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Abstract

Parameter-freeness in online learning refers to the adaptivity of an algorithm with1

respect to the optimal decision in hindsight. In this paper, we design such algorithms2

in the presence of switching cost - the latter penalizes the optimistic updates3

required by parameter-freeness, leading to a delicate design trade-off. Based on4

a novel dual space scaling strategy, we propose a simple yet powerful algorithm5

for Online Linear Optimization (OLO) with switching cost, which improves the6

existing suboptimal regret bound [ZCP22a] to the optimal rate. The obtained7

benefit is extended to the expert setting, and the practicality of our algorithm is8

demonstrated through a sequential investment task.9

1 Introduction10

Online learning [CBL06, Haz16, Ora19] is a powerful setting for modeling sequential decision11

making tasks, such as neural network training, financial investment and robotic control. In each round,12

an agent picks a prediction xt in a convex domain X , receives a convex and Lipschitz loss function lt13

that depends on x1, . . . , xt, and suffers the loss lt(xt). The goal is to ensure that in any environment,14

the cumulative loss of the agent is never much worse than that of any fixed prediction u ∈ X . That is,15

one aims to upper-bound the regret
∑T

t=1 [lt(xt)− lt(u)], for all time horizon T ∈ N+, comparator16

u ∈ X and loss sequence l1, . . . , lT .17

Conventional solutions have a minimax nature. For example, if X is bounded, then using gradient18

descent with a conservative learning rate schedule, one can guarantee the optimal O(
√
T ) regret19

bound independent of u [Zin03]. Despite its popularity, such an approach has a few limitations.20

1. It requires setting the learning rate based on the diameter of the domain. Many practical problems21

are naturally unconstrained, making this approach inapplicable.22

2. One may have prior information on the optimal fixed prediction (i.e., the comparator u∗ that23

maximizes the regret), possibly from domain knowledge or transfer learning. In that case, the24

minimax approach cannot utilize it to obtain a better guarantee.25

Recent studies of parameter-free online learning [LS15, OP16, CO18] aim to address these issues.26

The domain does not need to be bounded, and the regret bound is an increasing function of d(u∗, x1),27

where d(·, ·) is some suitable distance measure. Intuitively, these algorithms are both optimistic and28

robust: When we have prior information on u∗, we can pick x1 such that d(u∗, x1), and consequently29

the regret bound, are both low. Meanwhile, even when our initialization x1 is wrong (i.e., d(u∗, x1)30

is large), the regret bound is still almost as good (up to logarithmic factors) as that of gradient descent31

with the best learning rate in hindsight. Such properties have shown benefits in many applications,32

e.g., [OT17, JO19, vdH19].33

In this paper, we extend the design of parameter-free algorithms to a classical setting with switching34

costs. Here the agent is penalized not only by its loss, but also by how fast it changes its predictions.35
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Practically, switching costs are useful whenever the smooth operation of a system is favored, such36

as in network routing, control of electrical grid, portfolio management with transaction cost, etc.37

Mathematically, with a given weight λ ≥ 0 and a norm ∥·∥1, our goal is to show a parameter-free38

bound for the augmented regret39

T∑
t=1

[lt(xt)− lt(u)] + λ

T−1∑
t=1

∥xt − xt+1∥ .

While gradient descent can incorporate the switching cost by scaling its learning rate, extending40

parameter-free algorithms is a lot harder. Essentially, parameter-freeness is a form of adaptivity, and41

just like other adaptive algorithms, its key idea is to quickly respond to the incoming information and42

hedge aggressively. Switching cost, on the other hand, encourages the agent to stay still. Therefore,43

achieving our goal requires a delicate balance between the two opposite considerations.44

Similar trade-offs between adaptivity and switching cost have led to interesting results in the past.45

For example, [Gof14] showed that the gradient variance adaptivity well-studied in the standard online46

learning setting is impossible with normed switching costs, thus establishing a clear separation.47

[DM19] showed that a common analytical technique for switching costs is incompatible to the48

so-called “strong adaptivity” (i.e., a form of adaptivity w.r.t. nonstationary comparators). Regarding49

our goal, [ZCP22a] proposed the first parameter-free algorithm with switching cost, but the obtained50

regret bound is sub-optimal in multiple ways. The present work aims at closing this gap.51

1.1 Main contribution52

We develop parameter-free algorithms for two fundamental settings: (i) Online Linear Optimization53

(OLO) with switching cost; (ii) Learning with Expert Advice (LEA) with switching cost.54

1. For one-dimensional unconstrained OLO with switching cost, assuming loss gradients |gt| ≤ 155

and initial prediction2 x1 = 0, we propose an algorithm that guarantees56

T∑
t=1

gt(xt − u) + λ

T−1∑
t=1

|xt − xt+1| = C
√
λT + |u|O

(√
λT log(C−1 |u|)

)
,

where C > 0 is any hyperparameter chosen by the user. Our bound achieves multiple forms57

of optimality with respect to λ, |u| and T . Notably, a doubling trick can convert it to C +58

|u|O
(√

λT log(C−1λ |u|T )
)

, which is a substantial improvement over the existing suboptimal59

bound C + |u|O
(
λ
√
T log(C−1λ |u|T )

)
[ZCP22a]. Our improvement relies on a novel dual60

space scaling strategy for potential methods. Compared to [ZCP22a], our algorithm and analysis61

are both simpler. Extensions to bounded and high-dimensional domains are presented.62

2. Next, we convert this result from OLO to LEA. We demonstrate how classical techniques [LS15,63

OP16] are designed to have large switching costs, and then propose a fix with a clear geometric64

interpretation. This leads to the first parameter-free algorithm for LEA with switching cost.65

Concluding these theoretical results, our algorithm is applied to a portfolio management task with66

transaction costs. Numerical results support its superiority over the existing approach [ZCP22a].67

1.2 Background and notation68

Online learning basics Throughout this paper we will only consider linear losses. The generality69

of our setting is preserved, since convex losses can be reduced to linear losses through the relation70 ∑T
t=1[lt(xt)− lt(u)] ≤

∑T
t=1 ⟨∇lt(xt), xt − u⟩ [Haz16, Ora19]. Online learning with linear losses71

is called Online Linear Optimization (OLO). As its important special case, Learning with Expert72

Advice (LEA) considers OLO on a probability simplex, but aims at a different form of regret bound73

due to its different geometry.74

Classical minimax approaches in online learning include Online Mirror Descent (OMD) and Follow75

the Regularized Leader (FTRL), with Online Gradient Descent (OGD) being their most well-known76

1We use the L1 norm for a unified view of OLO and LEA. Our strategy can be extended to other norms.
2For general x1, we can replace |u| in the regret bound by |u− x1|.
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special case. We write “gradient descent” as the minimax baseline for the ease of exposition.77

Moreover, both OMD and FTRL have elegant duality interpretations [Ora19, Section 6.4.1 and 7.3],78

involving simultaneous updates on the primal space (the domain X ) and the dual space (the space of79

gradients). We will exploit this duality in our analysis.80

Parameter-free online learning Also known as comparator-adaptivity, parameter-free online81

learning aims at matching the optimally-tuned gradient descent in hindsight, without knowing the82

correct tuning parameter (i.e., the optimal comparator u∗). The associated regret bound can appear in83

different forms, depending on the specific learning setting.84

1. For LEA, a parameter-free bound has the form O(
√
T ·KL(u||π)), where u and π are distributions85

on the expert space representing the comparator and a user-chosen prior. Such an idea was initiated86

in [CFH09], and the analysis was improved and extended by a series of works [CV10, LS15,87

KVE15, CLW21, NBC+21]. Notably, a parameter-free LEA algorithm naturally induces a bound88

on the ε-quantile regret - the regret with respect to the ε-quantile best expert; this is particularly89

meaningful when the number of experts is large. Lower bounds were considered in [NBC+21].90

We will present an improvement of the
√
KL divergence in this paper. Frameworks that generalize91

root KL to f -divergences have been studied in [Alq21, NBC+21], but to our knowledge, no92

existing algorithm guarantees a better divergence term than root KL, even without switching costs.93

2. For unconstrained OLO, typical parameter-free bounds are C + ∥u∥O
(√

T log(C−1 ∥u∥∗ T )
)

94

or C
√
T + ∥u∥O

(√
T log(C−1 ∥u∥∗)

)
, where a prior x1 can be added by letting u ← u −95

x1. These two bounds are both Pareto-optimal [ZCP22b], as they represent different trade-96

offs on the loss (the regret at u = x1) and the asymptotic regret (when ∥u− x1∥ is large).97

Existing works [MO14, CO18, FRS18, MK20, JC22] were mostly independent of the LEA98

setting, but unified views were presented in [FRS15, OP16]. Lower bounds were discussed in99

[SM12, Ora13, ZCP22b].100

Switching cost Motivated by numerous applications, switching costs in online decision making have101

been studied from many different angles. For example, beside online learning, the online algorithm102

community has investigated settings like smoothed online optimization [CGW18, GLSW19, LQL20]103

and convex body chasing [BLLS19, Sel20], where the loss function lt is observed before the agent104

picks the prediction xt. There, the switching cost is the key consideration that prevents the trivial105

strategy xt ∈ argminx lt(x). As for online learning, an additional complication is that xt (e.g., the106

investment portfolio) should be selected without knowing lt (e.g., tomorrow’s stock price).107

Even within online learning, there are several ways to model the switching cost. In cases like network108

routing, every switch means changing the packet route, which can be costly. Therefore, one needs a109

lazy agent whose amount of switches (or its expectation) [KV05, GVW10, AT18, CYLK20, SK21]110

is as low as possible - a good modeling candidate is 1[xt ̸= xt+1]. Alternatively, one could take111

a smooth view [ABL+13, BCKP21, WWYZ21, ZJLY21] where the agent can perform as many112

switches as it wishes, as long as the cumulative distance of switching is low - in this view, switching113

cost can be a norm ∥xt − xt+1∥ or its smoothed variant ∥xt − xt+1∥2. The present work considers114

the L1 norm switching cost motivated by the transaction cost in some financial applications. Notably,115

for LEA, the L1 norm unifies the lazy view and the smooth view [DM19, Section 5.2].116

Although switching costs have been extensively studied, existing works on the combination of117

adaptivity and switching cost are quite sparse. As one should carefully trade-off these two opposite118

requirements, there have been interesting impossibility results [Gof14, DM19], highlighted in our119

introduction. In this regard, one should not believe that every classical adaptivity can be naturally120

achieved with switching cost. Fortunately, we show that the optimal parameter-freeness can indeed121

be achieved, thus improving the suboptimal result in [ZCP22a].122

Relation to downstream problems More generally, incorporating switching costs amounts to123

considering a history-dependent adversary: it can pick loss functions that depend not only on the124

instantaneous prediction xt, but also on the previous prediction xt−1. One could further generalize125

this setting to online learning with memory [CBDS13, AHM15], where the loss depends on a126

fixed-length prediction history, and finally to dynamical systems [ABH+19, SSH20, Sim20], where127

the entire history matters. In fact, a common procedure in nonstochastic control [ABH+19] is to128

bound the risk in the future by a properly scaled switching cost. Achieving parameter-freeness with129

switching cost may benefit these important downstream problems as well, by making algorithms easy130

to combine [Cut19, Cut20, ZCP22a].131
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Notation Let f∗ be the Fenchel conjugate of a function f . ∆(d) represents the d-dimensional prob-132

ability simplex; KL and TV denote the KL divergence and the total variation distance, respectively.133

For two integers a ≤ b, [a : b] is the set of all integers c such that a ≤ c ≤ b. log represents the134

natural logarithm when the base is omitted. Throughout this paper, “increasing” and “positive” are135

not strict (i.e., include equality as well).136

For a twice differentiable function V (t, S) where t represents time and S represents a spatial variable,137

let ∇tV , ∇ttV , ∇SV and ∇SSV be the first and second order partial derivatives. In addition, we138

define discrete derivatives as139

∇̄tV (t, S) := V (t, S)− V (t− 1, S),
140

∇̄SV (t, S) := (1/2) · [V (t, S + 1)− V (t, S − 1)] , (1)
141

∇̄SSV (t, S) := V (t, S + 1) + V (t, S − 1)− 2V (t, S).

2 OLO with switching cost142

This section presents our main result, a parameter-free OLO algorithm with switching cost. We will143

start with the 1D unconstrained setting, followed by extensions to general cases.144

2.1 The 1D unconstrained setting145

We consider the domainX = R, a Lipschitz constant G > 0 for the loss gradients, and a weight λ ≥ 0146

for switching costs. In the t-th round, the agent predicts xt ∈ R, receives a loss gradient gt ∈ [−G,G]147

that depends on past predictions x1:t, and suffers an augmented loss gtxt + λ |xt − xt−1| (w.l.o.g.,148

let x0 = x1 = 0). We consider the augmented regret for all u ∈ R and T ∈ N+:149

RegretλT (u) :=

T∑
t=1

gt(xt − u) + λ

T−1∑
t=1

|xt − xt+1| . (2)

Ignoring the dependence on G for now, our goal is to show a parameter-free bound150

Õ(|u|
√
λT ), more specifically the optimal rates C + |u|O(

√
λT log(C−1λ |u|T )) or C

√
λT +151

|u|O(
√
λT log(C−1 |u|)) for any hyperparameter C > 0. These two cases are equivalent via the152

standard doubling trick [SS11].153

For minimax algorithms like bounded domain gradient descent, one can use scaled learning rates154

ηt ∝ 1/
√
λt to ensure that both sums in (2) are O(

√
λT ), thus obtaining a combined O(

√
λT ) regret155

bound. However, such a divide-and-conquer approach does not apply to parameter-free algorithms,156

as one cannot separately show the desirable bound on the two sums in (2). To see this, suppose157

one could guarantee the second sum alone is at most 1 + |u|O(
√
T log(|u|T )); here we only focus158

on the dependence on |u| and T . Since this cumulative switching cost is an algorithmic quantity159

independent of the comparator, we can take infimum with respect to u and obtain a “budget” of 1 for160

this sum. Following this argument, |xT | ≤ |x1|+
∑T−1

t=1 |xt − xt+1| = O(1). That is, the algorithm161

should only predict around the origin, which clearly leads to large regret with respect to far-away162

comparators, under certain loss sequences.163

The challenge can be motivated in another way. As shown in [Ora19, Figure 9.1], the one-step164

switching cost |xt − xt+1| of parameter-free algorithms can grow exponentially with respect to t,165

whereas such a quantity is uniformly bounded in gradient descent. In fact, the exponential growth is166

the key mechanism for standard parameter-free algorithms (i.e., without switching cost) to cover an167

unconstrained domain fast enough. This is however problematic when switching is penalized, as one168

can no longer control the switching cost by uniformly scaling |xt − xt+1|.169

2.2 Switching-adjusted potential170

To address these issues, one should bound the switching cost and the standard OLO regret in a unified171

framework, instead of treating them separately. The prior work [ZCP22a] used the coin-betting172

approach from [OP16, CO18]. In the t-th round, the algorithm maintains a quantity Wealtht−1; by173

picking a betting fraction βt ∈ [0, 1], the prediction is set to xt = βtWealtht−1. To ensure low174

switching cost, the betting fraction βt in [ZCP22a] is capped by a decreasing upper bound O(1/
√
t).175

Such a hard threshold is very conservative, which could be the reason of their suboptimal result.176
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Algorithm 1 One-dimensional unconstrained OLO with switching costs.

Require: A hyperparameter C > 0, the Lipschitz constant G, and a potential function V (t, S) that
implicitly depends on λ and G. Initialize S0 = 0.

1: for t = 1, 2, . . . do
2: Predict xt = ∇̄SV (t, St−1), and receive the loss gradient gt. Let St = St−1 − gt/G.
3: end for

In contrast, we follow the more general potential framework explored by a parallel line of works177

[MO14, FRS18, MK20, ZCP22b]. Coin-betting is essentially derived from certain types of potentials178

[OP16], and many theoretical results using coin-betting can be recovered by the latter. In general, a179

potential algorithm is defined with a potential function V (t, S), where t represents the time index, and180

S represents a “sufficient statistic”. In each round, the algorithm computes St−1 = −
∑t−1

i=1 gi/G,181

and the prediction xt is the derivative ∇SV evaluated at (t, St−1). We will specifically consider182

Algorithm 1, which is a variant based on the discrete derivative ∇̄SV , cf. (1).183

One could think of the potential framework as the dual approach of FTRL - the potential function184

and the regularizer are naturally Fenchel conjugates. While the FTRL analysis relies on a one-step185

regret bound on the primal space (the domain X , cf. [Ora19, Lemma 7.1]), the potential framework186

constructs a similar one-step relation on the dual space (the space of St, cf. [ZCP22b, Lemma 3.1]).187

Along this interpretation, our key idea is to incorporate switching costs by scaling on the dual188

space, rather than only on the primal space. That is, given a potential function that works without189

switching costs, we scale the sufficient statistic sent to its second argument by a function of λ.190

To better demonstrate this idea, let us first consider a quadratic potential V (t, S) = (1/2) · CGS2.191

The potential method suggests the prediction xt = ∇SV (t, St−1) = C
∑t−1

i=1 gi = xt−1 − Cgt−1,192

which is simply gradient descent with learning rate C. Scaling on the primal space means scaling V193

directly, while scaling on the dual space means scaling the sufficient statistic S. It is clear that both194

cases are equivalent to scaling the effective learning rate, which is the standard way to incorporate195

switching costs in bounded domain gradient descent. In other words, for this gradient descent196

potential, the two types of scaling are essentially the same.197

Now, to achieve optimal parameter-freeness, we need a better potential where scaling on the dual198

space actually makes a difference. With some α that will eventually depend on λ, we consider199

Algorithm 1 induced by the potential200

Vα(t, S) = C
√
αt

[
2

∫ S/
√
4αt

0

(∫ u

0

exp(x2)dx

)
du− 1

]
. (3)

When the Lipschitz constant G = 1, it has been shown [ZCP22b] that α = 1/2 leads to parameter-201

freeness without switching cost. Here we use α = 4λG−1 + 2, which amounts to scaling both202

the primal space and the dual space: on the primal space, we scale up the overall prediction by203

Θ(
√
λG−1 + 1), and on the dual space we scale down the sufficient statistic S by Θ(1/

√
λG−1 + 1).204

The latter gives us the optimal parameter-free bound (i.e., Pareto-optimal rate in |u| and T ), while the205

former helps us obtain the optimal rate in λ. Due to incorporating λ into the potential function Vα,206

we call our approach the switching-adjusted potential method.207

Finally, although the definition of Vα seems mysterious at first glance, it is actually derived from208

a clean continuous-time analysis presented in Appendix A.1. Such a continuous limit perspective209

provides an intuitive justification for our scaling strategy.210

2.3 Optimal parameter-free bound211

Despite its simplicity, our approach improves the existing result [ZCP22a] by a considerable margin.212

We next present our 1D optimal parameter-free bound, discuss its significance, and sketch its proof.213

Theorem 1. If α = 4λG−1 + 2, then Algorithm 1 induced by the potential Vα guarantees214

RegretλT (u) ≤
√
(4λG+ 2G2)T

[
C + |u|

(√
4 log

(
1 +
|u|
C

)
+ 2

)]
,

for all u ∈ R and T ∈ N+.215

5



Theorem 1 simultaneously achieves several forms of optimality.216

1. Pareto-optimal loss-regret trade-off: considering the dependence on u and T , RegretλT (u) =217

O
(
|u|
√

T log |u|
)

, while the cumulative loss satisfies RegretλT (0) = O(
√
T ). An existing lower218

bound [ZCP22b, Theorem 10] shows that even without switching cost, all algorithms satisfying a219

O(
√
T ) loss bound must suffer a Ω

(
|u|
√
T log |u|

)
regret bound. In this sense, our algorithm220

attains a Pareto-optimal loss-regret trade-off, in a strictly generalized setting with switching costs.221

2. On T alone: RegretλT (u) = O(
√
T ). Despite achieving parameter-freeness (i.e., adaptivity to u),222

the asymptotic rate on T is still the optimal one, matching the well-known minimax lower bound.223

3. On λ alone: RegretλT (u) = O(
√
λ). Our bound has the optimal dependence on the switching cost224

weight [GVW10, Theorem 5].225

To compare Theorem 1 to [ZCP22a], we have to convert them to the same loss-regret trade-off,226

i.e., both guaranteeing RegretλT (0) = O(1) or RegretλT (0) = O(
√
T ). Here we take the first227

approach - details are presented in Appendix A.4. By a doubling trick, assuming G = 1 for clarity,228

our bound can be converted to C + |u|O
(√

λT log(C−1λ |u|T )
)

, which improves the rate C +229

|u|O
(
λ
√
T log(C−1λ |u|T )

)
from [ZCP22a, Theorem 1]. Specifically, our converted upper bound230

also attains Pareto-optimality in this regime (i.e., matching the lower bound Ω
(
|u|
√

T log(|u|T )
)

231

in [Ora13]), whereas the existing approach does not.232

The proof of Theorem 1 is sketched as follows, with the formal analysis deferred to Appendix A.3. It233

mostly follows a standard potential argument, which is another benefit over the existing approach -234

the idea of this proof is easier to interpret and generalize.235

Proof sketch of Theorem 1 The first step is to show a one-step bound on the growth rate of the236

potential. If there is no switching cost, then the Discrete Ito formula [Kle13, HLPR20, ZCP22b] can237

serve this purpose, which applies to any convex potential V .238

Lemma 2.1 (Lemma 3.1 of [ZCP22b]). If the potential function V (t, S) is convex in S, then against239

any adversary, Algorithm 1 guarantees for all t ∈ N+,240

V (t, St)− V (t− 1, St−1) ≤ −G−1gtxt + ∇̄tV (t, St−1) + (1/2) · ∇̄SSV (t, St−1).

Our key observation is the following lemma, which incorporates switching costs into Vα.241

Lemma 2.2. For all α > 0, consider Algorithm 1 induced by the potential function Vα. For all242

t ∈ N+,243

|xt − xt+1| ≤ ∇̄SVα(t, St−1 + 1)− ∇̄SVα(t, St−1 − 1).

Combining the above, if we define244

∆t := ∇̄tVα(t, St−1) +
1

2
∇̄SSVα(t, St−1) +G−1λ

[
∇̄SVα(t, St−1 + 1)− ∇̄SVα(t, St−1 − 1)

]
,

(4)
then a telescopic sum yields a cumulative loss bound245

RegretλT (0) ≤
T∑

t=1

(gtxt + λ |xt − xt+1|) ≤ −G · Vα(T, ST ) +G

T∑
t=1

∆t.

To proceed, we need to control the residual term ∆t, which may seem problematic due to its246

complicated form. Fortunately, a careful analysis shows that ∆t vanishes with a proper choice of α!247

Lemma 2.3. If α ≥ 4λG−1 + 2, then for all t and against any adversary, ∆t ≤ 0.248

Finally, with the updated loss bound RegretλT (0) ≤ −G · Vα(T, ST ), our regret bound follows from249

the classical loss-regret duality [MO14, Ora19].250

2.4 Extension to bounded and higher-dimensional domains251

Generalizing the above 1D setting, we discuss the extension of Algorithm 1 to bounded domains and252

higher-dimensional domains. Due to limited space, details are presented in Appendix A.5.253
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First, for a constrained domain X ⊂ R, we can use a well-known black-box reduction [CO18,254

Section 4] on top of Algorithm 1 such that the exact bound in Theorem 1 carries over (w.r.t. any255

u ∈ X ). Similar strategies apply to higher-dimensional problems, but here we emphasize the256

1D special case due to an additional feature: if the domain X has a finite diameter D, then the257

switching cost alone of the combined algorithm has a Õ(D
√
τ) bound on any time interval of length258

τ . This could be useful when switching costs have high priority [SK21, WWYZ21] and should be259

independently bounded. Moreover, it allows the combination of parameter-free algorithms [ZCP22a]260

in settings with long term prediction effects (e.g., switching cost or memory).261

Theorem 2. Consider the setting of Section 2.1, but on a (smaller) closed and convex domain X ⊂ R.262

Let x∗ be an arbitrary point in X . For all C > 0, Algorithm 3 in Appendix A.5 guarantees263

RegretλT (u) ≤
√
(4λG+ 2G2)T

[
C + |u− x∗|

(√
4 log

(
1 +
|u− x∗|

C

)
+ 2

)]
,

for all u ∈ X and T ∈ N+. Moreover, if X has a finite diameter D, then on any time interval264

[T1 : T2] ⊂ N+, the same algorithm guarantees265

T2−1∑
t=T1

|xt − xt+1| ≤ 22
√

T2 − T1

[
2D + C + 2D

√
log(1 +DC−1)

]
.

From a technical perspective, the second part of Theorem 2 is particularly interesting due to its266

non-black-box use of the reduction approach: we characterize how this reduction (implicitly) controls267

the unconstrained base algorithm, resulting in the “concentration” of its sufficient statistic St (i.e.,268

St = O(
√
t)) as if losses are stochastic. A similar bound was presented in [ZCP22a], but it critically269

relies on hard-thresholding a betting fraction, which, as we have shown, is suboptimal. In contrast,270

we use a different analysis on the improved base algorithm (Algorithm 1) to achieve this switching271

cost bound and an improved regret bound simultaneously.272

As for higher dimensions, let us consider the setting where X = Rd, ∥gt∥∞≤ G, and the switching273

costs are measured by the L1 norm. This serves as a nice bridge towards our LEA approach and274

financial applications. We run Algorithm 1 on each coordinate separately [SM12], and scale the275

hyperparameter C by 1/d.276

Theorem 3. Consider OLO with switching costs on the domain X = Rd; assume loss gradients277

satisfy ∥gt∥∞ ≤ G. For all C > 0, Algorithm 4 in Appendix A.5 guarantees (α = 4λG−1 + 2)278

T∑
t=1

⟨gt, xt − u⟩+ λ

T−1∑
t=1

∥xt − xt+1∥1 ≤ G
√
αT

[
C + ∥u∥1

(√
4 log

(
1 +
∥u∥∞ d

C

)
+ 2

)]
,

for all u ∈ Rd and T ∈ N+.279

3 LEA with switching cost280

Our Algorithm 1 can also be applied to LEA with switching cost, resulting in the first parameter-free281

algorithm there. Conversion techniques without switching costs were studied in [LS15, OP16],282

and since then, they have become standard tools for the online learning community. Here we283

present a different view on this conversion problem, based on its connection to the constrained284

domain reduction [CO18] adopted in our OLO analysis. In particular, it leads to a mechanism for285

incorporating switching costs, with a clear geometric interpretation.286

The setting of LEA with switching cost is a special case of the high-dimensional OLO problem. Let d287

be the number of experts. Then, compared to the setting of Theorem 3, we simply change X to the288

probability simplex ∆(d). The main difference with OLO is the form of parameter-free bounds - here289

we aim at RegretλT (u) = O(
√
T ·KL(u||π)), where π ∈ ∆(d) is a prior chosen at the beginning.290

Achieving such a root KL bound relies on special conversion techniques.291

Existing approaches [LS15, OP16] have the following procedure. Given a 1D OLO algorithm292

that predicts on R+, independent copies are created for each coordinate and updated using certain293

surrogate losses. A meta-algorithm queries the coordinate-wise predictions {wt,i; i ∈ [1 : d]},294
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Figure 1: Switching costs in LEA-OLO reductions. Left: existing approaches. Right: ours, where the
projection of wt contains two cases. (i) ∥wt∥1≥ 1, shown in green; (ii) ∥wt∥1< 1, shown in black.

collects them into a weight vector wt = [wt,1, . . . , wt,d], and finally predicts the scaled weight295

xt = wt/∥wt∥1 on ∆(d). Despite its general success, such an approach has a discontinuity problem296

when switching costs are incorporated: if two consecutive weights wt and wt+1 are both close to the297

origin, then simply scaling them to ∆(d) can lead to a large switching cost, even when ∥wt − wt+1∥1298

is small. This problem is exacerbated by the typical setting3 of w1 = 0, due to the associated analysis.299

A graphical demonstration is provided in Figure 1 (Left).300

Our solution is based on a unified view of the LEA-OLO reduction and the constrained domain301

reduction [CO18]. Starting without switching costs, we observe that the general Banach version of302

the latter can also convert OLO to LEA, therefore specialized techniques are not required for this303

task. Algorithmically, we set xt ∈ argminx∈∆(d)∥x− wt∥1 as opposed to xt = wt/∥wt∥1. The304

surrogate losses for the base algorithms are also different, which we elaborate in Appendix B.3.305

A major benefit of this unified view is the non-uniqueness of the L1 norm projection: if ∥wt∥ < 1,306

then any xt ∈ ∆(d) satisfying {xt,i ≥ wt,i;∀i} minimizes ∥x− wt∥1 on ∆(d). This brings more307

flexibility to the algorithm design: for the setting with switching costs, we adopt (i) the orthogonal308

projection xt = wt + d−1(1− ∥wt∥1) when ∥wt∥1≤ 1, and (ii) the scaling xt = wt/∥wt∥1 when309

∥wt∥1> 1. The orthogonal projection is better for controlling switching costs, as shown in Figure 1310

(Right). Concretely, this leads to the first parameter-free algorithm for LEA with switching cost.311

Theorem 4. For LEA with switching cost, given any prior π in the relative interior of ∆(d), Algo-312

rithm 5 from Appendix B.2 guarantees313

T∑
t=1

⟨gt, xt − u⟩+ λ

T−1∑
t=1

∥xt − xt+1∥1 =
[√

TV(u||π) ·KL(u||π) + 1
]
·O
(√

(λG+G2)T
)
,

for all u ∈ ∆(d) and T ∈ N+.314

We emphasize two strengths of this bound.315

1. Since it is parameter-free, such a bound only implicitly depends on d through the divergence term316 √
TV ·KL. In favorable cases we may have a good prior π such that TV(u||π)·KL(u||π) = O(1);317

this will save us a
√
log d factor compared to minimax algorithms (with switching costs), such as318

Follow the Lazy Leader [KV05] and Shrinking Dartboard [GVW10].319

2. Even without switching costs, we improve the
√
KL divergence term in existing parameter-free320

bounds [CFH09, LS15, OP16] to
√
TV ·KL. The latter is better since (i) TV is always less than 1,321

and (ii) there exist p, q ∈ ∆(d) such that TV(p||q) ·KL(p||q) ≤ 1 but KL(p||q) ≥
√
log d− o(1)322

(cf. Appendix B.3). In other words, compared to
√
KL, the

√
TV ·KL bound is never worse (up323

to constants), and can save at least a (log d)1/4 factor in certain cases. Generalizations of root KL324

to f-divergences have been considered in [Alq21, NBC+21], but to our knowledge, no existing325

algorithm guarantees a better divergence term than root KL.326

3When wt = 0, xt can be arbitrary on ∆(d) by definition. However, as wt changes continuously w.r.t. the
observed information, it could hover around 0 at some point, thus experiencing the sketched problem.

8



4 Unconstrained investment with transaction cost327

Finally, we present applications to a portfolio selection problem with transaction costs. Online328

portfolio selection has been studied by multiple communities, resulting in a large amount of literature329

(see [LH14, Doc16] for general expositions). Here we consider an unconstrained setting, allowing330

both short selling (i.e., holding negative amount of assets) and margin trading (i.e., borrowing money331

to buy assets). Its connections and differences to the classical rebalancing setting [Cov91, CO96,332

HSSW98, KV02, LWZ18] are detailed in Appendix C.1.333

We consider a market with d assets and discrete trading period t ∈ N+. In the t-th round, an algorithm334

chooses a portfolio vector xt = [xt,1, . . . , xt,d] ∈ Rd, where xt,i is the number of shares of the335

i-th asset that the algorithm suggests to hold. Compared to the previous round, we need to buy336

xt,i − xt−1,i shares4 (or sell, if negative), which requires paying a λ |xt,i − xt−1,i| transaction cost5.337

Then, the market reveals a number gt,i ∈ [−G,G], which represents the price change per share (of338

the i-th asset) in this round. This effectively increases the value of our portfolio by ⟨gt, xt⟩.339

The considered performance metric is the increased amount of wealth on any time horizon [1 : T ] ⊂340

N+, and such wealth includes the total value of our portfolio plus cash. Our goal is to show that the341

performance of our algorithm is never much worse than that of any unconstrained Buy-and-Hold342

(BAH) strategy, which picks a portfolio vector u ∈ Rd at the beginning and holds that amount343

throughout the considered time horizon. That is, we aim to upper bound
∑T

t=1 ⟨−gt, xt − u⟩ +344

λ
∑T−1

t=1 ∥xt − xt+1∥1 for all u ∈ Rd and T ∈ N+. This is exactly the setting of Theorem 3 with345

flipped gradients, therefore the same theoretical result carries over.346

To complement the theory, we present some numerical results on a synthetic market. Let G = 1,347

λ = 0.1, and the market contains five assets with different return characteristics. Each gt,i is the348

summation of a i.i.d. noise, a periodic fluctuation and a constant trend, e.g.,349

gt,i = 0.6 ·Uniform[−1, 1] + 0.2 sin [(t/500 + 1)π] + 0.2.
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Figure 2: Synthetic market. Both
algorithms are in their default
parameter-free implementation.

Two algorithms are tested, our Algorithm 4 (i.e., “ours”),350

and the baseline [ZCP22a, Algorithm 1, adapted]. Both al-351

gorithms require a confidence parameter (our C, and the ini-352

tial wealth for the baseline, also denoted by C). They are353

set to 1 following the practice of parameter-free algorithms354

[OP16, CLO20, ZCP22a]. Each algorithm is tested in 50355

random trials, and the increased wealth
∑t

τ=1 ⟨gτ , xτ ⟩ −356

λ
∑t−1

τ=1 ∥xτ − xτ+1∥1 (mean ± std) is plotted in Figure 2,357

higher is better. In this setting, our algorithm beats the baseline358

by a considerable margin, due to being a lot less conservative.359

Finally, detailed settings and further experiments, including360

preliminary results on historical US stock data, are deferred to361

Appendix C.2 and C.3. Specifically, we also test different λ to362

show that our algorithm scales to transaction costs better.363

5 Conclusion364

The present work investigates the design of parameter-free algorithms in the presence of switching365

cost. By carefully trading off these two opposite considerations, we propose a simple algorithm for366

OLO with switching cost, which improves the suboptimal regret bound [ZCP22a] to the optimal rate.367

Extensions of this algorithm lead to new results for bounded domain OLO, parameter-free LEA, and368

unconstrained portfolio selection.369

Limitation and future work Our result requires a known G and a time-invariant λ, which could370

be generalized in future works. Different from [ZCP22a], we did not discuss applications to control371

theory, which is interesting on its own. Also, one may combine our portfolio selection approach with372

adversarial rebalancing and stochastic modeling, in order to further improve its practical performance.373

4W.l.o.g., assume x0 = x1.
5The coefficient λ can depend on i, the sign of xt,i − xt+1,i and the sign of xt,i, but for simplicity we use

the same λ for all cases.
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