi.edu/IDEA Cluster Access
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