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ABSTRACT

The success of deep learning is due in large part to our ability to solve certain mas-
sive non-convex optimization problems with relative ease. Though non-convex
optimization is NP-hard, simple algorithms – often variants of stochastic gradi-
ent descent – exhibit surprising effectiveness in fitting large neural networks in
practice. We argue that neural network loss landscapes contain (nearly) a single
basin after accounting for all possible permutation symmetries of hidden units
a la Entezari et al. (2021). We introduce three algorithms to permute the units
of one model to bring them into alignment with a reference model in order to
merge the two models in weight space. This transformation produces a function-
ally equivalent set of weights that lie in an approximately convex basin near the
reference model. Experimentally, we demonstrate the single basin phenomenon
across a variety of model architectures and datasets, including the first (to our
knowledge) demonstration of zero-barrier linear mode connectivity between in-
dependently trained ResNet models on CIFAR-10 and CIFAR-100. Additionally,
we identify intriguing phenomena relating model width and training time to mode
connectivity. Finally, we discuss shortcomings of the linear mode connectivity
hypothesis, including a counterexample to the single basin theory.

1 INTRODUCTION

We investigate the unreasonable effectiveness of stochastic gradient descent (SGD) algorithms on
the high-dimensional non-convex optimization problems of deep learning. In particular,

1. Why does SGD thrive in optimizing high-dimensional non-convex deep learning loss land-
scapes despite being noticeably less robust in other non-convex optimization settings, like
policy learning (Ainsworth et al., 2021), trajectory optimization (Kelly, 2017), and recom-
mender systems (Kang et al., 2016)?

2. What are all the local minima? When linearly interpolating between initialization and final
trained weights, why does the loss smoothly and monotonically decrease (Goodfellow &
Vinyals, 2015; Frankle, 2020; Lucas et al., 2021; Vlaar & Frankle, 2021)?

3. How can two independently trained models with different random initializations and data
batch orders inevitably achieve nearly identical performance? Furthermore, why do their
training loss curves look identical?

We posit that the final phenomenon referenced in item 3 points to the existence of some yet un-
characterized invariance(s) in the training dynamics that cause independent training runs to exhibit
almost identical characteristics. Hecht-Nielsen (1990) noted the permutation symmetries of hidden
units in neural networks; briefly, one can swap any two units of a hidden layer in a network and –
assuming weights are adjusted accordingly – network functionality will not change. Recently, En-
tezari et al. (2021) conjectured that these permutation symmetries may let us linearly connect points
in weight space with no detriment to the loss.

Conjecture 1 (Permutation invariance, informal (Entezari et al., 2021)). Most SGD solutions belong
to a set whose elements can be permuted so that no barrier (as in Definition 2.2) exists on the linear
interpolation between any two permuted elements.
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ARCHITECTURE NUM. PERMUTATION SYMMETRIES

MLP (3 layers, 512 width) 10 ∧ 3498
VGG16 10 ∧ 35160
ResNet50 10 ∧ 55109

Atoms in the observable universe 10 ∧ 82

Table 1: Permutation symmetries of deep learning models vs. an upper estimate on the number
of atoms in the known, observable universe. Deep learning loss landscapes contain incomprehen-
sible amounts of geometric repetition.

We refer to such solutions as being linearly mode connected (LMC) (Frankle et al., 2020). If true,
Conjecture 1 will both materially expand our understanding of how SGD works in the context of
deep learning and offer a credible explanation for the preceding phenomena, in particular.

Contributions. In this paper, we attempt to uncover what invariances may be responsible for the
phenomena cited above and the unreasonable effectiveness of SGD in deep learning. We make the
following contributions:

1. Matching methods. We propose three new algorithms, grounded in concepts and techniques
from combinatorial optimization, to align the weights of two independently trained models.
Where appropriate, we prove hardness results for these problems and propose approximation
algorithms. Our fastest method identifies permutations in mere seconds on current hardware.

2. Relationship to SGD. We demonstrate by means of counterexample that linear mode con-
nectivity is an emergent property of SGD training, not of model architectures. We connect
this result to prior work on the implicit biases of SGD.

3. Experiments, including zero-barrier LMC for ResNets. Empirically, we explore the exis-
tence of linear mode connectivity modulo permutation symmetries in experiments across
MLPs, CNNs, and ResNets trained on MNIST, CIFAR-10, and CIFAR-100. We con-
tribute the first-ever demonstration of zero-barrier LMC between two independently trained
ResNets. We explore the relationship between LMC and model width as well as training
time. Finally, we show evidence of our methods’ ability to combine models trained on inde-
pendent datasets into a merged model that outperforms both input models in terms of test loss
(but not accuracy) and is no more expensive in compute or memory than either input model.

2 BACKGROUND

Although our methods can be applied to arbitrary model architectures, we proceed with the multi-
layer perceptron (MLP) for its ease of presentation (Bishop, 2007). Consider an L-layer MLP,

f(x; Θ) = zL+1, zℓ+1 = σ(Wℓzℓ + bℓ), z1 = x,

where σ denotes an element-wise nonlinear activation function. Furthermore, consider a loss, L(Θ),
that measures the suitability of a particular set of weights Θ towards some goal, e.g., fitting to a
training dataset.

Central to our investigation is the phenomenon of permutation symmetries of weight space. Given
Θ, we can apply some permutation to the output features of any intermediate layer, ℓ, of the model,
denoted by a permutation matrix P ∈ Sd,1

zℓ+1 = P⊤Pzℓ+1 = P⊤Pσ(Wℓzℓ + bℓ) = P⊤σ(PWℓzℓ + Pbℓ)

for σ, an element-wise operator. It follows that as long as we reorder the input weights of layer ℓ+1
according to P⊤, we will have a functionally equivalent model. To be precise, if we define Θ′ to be
identical to Θ with the exception of

W ′
ℓ = PWℓ, b′ℓ = Pbℓ, W ′

ℓ+1 = Wℓ+1P
⊤,

1We denote the set of all d × d permutation matrices – isomorphic to the symmetric group – as Sd, to the
possible chagrin of pure mathematicians.
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then the two models are functionally equivalent: f(x; Θ) = f(x; Θ′) for all inputs x. This implies
that for any trained weights Θ, there is an entire equivalence class of functionally equivalent weight
assignments, not just one such Θ, and convergence to any one specific element of this equivalence
class, as opposed to any others, is determined only by random seed. We denote a functionality-
preserving permutation of weights as π(Θ).

ΘA ΘB

π(ΘB)

Git Re-BasinGit Re-Basin

Figure 1: Git Re-Basin merges models by tele-
porting solutions into a single basin. ΘB is per-
muted into π(ΘB) so that it lies in the same basin
as ΘA.

Consider the task of reconciling the weights of
two, independently trained models, A and B,
with weights ΘA and ΘB , respectively, such
that we can linearly interpolate between them.
We assume that models A and B were trained
with equivalent architectures but different ran-
dom initializations, data orders, and potentially
different hyperparameters or datasets, as well.
Our central question is: Given ΘA and ΘB , can
we identify some π such that when linearly in-
terpolating between ΘA and π(ΘB), all inter-
mediate models enjoy performance similar to
ΘA and ΘB?

We base any claims of loss landscape convex-
ity on the usual definition of multi-dimensional
convexity in terms of one-dimensional convex-
ity per

Definition 2.1 (Convexity). A function f : RD → R is convex if every one-dimensional slice is
convex, i.e., for all x, y ∈ RD, the function g(λ) = f((1− λ)x+ λy) is convex in λ.

Due to Definition 2.1, it suffices to show that arbitrary one-dimensional slices of a function are
convex in order to reason about the convexity of complex, high-dimensional functions. In practice,
we rarely observe perfect convexity but instead hope to approximate it as closely as possible. Fol-
lowing Draxler et al. (2018), Entezari et al. (2021), Frankle et al. (2020) and others, we measure
approximations to convexity via “barriers.”

Definition 2.2 (Loss barrier (Frankle et al., 2020)). Given two points ΘA,ΘB such that L(ΘA) ≈
L(ΘB), the loss barrier is defined as maxλ∈[0,1] L((1− λ)ΘA + λΘB)− 1

2 (L(ΘA) + L(ΘB)).

Loss barriers are non-negative, with zero indicating an interpolation of flat or positive curvature.

3 PERMUTATION SELECTION METHODS

We introduce three methods of matching units between model A and model B. Further, we present
an extension to simultaneously merging multiple models in Appendix A.6 and an appealing but
failed method in Appendix A.7.

3.1 MATCHING ACTIVATIONS

Following the classic Hebbian mantra, “[neural network units] that fire together, wire to-
gether” (Hebb, 2005), we propose associating units across two models by performing regression
between their activations. Matching activations between models is compelling since it captures the
intuitive notion that two models must learn similar features to accomplish the same task (Li et al.,
2016). Provided activations for each model, we aim to associate each unit in A with a unit in B. It
stands to reason that a linear relationship may exist between the activations of the two models. We
fit this into the regression framework by constraining ordinary least squares (OLS) to solutions in
the set of permutation matrices, Sd. For activations of the ℓ’th layer, let Z(A),Z(B) ∈ Rd×n denote
the d-dim. activations for all n training data points in models A and B, respectively. Then,

Pℓ = argmin
P∈Sd

n∑
i=1

∥Z(A)
:,i − PZ

(B)
:,i ∥

2 = argmax
P∈Sd

⟨P ,Z(A)(Z(B))⊤⟩F , (1)
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Figure 2: Linear mode connectivity is possible after permuting. Loss when interpolating between
models trained on MNIST, CIFAR-10, and ImageNet. In all cases we can significantly improve over
naı̈ve interpolation. Straight-through estimator matching performs best but is very computationally
expensive. Weight and activation matching perform similarly, although weight matching is orders of
magnitude faster and does not rely on the input data distribution. We hypothesize that the ImageNet
barrier could be reduced by increasing the model width as in Section 5.3.

where ⟨A,B⟩F =
∑

i,j Ai,jBi,j denotes the Frobenius inner product between real-valued matrices
A and B. Conveniently, eq. (1) constitutes a “linear assignment problem” (LAP) (Bertsekas, 1998)
for which efficient, practical algorithms are known. Having solved this assignment problem on each
layer, we can then permute the weights of model B to match model A as closely as possible

W ′
ℓ = PℓW

(B)
ℓ P⊤

ℓ−1, b′ℓ = Pℓb
(B)
ℓ

for each layer ℓ, producing weights Θ′ with activations that align as closely possible with ΘA.

Computationally, this entire process is relatively lightweight: the Z(A) and Z(B) matrices can be
computed in a single pass over the training dataset, and, in practice, a full run through the training
dataset may be unnecessary. Solving eq. (1) is possible due to well-established, polynomial-time al-
gorithms for solving the linear assignment problem (Kuhn, 2010; Jonker & Volgenant, 1987; Crouse,
2016). Also, conveniently, the activation matching at each layer is independent of the matching at
every other layer, resulting in a separable and straightforward optimization problem; this advantage
will not be enjoyed by the following methods.

Dispensing with regression, one could similarly associate units by matching against a matrix of
cross-correlation coefficients in place of Z(A)(Z(B))⊤. We observed correlation matching to work
equally well but found OLS regression matching to be more principled and easier to implement.

3.2 MATCHING WEIGHTS

Instead of associating units by their activations, we could alternatively inspect the weights of the
model itself. Consider the first layer weights, W1; each row of W1 corresponds to a single feature.
If two such rows were equal, they would compute exactly the same feature (ignoring bias terms for
the time being). And, if [W (A)

1 ]i,: ≈ [W
(B)
1 ]j,:, it stands to reason that units i and j should be

associated. Extending this idea to every layer, we are inspired to pursue the optimization

argmin
π

∥vec(ΘA)− vec(π(ΘB))∥2 = argmax
π

vec(ΘA) · vec(π(ΘB)).

We can re-express this in terms of the full weights,

argmax
π={Pi}

⟨W (A)
1 , P1W

(B)
1 ⟩F + ⟨W (A)

2 , P2W
(B)
2 P⊤

1 ⟩F + · · ·+ ⟨W (A)
L , W

(B)
L P⊤

L−1⟩F , (2)

resulting in another matching problem. We term this formulation the “sum of bilinear assignments
problem” (SOBLAP). Unfortunately, this matching problem is thornier than the classic linear as-
signment matching problem presented in eq. (1). Unlike LAP, we are interested in permuting both
the rows and columns of W (B)

ℓ to match W
(A)
ℓ , which fundamentally differs from permuting only

rows or only columns. We formalize this difficulty as follows.

Lemma 1. The sum of a bilinear assignments problem (SOBLAP) is NP-hard and admits no
polynomial-time constant-factor approximation scheme for L > 2.

Lemma 1 contrasts starkly with classical LAP, for which polynomial-time algorithms are known.
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Undeterred, we propose a approximation algorithm for SOBLAP. Looking at a single Pℓ while
holding the others fixed, we observe that the problem can be reduced to a classic LAP,

argmax
Pℓ

⟨W (A)
ℓ , PℓW

(B)
ℓ P⊤

ℓ−1⟩F + ⟨W (A)
ℓ+1 , Pℓ+1W

(B)
ℓ+1Pℓ

⊤⟩F

= argmax
Pℓ

⟨Pℓ, W
(A)
ℓ Pℓ−1(W

(B)
ℓ )⊤ + (W

(A)
ℓ+1)

⊤Pℓ+1W
(B)
ℓ+1 ⟩F .

This leads to a convenient coordinate descent algorithm: go through each layer and greedily select
its best Pℓ. Repeat until convergence. We present this in Algorithm 1.

Algorithm 1: PERMUTATIONCOORDINATEDESCENT

Given: Model weights ΘA =
{
W

(A)
1 , . . . ,W

(A)
L

}
and ΘB =

{
W

(B)
1 , . . . ,W

(B)
L

}
Result: A permutation π = {P1, . . . ,PL−1} of ΘB such that vec(ΘA) · vec(π(ΘB)) is

approximately maximized.

Initialize: P1 ← I, . . . ,PL−1 ← I
repeat

for ℓ ∈ RANDOMPERMUTATION(1, . . . , L− 1) do
Pℓ ← SOLVELAP

(
W

(A)
ℓ Pℓ−1(W

(B)
ℓ )⊤ + (W

(A)
ℓ+1)

⊤Pℓ+1W
(B)
ℓ+1

)
end

until convergence

Although we present Algorithm 1 in terms of an MLP without bias terms, in practice our imple-
mentation can handle the weights of models of arbitrary architectures, including bias terms, residual
connections, convolutional layers, attention mechanisms, and so forth. We propose an extension of
Algorithm 1 to merging more than two models at a time in Appendix A.6.

Lemma 2. Algorithm 1 terminates.

Our experiments showed this algorithm to be fast in terms of both iterations necessary for conver-
gence and wall-clock time, generally on the order of seconds to a few minutes.

Unlike the activation matching method presented in Section 3.1, weight matching ignores the data
distribution entirely. Ignoring the input data distribution and therefore the loss landscape handicaps
weight matching but allows it to be much faster. We therefore anticipate its potential application in
fields such as finetuning (Devlin et al., 2019; Wortsman et al., 2022b;a), federated learning (McMa-
han et al., 2017; Konečný et al., 2016a;b), and model patching (Matena & Raffel, 2021; Sung et al.,
2021; Raffel, 2021). In practice, we found weight matching to be surprisingly competitive with
data-aware methods. Section 5 studies this trade-off.

3.3 LEARNING PERMUTATIONS WITH A STRAIGHT-THROUGH ESTIMATOR

Inspired by the success of straight-through estimators (STEs) in other discrete optimization prob-
lems (Bengio et al., 2013; Kusupati et al., 2021; Rastegari et al., 2016; Courbariaux & Bengio,
2016), we attempt here to “learn” the ideal permutation of weights π(ΘB). Specifically, our goal is
to optimize

min
Θ̃B

L
(
1

2

(
ΘA + proj

(
Θ̃B

)))
, proj(Θ) ≜ argmax

π
vec(Θ) · vec(π(ΘB)), (3)

where Θ̃B denotes an approximation of π(ΘB), allowing us to implicitly optimize π. However,
eq. (3) involves inconvenient non-differentiable projection operations, proj(·), complicating the op-
timization. We overcome this via a “straight-through” estimator: we parameterize the problem in
terms of a set of weights Θ̃B ≈ π(ΘB). In the forward pass, we project Θ̃B to the closest realizable
π(ΘB). In the backwards pass, we then switch back to the unrestricted weights Θ̃B . In this way, we
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Figure 3: Linear mode connectivity is challenging at initialization. We show loss barriers per
training time for MLPs trained on MNIST (left) and CIFAR-10 (right). Loss interpolation plots are
inlaid to highlight results in initial and later epochs. LMC manifests gradually throughout training.
We hypothesize that the variance in CIFAR-10 training is higher due to our MLP architecture being
under-powered relative to the dataset. (Y-axis scales differ in each inlaid plot.)

are guaranteed to stay true to the projection constraints in evaluating the loss but can still compute
usable gradients at our current parameters, Θ̃B .2

Conveniently, we can re-purpose Algorithm 1 to solve proj(Θ̃B). Furthermore, we found that ini-
tializing Θ̃B = ΘA performed better than random initialization. This is to be expected immediately
at initialization since the initial matching will be equivalent to the weight matching method of Sec-
tion 3.1. However, it is not immediately clear why these solutions continue to outperform a random
initialization asymptotically.

Unlike the aforementioned methods, Algorithm 2 attempts to explicitly “learn” the best permutation
π using a conventional training loop. By initializing to the weight matching solution of Section 3.2
and leveraging the data distribution as in Section 3.1, it seeks to offer a best-of-both-worlds solution.
However, this comes at a very steep computational cost relative to the other two methods.

4 INTERLUDE: A COUNTEREXAMPLE

Before arguing for the presence of linear mode connectivity, we step back to consider its limitations.
In Appendix A.3 we present a counterexample proving that there exist models that do not enjoy LMC
under any permutation of weights. Since our two networks have small width, we can simply inspect
all four possible permutations of the intermediate units. We visualize this in Figure 6. Critically, no
permutation results in LMC.

We present this counterexample in part to establish some basic intuition for Conjecture 1 but more
importantly to highlight that any success interpolating between permuted networks is due to inherent
bias in the optimization algorithms used, not the network architectures themselves. To the extent we
can achieve LMC in practice, it follows that it is an artifact of our optimization methods, not our
architectures. SGD is implicitly biased towards solutions admitting LMC.

We also note that there are invariances beyond permutation symmetries: It is possible to move
features between layers, re-scale layers, and so forth. Prior works noted the feature/layer associ-
ation (Nguyen et al., 2021) and re-scaling invariances (Ainsworth et al., 2018), albeit in different
contexts. The importance of these other symmetries and their interplay with SGD remains unclear.

5 EXPERIMENTS

Our base methodology is to separately train two models, A and B, starting from different random
initializations and with different random batch orders, resulting in trained weights ΘA and ΘB ,

2Note again that projecting according to inner product distance is equivalent to projecting according to the
L2 distance when parameterizing the estimator based on the B endpoint. We also experimented with learning
the midpoint directly, Θ̃ ≈ 1

2
(ΘA + π(ΘB)), in which case the L2 and inner product projections diverge. In

testing all possible variations, we found that optimizing the B endpoint had a slight advantage, but all possible
variations performed admirably.
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Figure 4: Wider models exhibit better linear mode connectivity. Training convolutional and
ResNet architectures on CIFAR-10, we ablate their width and visualize loss barriers after weight
matching. Notably, we achieve zero-barrier linear mode connectivity between ResNet models, the
first such demonstration to the authors’ knowledge.

respectively. We then evaluate slices through the loss landscape, L((1 − λ)ΘA + λπ(ΘB)) for
λ ∈ [0, 1], where π is selected according to the methods presented in Section 3.3 Ideally, we seek
a completely flat or even convex one-dimensional slice. As discussed in Section 2, the ability to
exhibit this behavior for arbitrary ΘA,ΘB empirically suggests that the loss landscape contains
only a single basin modulo permutation symmetries.

We remark that a failure to find a π such that linear mode connectivity holds cannot rule out the
existence of a satisfactory permutation. Given the astronomical number of permutation symmetries,
Conjecture 1 is essentially impossible to disprove for any realistically wide model architecture.

5.1 LOSS LANDSCAPES BEFORE AND AFTER MATCHING

We present results for models trained on MNIST (LeCun et al., 1998), CIFAR-10 (Krizhevsky,
2009), and ImageNet (Deng et al., 2009) in Figure 2. Naı̈ve interpolation (π(ΘB) = ΘB) sub-
stantially degrades performance when interpolating. On the other hand, the methods introduced in
Section 3 can achieve much better barriers. We achieve zero-barrier linear mode connectivity on
MNIST with all three methods, although activation matching performs just slightly less favorably
than weight matching and straight-through estimator (STE) matching. We especially note that the
test loss landscape becomes convex after applying our weight matching and STE permutations! In
other words, our interpolation actually yields a merged model that outperforms both models A and
B. We elaborate on this phenomenon in Section 5.4 and Appendix A.6.

On ImageNet we fall short of zero-barrier connections, although we do see a 67% decrease in barrier
relative to naı̈ve interpolation. As we demonstrate in Section 5.3, we can achieve zero-barrier LMC
on CIFAR-10 with large ResNet models. Therefore, we hypothesize that the presence of LMC
depends on the model having sufficient capacity (esp. width) to capture the complexity of the input
data distribution, and that ImageNet results could be improved by expanding model width.

STE matching, the most expensive method, produces the best solutions. Somewhat surprising, how-
ever, is that the gap between STE and the other two methods is relatively small. In particular, it is
remarkable how well Algorithm 1 performs without access to the input data at all. We found that
weight matching offered a compelling balance between computational cost and performance: It runs
in mere seconds (on modern hardware) and produces high-quality solutions.

5.2 ONSET OF MODE CONNECTIVITY

Given the results of Section 5.1, it may be tempting to conclude that the entirety of weight space
contains only a single basin modulo permutation symmetries. However, we found that linear mode
connectivity is an emergent property of SGD training, and we were unable to uncover it early in
training. We explore the emergence of LMC in Figure 3. Concurrent to our work, Benzing et al.
(2022) showed that LMC at initialization is possible using a permutation found at the end of training.

3We also experimented with spherical linear interpolation (“slerp”) and found it to perform slightly better
than linear interpolation; however, the difference was not sufficiently significant to warrant diverging from the
pre-existing literature.
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Note that the final inlaid interpolation plot in Figure 3(right) demonstrates an important shortcoming
of the loss barrier metric, i.e., the interpolation includes points with lower loss than either of the two
models. However, the loss barrier is still positive due to non-negativity, as mentioned in Section 2.

5.3 EFFECT OF MODEL WIDTH

Conventional wisdom maintains that wider architectures are easier to optimize (Jacot et al., 2018;
Lee et al., 2019). We now investigate whether they are also easier to linearly mode connect. We train
VGG-16 (Simonyan & Zisserman, 2015) and ResNet20 (He et al., 2016) architectures of varying
widths on the CIFAR-10 dataset. Results are presented in Figure 4.4

A clear relationship emerges between model width and linear mode connectivity, as measured by
the loss barrier between solutions. Although 1×-sized models did not seem to exhibit linear mode
connectivity, we found that larger width models decreased loss barriers all the way to zero. In
Figure 4(right), we show what is to our knowledge the premiere demonstration of zero-barrier linear
mode connectivity between two large ResNet models trained on a non-trivial dataset.

We highlight that relatively thin models do not seem to obey linear mode connectivity yet still exhibit
similarities in training dynamics. This suggests that either our permutation selection methods are
failing to find satisfactory permutations on thinner models or that some form of invariance other than
permutation symmetries must be at play in the thin model regime.

5.4 MODEL PATCHING, SPLIT DATA TRAINING, AND IMPROVED CALIBRATION
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Naïve weight interp.
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Weight matching
Combined data training

Figure 5: Models trained on disjoint datasets
can be merged constructively. Algorithm 1
makes it possible for two ResNet models trained
on disjoint, biased subsets of CIFAR-100 to be
merged in weight space such that their combina-
tion outperforms both input models in terms of
test loss on the combined dataset.

Inspired by work on finetuning (Wortsman
et al., 2022a), model patching (Raffel, 2021),
and federated learning (McMahan et al., 2017;
Konečný et al., 2016a;b), we study whether it is
possible to synergistically merge the weights of
two models trained on disjoint datasets. Con-
sider, for example, an organization with multi-
ple (possibly biased) datasets separated for reg-
ulatory (e.g., GDPR) or privacy (e.g., on-device
data) considerations. Models can be trained on
each dataset individually, but training in aggre-
gate is not feasible. Can we combine separately
trained models so that the merged model per-
forms well on the entirety of the data?

To address this question, we split the CIFAR-
100 dataset (Krizhevsky, 2009) into two dis-
joint subsets: dataset A, containing 20% exam-
ples labelled 0-49 and 80% labelled 50-99, and
dataset B, vice versa. ResNet20 models A and
B were trained on their corresponding datasets.
Figure 5 shows the result of merging the two models with weight matching. For comparison, we
benchmark naı̈ve weight interpolation, ensembling of the model logits, and full-data training.

As expected, merging separately trained models did not match the performance of an omniscient
model trained on the full dataset or an ensemble of the two models with twice the number of effec-
tive weights. On the other hand, we did manage to merge the two models in weight space, achieving
an interpolated model that outperforms both input models in terms of test loss while using half
the memory and compute required for ensembling. Furthermore, the merged model’s probability
estimates are better calibrated than either of the input models as demonstrated in Figure 10. Al-
gorithm 1 also vastly outperformed naı̈ve interpolation, the status quo for model combination in
federated learning and distributed training.

4Unfortunately, 8× width VGG-16 training was unattainable since it exhausted GPU memory on available
hardware at the time of writing.
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6 RELATED WORK

(Linear) mode connectivity. Freeman & Bruna (2017) introduced the concept of mode connectiv-
ity, i.e., that SGD solutions in the loss landscape are connected by constant-loss curves in weight
space. Further explorations were undertaken in Garipov et al. (2018); Draxler et al. (2018), among
others. Tatro et al. (2020) explored non-linear mode connectivity modulo permutation symmetries.
Frankle et al. (2020) demonstrated a connection between linear mode connectivity and the lottery
ticket hypothesis. Juneja et al. (2022) demonstrated that LMC does not always hold, even when
fine-tuning. Hecht-Nielsen (1990); Chen et al. (1993) noted the existence of permutation symme-
tries, and Brea et al. (2019) implicated them as a source of saddle points in the loss landscape.
Recently, the visionary work of Entezari et al. (2021) conjectured that SGD solutions could be
linear mode connected modulo permutation symmetries and offered a battery of experiments but-
tressing this claim. Unlike previous works on LMC we accomplish zero-barrier paths between two
independently-trained models with an algorithm that runs on the order of seconds.

Loss landscapes and training dynamics. Li et al. (2016); Yosinski et al. (2014) investigated
whether independently trained networks learn similar features, and to what extent they transfer.
Jiang et al. (2021) argued that independently trained networks meaningfully differ in the features
they learn in certain scenarios. Zhang et al. (2019) studied the relative importance of layers. Ben-
ton et al. (2021) argued that SGD solutions form a connected volume of low loss. Pittorino et al.
(2022) proposed a toroidal topology of solutions and a set of algorithms for symmetry removal. On
the theoretical front, Kawaguchi (2016) proved that deep linear networks contain no local minima.
Boursier et al. (2022); Chizat & Bach (2018); Mei et al. (2018) characterized the training dynamics
of one-hidden layer networks, proving that they converge to zero loss. Godfrey et al. (2022); Sim-
sek et al. (2021) investigated the algebraic structure of symmetries in neural networks and how this
structure manifests in loss landscape geometry.

Federated learning and model merging. McMahan et al. (2017); Konečný et al. (2016a;b) in-
troduced the concept of “federated learning,” i.e., learning split across across multiple devices and
datasets. Wang et al. (2020) proposed an exciting federated learning method in which model av-
eraging is done after permuting units. Unlike this work, however, they proposed merging smaller
“child” models into a larger “main” model, and doing so with a more specific, layer-wise match-
ing algorithm that does not support residual connections or normalization layers. Raffel (2021);
Matena & Raffel (2021); Sung et al. (2021) conceptualized the study of “model patching,” i.e., the
idea that models should be easy to modify and submit changes to. Ilharco et al. (2022) investigated
model patching for the fine-tuning of open-vocabulary vision models. Singh & Jaggi (2020) pro-
posed merging models by soft-aligning associations weights, inspired by optimal transport. Tatro
et al. (2020); Liu et al. (2022) further explored merging models taking possible permutations into
account. Wortsman et al. (2022a) demonstrated state-of-the-art ImageNet performance by averaging
weights of models fine-tuned starting from some initial trained state.

7 DISCUSSION AND FUTURE WORK

We explore the role of permutation symmetries in the linear mode connectivity of SGD solutions.
We introduce three novel algorithms to canonicalize independent neural network weights in order to
make the loss landscape between them as flat as possible. In contrast to prior work, we linearly mode
connect large ResNet models with no barrier in seconds to minutes. Despite presenting successes
across multiple architectures and datasets, linear mode connectivity between thin models remains
elusive. Therefore, we conjecture that permutation symmetries are a necessary piece, though not a
complete picture, of the fundamental invariances at play in neural network training dynamics. In
particular, we hypothesize that linear, possibly non-permutation, relationships connect the layer-
wise activations between models trained by SGD. In the infinite width limit, there exist satisfactory
linear relationships that are also permutations.

An expanded theory and empirical exploration of other invariances – such as cross-layer scaling or
general linear relationships between activations – presents an intriguing avenue for future work. Ul-
timately, we anticipate that a lucid understanding of loss landscape geometry will not only advance
the theory of deep learning but will also promote the development of better optimization, federated
learning, and ensembling techniques.

9



Under review as a conference paper at ICLR 2023

ETHICS STATEMENT

Merging models raises interesting ethical and technical questions about the resulting models. Do
they inherit the same biases as their input models? Are rare examples forgotten when merging? Is it
possible to gerrymander a subset of the dataset by splitting its elements across many shards?

Deployment of any form of model merging ought to be paired with thorough auditing of the resulting
model, investigating in particular whether the merged model is representative of the entirety of the
data distribution.

REPRODUCIBILITY STATEMENT

Our code is open sourced at https://github.com/REDACTED/REDACTED. Our experimen-
tal logs and downloadable model checkpoints are fully open source at https://wandb.ai/
REDACTED/REDACTED.
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Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied
to document recognition. Proc. IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791. URL
https://doi.org/10.1109/5.726791.

Jaehoon Lee, Lechao Xiao, Samuel S. Schoenholz, Yasaman Bahri, Roman Novak, Jascha
Sohl-Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as lin-
ear models under gradient descent. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelz-
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Figure 6: A counterexample. There exist models such that no possible permutation of weights
allows for linear mode connectivity. Left: performance of all possible linear interpolations between
the two models. Right: A visualization of the prediction functions f(x) through each linear sweep.
Each row corresponds to one of the four possible permutations, and each column corresponds to a
value of λ, the linear interpolant. The existence of such cases suggests that linear mode connectivity
is an artifact of SGD.

A APPENDIX

A.1 KNOWN FAILURE MODES

We emphasize that none of the techniques presented in this paper are silver bullets. Here we list the
failure cases that the authors are presently aware of,

1. Models of insufficient width

2. Models in the initial stages of training

3. VGGs on MNIST

4. MNIST MLPs trained with SGD and too low of a learning rate (As found by REDACTED)

5. MNIST MLPs trained with Adam and too high of a learning rate (As found by
REDACTED)

Furthermore, we believe other failure modes certainly exist but have yet to be discovered.

We are excited by the prospect of future work investigating these failure modes and improving our
understanding of when and why model merging modulo permutation symmetries is feasible.

A.2 ADDITIONAL INFORMATION ON ALGORITHM 1

On currently available hardware (p3.2xlarge AWS instance with a NVIDIA V100 GPU), we ob-
served the following timing results with Algorithm 1,

1. MLP (3 layers, 512 units each): 3 seconds

2. ResNet50 (1× width): 33 seconds

3. ResNet20 (32× width): 194 seconds

In addition, we tested the ability of Algorithm 1 to recover a known, randomly selected permutation.
In a handful of experiments we found that Algorithm 1 was able to exactly recover the known,
random permutation in just 3-4 of passes over the layers.

A.3 COUNTEREXAMPLE DETAILS

Consider a simple 2-dimensional classification task. Our data points are drawn x ∼
Uniform([−1, 1]2) and y = 1x1<0 and x2>0. Figure 7 provides a visualization of a sample of such
data.
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Figure 7: The counterexample classification problem data.

Model A Model B

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

MNIST, MLP

Train
Test

Model A Model B

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

CIFAR-10, MLP

Model A Model B

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

CIFAR-10, ResNet20 (32× width)

Figure 8: Top-1 accuracy results for the MNIST and CIFAR-10 models of Figure 2.

We utilize an MLP architecture consisting of two hidden layers, with two units each, and ReLU
nonlinearities. Consider two weight assignments that both achieve a perfect fit to the data:

fA(x) = [−1 −1]σ
([
−1 0
0 1

]
σ

([
−1 0
0 −1

]
x+

[
1
0

])
+

[
1
0

])
(4)

fB(x) = [−1 −1]σ
([

1 0
0 −1

]
σ

([
1 0
0 1

]
x+

[
0
1

])
+

[
0
1

])
. (5)

We predict a positive label when f(x) ≥ 0 and a negative label otherwise. Intuitively, these networks
are organized such that each layer makes a classification whether x1 < 0 or x2 > 0. In model A,
the first layer tests whether x2 > 0, and the second layer tests whether x1 < 0, whereas in model B
the order is reversed. With a bit of algebra, it is possible to see that both fA and fB achieve perfect
performance.

A.4 AUXILIARY PLOTS

A.5 STRAIGHT-THROUGH ESTIMATOR DETAILS

See Algorithm 2 for a complete description of the straight-through estimator algorithm.

A.6 MERGING MANY MODELS

We propose Algorithm 3 to merge the weights of more than two models at a time.

Following an argument similar to Lemma 2, it can be seen that Algorithm 3 terminates.

In our limited testing, we found that this algorithm converges quickly to solutions that extrapolate
better than individual models and results in a merged model with better probability estimate calibra-
tion than any of the input models. For example, we present the results of this algorithm on MLPs
trained on MNIST in Table A.6.
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Figure 9: Accuracy results for the CIFAR-100 split data experiment.
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Figure 10: Merging CIFAR-100 split data models results in superior probability calibration.
Although our merged model is not competitive in terms of top-1 accuracy in the CIFAR-100 split
data experiment, we find that it has far better calibrated probability estimates than either of the input
models.
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Figure 11: Accuracy results for merged ResNet50 (1× width) models on ImageNet.
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Algorithm 2: Straight-through estimator training

Given: Model weights ΘA, ΘB , and a learning rate η.
Result: A permutation π of ΘB such that L( 12 (ΘA + π(ΘB))) is approximately minimized.

Initialize: Θ̃B ← ΘA

repeat
π(ΘB)← proj(Θ̃B) using Algorithm 1.
Evaluate the loss of the midpoint, L( 12 (ΘA + π(ΘB))).
Evaluate the gradient,∇L, using Θ̃B in place of π(ΘB) in the backwards pass.
Update parameters, Θ̃B ← Θ̃B − η∇L.

until convergence

Algorithm 3: MERGEMANY

Given: Model weights Θ1, . . . ,ΘN

Result: A merged set of parameters Θ̃.

repeat
for i ∈ RANDOMPERMUTATION(1, . . . , N) do

Θ′ ← 1
N−1

∑
j∈{1,...,N}\{i} Θj

π ← PERMUTATIONCOORDINATEDESCENT(Θ′,Θi)

Θi ← π(Θi)
end

until convergence
return 1

N

∑N
j=1 Θj

In addition, we found that merging multiple models helps to calibrate the resulting model predic-
tions. We present this effect in Figure 12.

A.7 FAILED IDEA: A METHOD FOR STEEPEST DESCENT

Imagine standing in weight space at ΘA and trying to decide in which immediate direction to move
in order to approach a ΘB-equivalent point. There are many, many possible permutations of ΘB –
call them π(1)(ΘB), π

(2)(ΘB), . . . – to aim for in the distance. Assuming that the loss landscape
is in fact (quasi-)convex modulo these permutation symmetries, a natural choice would be to pick
the π(i)(ΘB) that corresponds to the direction of steepest descent starting from ΘA since we expect

Train Loss Train Acc. Test Loss Test Acc.
Seed 1 0.0000 1.0000 0.1153 0.9856
Seed 2 0.0000 1.0000 0.1531 0.9854
Seed 3 0.0000 1.0000 0.1229 0.9855
Seed 4 0.0000 1.0000 0.1108 0.9865
Seed 5 0.0000 1.0000 0.1443 0.9871

MERGEMANY 0.0141 0.9952 0.0727 0.9831

Table 2: Merging multiple models decreases test loss by 43%. We train five separate MLPs
on MNIST. Using Algorithm 3 we merge all these models together simultaneously. This produces
a model that appears to be better calibrated than any of the input models, with superior test loss
performance. We are excited by potential applications of this methodology in federated learning
and ensembling, esp. along the lines of “model soups” (Wortsman et al., 2022a).
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Figure 12: Merging multiple models results in superior calibration. Here we show the results of
running Algorithm 3 on 32 MLP models trained on MNIST, with each model given access to a ran-
dom 50% of the training dataset. The resulting merged model demonstrates substantively improved
calibration of probability estimates on both the training and test datasets.

π(i)(ΘB) to lie in the same basin as ΘA. In other words,

min
π

dL(ΘA + λ(π(ΘB)−ΘA))

d λ

∣∣∣∣
λ=0

= min
π
∇L(ΘA)

⊤(π(ΘB)−ΘA) (6)

= −∇L(ΘA)
⊤ΘA +min

π
∇L(ΘA)

⊤π(ΘB) (7)

Now, we are tenuously in a favorable situation: ∇L(ΘA) is straightforward to compute, and picking
the best π reduces to a matching problem. In particular it is a SOBLAP matching problem of the
same form as in Section 3.2. In addition, there is a fast, exact solution for the single intermediate
layer case (L = 2).

In practice, we found that this method can certainly find directions of steepest descent, but that they
are accompanied by high barriers in between the initial dip and π(ΘB).

A.8 PROOF OF LEMMA 1

To lighten notation we use ⟨·, ·⟩ = ⟨·, ·⟩F in this section.
Lemma. Given A,B ∈ Rd×d,

min
P ,Q perm. matrices

⟨PAQ⊤,B⟩

is strongly NP-hard and has no PTAS.

Proof. We proceed by reduction from the quadratic assignment problem (QAP) (Koopmans & Beck-
mann, 1957; Cela, 2013). Consider a QAP,

min
P perm. matrix

⟨PCP⊤,D⟩

for C,D ∈ Rd×d.

Now, pick A = C + λI , B = D − λI . The we have,

min
P ,Q
⟨P (C + λI)Q⊤,D − λI⟩ = ⟨PCQ⊤ + λPQ⊤,D − λI⟩ (8)

= ⟨PCQ⊤,D⟩ − λ⟨PCQ⊤, I⟩+ λ⟨PQ⊤,D⟩ − λ2⟨PQ⊤, I⟩
(9)

= ⟨PCQ⊤,D⟩ − λ⟨P⊤Q,C⟩+ λ⟨PQ⊤,D⟩ − λ2 tr(PQ⊤)
(10)
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For sufficiently large λ, the tr(PQ⊤) term will dominate. Letting α =
max (maxi,j |Ci,j |,maxi,j |Di,j |), we can bound the other terms,

−d2α2 ≤ ⟨PCQ⊤,D⟩ ≤ d2α2 (11)

−λdα ≤ −λ⟨P⊤Q,C⟩ ≤ λdα (12)

−λdα ≤ λ⟨PQ⊤,D⟩ ≤ λdα (13)

Now there are two classes of solutions: those where P = Q and those where P ̸= Q. We seek
to make the best (lowest) possible P ̸= Q solution to have worse (higher) objective value than the
worst (highest) P = Q solution. When P = Q, the highest possible objective value is

d2α2 + λdα+ λdα− λ2d

and similarly, the lowest possible objective value when P ̸= Q is

−d2α2 − λdα− λdα− λ2d+ λ2

where the final term is due to the fact that at least one entry of PQ⊤ must be 0. With some algebra,
it can be seen that λ > 5dα is sufficient to guarantee that all P = Q solutions are superior to all
P ̸= Q solutions.

Now when P = Q, all frivolous terms reduce to constants and we are left with the QAP objective:

min
P
⟨PCP⊤,D⟩ − λ⟨P⊤P ,C⟩+ λ⟨PP⊤,D⟩ − λ2 tr(PP⊤)

= −λ tr(C) + λ tr(D)− λ2d+min
P
⟨PCP⊤,D⟩

completing the reduction. QAP is known to be strongly NP-hard (Koopmans & Beckmann, 1957;
Sahni & Gonzalez, 1976) and MaxQAP is known to not admit any PTAS (Makarychev et al., 2014),
thus completing the proof.

A.9 PROOF OF LEMMA 2

Lemma. Algorithm 1 terminates.

Proof. We proceed by contradiction.

Consider a graph with each possible permutation πi = {P1, . . . ,PL−1} as a vertex and directed
edges πi → πj if πj can be reached from πi with a single Pℓ update, as in Algorithm 1. (Ignore
those updates that result in no change to Pℓ in order to avoid πi → πi cycles.) Let ρ(π) = vec(ΘA) ·
vec(π(ΘB)) denote the utility of a particular π. Note that πi → πj implies ρ(πi) < ρ(πj). There
exist finitely many possible permutations πi, meaning that a failure to terminate must involve a cycle
in the graph π1 → · · · → πn → π1. However ρ forms a total order on the vertices and therefore we
have a contradiction.

A.10 EXTENDED RELATED WORK

Differentiating through permutations. Akin to differentiable permutation learning, many prior
works have studied differentiable sorting (Grover et al., 2019; Prillo & Eisenschlos, 2020; Cuturi
et al., 2019; Petersen et al., 2022; 2021; Mena et al., 2018). Blondel et al. (2020) studied differ-
entiable sorting and ranking with asymptotics that correspond to their non-differentiable versions.
Fogel et al. (2015) explored recovering the linear orderings of items based on pairwise informa-
tion, another form of permutation optimization. Bengio et al. (2013) introduced the straight-through
estimator for differentiating through discrete projections that we utilize in Section 3.3.
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