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Abstract

Federated learning (FL) enables building robust and generalizable AI models by1

leveraging diverse datasets from multiple collaborators without centralizing the data.2

We created FLARE1 as an open-source software development kit (SDK) to make it3

easier for data scientists to use FL in their research and real-world applications. The4

SDK includes solutions for state-of-the-art FL algorithms and federated machine5

learning approaches, which facilitate building workflows for distributed learning6

across enterprises and enable platform developers to create a secure, privacy-7

preserving offering for multiparty collaboration utilizing homomorphic encryption8

or differential privacy. The SDK is a lightweight, flexible, and scalable Python9

package, and allows researchers to bring their data science workflows implemented10

in any training libraries (PyTorch, TensorFlow, XGBoost, or even NumPy) and apply11

them in real-world FL settings. This paper introduces the key design principles of12

FLARE and illustrates some use cases (e.g., COVID analysis) with customizable13

FL workflows that implement different privacy-preserving algorithms.14

1 Introduction15

Federated learning (FL) has become a reality for many real-world applications [21]. It enables16

multinational collaborations on a global scale to build more robust and generalizable machine learning17

and AI models. In this paper, we introduce FLARE, an open-source software development kit (SDK)18

that makes it easier for data scientists to collaborate to develop more generalizable and robust AI19

models by sharing model weights rather than private data. While FL is attractive in many industries, it is20

particularly beneficial for healthcare applications where patient data needs to be protected. For example,21

FL has been used for predicting clinical outcomes in patients with COVID-19 [5] or to segment brain22

lesions in magnetic resonance imaging [25, 24]. FLARE is not limited to applications in healthcare23

and is designed to allow cross-silo FL [10] across enterprises for different industries and researchers.24

In recent years, several efforts (both open-source and commercial) have been made to bring FL tech-25

nology into the healthcare sector and other industries, like TensorFlow Federated [1], PySyft [31],26

FedML [9], FATE [15], Flower [2], OpenFL [20], Fed-BioMed [26], IBM Federated Learning [16], HP27

Swarm Learning [28], FederatedScope [29], FLUTE [6], and more. Some focus on simulated FL set-28

tings for researchers, while others prioritize production settings. FLARE aims to be useful for both sce-29

narios: 1) for researchers by providing efficient and extensible simulation tools and 2) by providing an30

easy path to transfer research into real-world production settings, supporting high availability and server31

failover, and by providing additional productivity tools such as multi-tasking and admin commands.32

1Code is available at https://anonymous.4open.science/r/anon-flare.
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2 FLARE Overview33

FLARE stands for “Federated Learning Application Runtime Environment”. The SDK enables34

researchers and data scientists to adapt their existing machine learning and deep learning workflows35

to a federated paradigm and enables platform developers to build a secure, privacy-preserving offering36

for distributed multiparty collaboration.37

FLARE is a lightweight, flexible, and scalable federated learning framework implemented in Python38

that is agnostic to the underlying training library. Developers can bring their own data science workflows39

implemented in PyTorch, TensorFlow, or even in pure NumPy, and apply them in a federated setting.40

A typical FL workflow such as the popular federated averaging (FedAvg) algorithm [17] can be41

implemented in FLARE using the following main steps. Starting from an initial global model, each42

FL client trains the model on their local data for a certain amount of time and sends model updates43

to the server for aggregation. The server then uses the aggregated updates to update the global model44

for the next round of training. This process is iterated many times until the model converges.45

Though used heavily for federated deep learning, FLARE is a generic approach for supporting46

collaborative computing across multiple clients. FLARE provides the Controller programming API47

for researchers to create workflows for coordinating clients for the purpose of collaboration. FedAvg48

is one such workflow. Another example is cyclic weight transfer [3].49

The central concept of collaboration is the notion of “task”. An FL controller assigns tasks (e.g.,50

deep-learning training with model weights) to one or more FL clients and processes results returned51

from clients (e.g., model weight updates). The controller may assign additional tasks to clients based52

on the processed results and other factors (e.g., pre-configured number of training rounds). This53

task-based interaction continues until the objectives of the study are achieved.54

The API supports typical controller-client interaction patterns like broadcasting a task to multiple55

clients, sending a task to one or more specified clients, or relaying a task to multiple clients sequentially.56

Each interaction pattern comes with two flavors: wait (block until results from clients are received)57

or no-wait. A workflow developer can use any of these interaction patterns to create innovative58

workflows. For example, the ScatterAndGather controller (typically used for FedAvg-like algorithms)59

is implemented with the broadcast_and_wait pattern, and the CyclicController is implemented with60

the relay_and_wait pattern. The controller API allows the researcher to focus on the control logic61

without needing to deal with underlying communication issues. Figure 1 shows the principle.62

Each FL client acts as a worker that simply executes tasks assigned to it (e.g., model training) and63

returns execution results to the controller. At each task interaction, there can be optional filters that64

process the task data or results before passing it to the Controller (on the server side) or task executor65

(client side). The filter mechanism can be used for data privacy protection (e.g., homomorphic66

encryption/decryption or differential privacy) without having to alter the training algorithms.67

Figure 1: FLARE job execution. The Controller is a python object that controls or coordinates the
Workers to get a job done. The controller is run on the FL server. A Worker is capable of performing
tasks. Workers run on FL clients.

High-Level Architecture: FLARE is designed with the idea that less is more, using a specification-68

based design principle to focus on what is essential. This allows other people to be able to do what69

they want to do in real-world applications by following clear API definitions. FL is an open-ended70
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space. The API-based design allows others to bring their implementations and solutions for71

various components. Controllers, task executors, and filters are just examples of such extensible72

components. FLARE provides an end-to-end operation environment for different personas. It provides73

a comprehensive provisioning system that creates security credentials for secure communications74

to enable the easy and secure deployment of FL applications in the real world. It also provides an75

FL Simulator for running proof-of-concept studies locally. In production mode, a FLARE system76

is operated by researchers and IT personnel using the FLARE Console - a command-line tool running77

on an admin user’s personal computer using an admin client. Once the FLARE system is started78

and running, the researcher conducts a FL study by submitting jobs using admin commands. FLARE79

provides many commands for system operation and job management. With these commands, one80

can start and stop a specific client or the entire system, submit new jobs, check the status of jobs, create81

a job by cloning from an existing one, and much more. With FLARE’s component-based design, a82

job is just a configuration of components needed for the study. For the control logic, the job specifies83

the controller component to be used and any components required by the controller.84

3 System Concepts85

A FLARE system is a typical client-server communication system that comprises of one or more FL86

server(s), one or more FL client(s), and one or more admin clients. The FL Servers open two ports87

for communication with FL clients and admin clients. FL clients and admin clients connect to the88

opened ports. FL clients and admin clients do not open any ports and do not directly communicate89

with each other. The following is an overview of the key concepts and objects available in FLARE,90

and the information that can be passed between them.91

Workers and Controller: FLARE’s collaborative computing is achieved through the Con-92

troller/Worker interactions.93

Shareable: Object that represents a communication between server and client. Technically, the Share-94

able is implemented as a Python dictionary that could contain different information, e.g., model weights.95

Data Exchange Object (DXO): Standardizes the data passed between the communicating parties.96

One can think of the Shareable as the envelope and the DXO as the letter. Together, they comprise97

a message to be shared between communicating parties.98

FLComponent: The base class of all the FL components. Executors, controllers, filters, aggregators,99

and their subtypes are all FLComponents. FLComponent comes with some useful built-in methods100

for logging, event handling, auditing, and error handling.101

Executors: Type of FLComponent for FL clients that has an execute method that produces a Shareable102

from an input Shareable. FLARE provides both single- and multi-process executors to implement103

different computing workloads.104

FLContext: One of the most important features of FLARE is to pass data between the FL components.105

FLContext is available to every method of all common FLComponent types. Through FLContext,106

the component developer can get services provided by the underlying infrastructure and share data107

with other components of the FL system.108

Filters: Filters in FLARE are a type of FLComponent that have a process method to transform the109

Shareable object between the communicating parties. A Filter can be used to provide additional110

processing to shareable data before sending or after receiving from a peer. Filters can convert data111

formats and a lot more and are FLARE’s primary mechanism for data privacy protection [14, 8]:112

• ExcludeVars to exclude variables from shareable.113

• PercentilePrivacy for truncation of weights by percentile.114

• SVTPrivacy for differential privacy through sparse vector techniques.115

• Homomorphic encryption filters used for secure aggregation.116

Event Mechanism: FLARE comes with a powerful event mechanism that allows dynamic notifications117

sent to all event handlers. This mechanism enables data-based communication among decoupled118

components: one component fires an event when a certain condition occurs, and other components119

can listen to that event and processes the event data. Each FLComponent is automatically an event120
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handler. To listen to and process an event, one can simply implement the handle_event() method and121

processes desired event types. Events represent some important moments during the execution of122

the system logic. For example, before and after aggregation or when important data becomes available,123

e.g., a new “best” model was selected.124

3.1 Productivity Features125

FLARE contains features that enable efficient, collaborative, and robust computing workflows.126

Multi-tasking: For systems with a large capacity, computing resources could be idle most of the127

time. FLARE implements a resource-based multi-tasking solution, where multiple jobs can be run128

concurrently when overall system resources are available. Multi-tasking is made possible by a job129

scheduler on the server side that constantly tries to schedule a new job. For each job to be scheduled,130

the scheduler asks each client whether they can satisfy the required resources of the job (e.g., number131

of GPU devices) by querying the client’s resource manager. If all clients can meet the requirement,132

the job will be scheduled and deployed to the clients.133

High Availability and Server Failover: To avoid the FL server as a single point of failure, a solution134

has been implemented to support multiple FL servers with automatic cut-over when the currently active135

server becomes unavailable. Therefore, a component called Overseer is added to facilitate automatic136

cut-over. The Overseer provides the authoritative endpoint info of the active FL server. All other system137

entities (FL servers, FL clients, admin clients) constantly communicate (i.e., every 5 seconds) with the138

Overseer to obtain such information and act on it. If the server cut-over happens during the execution of139

a job, then the job will continue to run on the new server. Depending on how the controller is written, the140

job may or may not need to restart from the beginning but can continue from a previously saved snapshot.141

Simulator: To allow data scientists and system developers to easily write new FLComponents and142

novel workflows, FLARE also provides a simulator. The simulator is a command line tool to run143

a FLARE job. To allow simple experimentation and debugging, the FL server and multiple clients144

run in the same process during simulation. To make efficient use of resources, e.g., training multiple145

clients on different GPUs, a multi-process option is also available. The simulator follows the same146

job execution as in real-world FLARE deployment. Therefore, components developed in simulation147

can be directly deployed in real-world federated scenarios.148

3.2 Secure Provisioning in FLARE149

Security is an important requirement for federated learning systems. FLARE provides security150

solutions in the following areas: authentication, communication confidentiality, user authorization,151

data privacy protection, auditing, and local client policies. Authentication: FLARE ensures the

Figure 2: High-level steps for running a real-world study with secure provisioning with FLARE.
152

identities of communicating peers with the use of mutual Transport Layer Security (TLS). Each153

participating party (FL Servers, Overseer, FL Clients, Admin Clients) must be properly provisioned.154

Once provisioned, each party receives a startup kit, which contains TLS credentials (public cert of155

the root, the party’s own private key and certificate) and system endpoint information, see Fig. 2. Each156
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party can only connect to the FLARE system with the startup kit. Communication confidentiality157

is also achieved with the use of TLS-based messaging.158

Federated Authorization: FLARE’s admin command system is very rich and powerful. Not every159

command is for everyone. FLARE implements a role-based user authorization system that controls160

what a user can or cannot do. At the time of provision, each user is assigned a role. Authorization161

policies specify which commands are permitted for which roles. Each FL client can define its own162

authorization policy that specifies what a role can or cannot do to the client. For example, one client163

could allow a role to run jobs from any researchers, whereas another client may only allow jobs164

submitted by its own researchers (i.e., the client and the job submitter belong to the same organization).165

FLARE automatically records all user commands and job events in system audit files on both the server166

and client sides. In addition, the audit API can be used by application developers to record additional167

events in the audit files.168

Client-Privacy: FLARE enhances the overall system security by allowing each client to define its own169

policies for authorization, data privacy (filters), as well as computing resource management. The client170

can change its policies at any time after the system is up and running without having to be re-provisioned.171

For example, the client could require that all jobs running on it are subject to a set of filters. The client172

could also change the amount of computing resources (e.g., GPU devices) to be used by the FL client.173

4 Federated Data Science174

As a general distributed compute platform, FLARE can be used for various applications in different175

industries. Here we describe some of the most common use cases where FLARE was deployed so far.176

Federated Learning: A go-to example dataset for benchmarking different FL algorithms is CIFAR-10.177

FLARE allows users to experiment with different algorithms and data splits using different levels178

of heterogeneity based on a Dirichlet sampling strategy [27]. Figure 3a shows the impact of different179

alpha values, where lower values cause higher heterogeneity on the performance of the FedAvg.180

Apart from FedAvg, currently available in FLARE include FedProx [13], FedOpt [19], and181

SCAFFOLD [11]. Figure 3b compares an α setting of 0.1, causing a high data heterogeneity across182

clients and its impact on more advanced FL algorithms, namely FedProx, FedOpt, and SCAFFOLD.183

FedOpt and SCAFFOLD show markedly better convergence rates and achieve better performance than184

FedAvg and FedProx with the same alpha setting. SCAFFOLD achieves this by adding a correction185

term when updating the client models, while FedOpt utilizes SGD with momentum to update the global186

model on the server. Therefore, both achieve better performance with the same number of training187

steps as FedAvg and FedProx.188

Other algorithms available in or coming soon to FLARE include federated XGBoost [4], Ditto [12],189

FedSM [30], Auto-FedRL [7], and more.

(a) FedAvg with increasing levels of heterogeneity
(smaller α values).

(b) FL algorithms with a heterogeneous data split
(α=0.1).

Figure 3: Federated learning experiments with FLARE.

190
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Federated Statistics: FLARE provides built-in federated statistics operators (Controller and191

Executors) that will generate global statistics based on local client statistics. Each client could have192

one or more datasets, such as “train” and “test” datasets. Each dataset may have many features. For193

each feature in the dataset, FLARE will calculate the statistics and combine them to produce global194

statistics for all the numeric features. The output gathered on the server will be the complete statistics195

for all datasets in clients and global, as illustrated in Fig. 4.

(a) Federated statistics. Note, the data of “site-4” violates the
client’s privacy policy and therefore does not share its statistics
with the server. (b) Histogram visualization.

Figure 4: Federated statistics with FLARE.

196

Real-world Use Cases: FLARE and its predecessors has been used in several real-world studies197

exploring FL for healthcare scenarios. The collaborations between multinational institutions tested198

and validated the utility of federated learning, pushing the envelope for training robust, generalizable199

AI models. These initiatives included FL for breast mammography classification [22], prostate200

segmentation [23], pancreas segmentation [27], and most recently, chest X-ray (CXR) and electronic201

health record (EHR) analysis to predict the oxygen requirement for patients arriving in the emergency202

department with symptoms of COVID-19 [5].

(a) Mammography. (b) Prostate. (c) Pancreas. (d) CXR & EHR.

Figure 5: Real-world use cases of FLARE.

203

5 Summary & Conclusion204

We described FLARE, an open-source SDK to make it easier for data scientists to use FL in their205

research and to allow an easy transition from research to real-world deployment. As discussed above,206

FLARE’s Controller programming API supports various interaction patterns between the server207

and clients over internet connections, which could be unstable. Therefore, the API design mitigates208

various failure conditions and unexpected crashes of the client machines such as allowing developers209

to process timeout conditions properly. FLARE is an open-source project. We invite the community210

to contribute and grow FLARE.211

We did not have space to go into all details of exciting features available in FLARE, like homomorphic212

encryption, TensorBoard streaming, provisioning web dashboard, integration with MONAI2 [18],213

etc. However, we hope that this overview of FLARE gives a good starting point for developers and214

researchers on their journey to using FL and federated data science in simulation and in the real world.215

2https://monai.io
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(2020). Adaptive federated optimization. arXiv preprint arXiv:2003.00295.264

7



[20] Reina, G. A., Gruzdev, A., Foley, P., Perepelkina, O., Sharma, M., Davidyuk, I., Trushkin, I., Radionov,265

M., Mokrov, A., Agapov, D., et al. (2021). Openfl: An open-source framework for federated learning. arXiv266

preprint arXiv:2105.06413.267

[21] Rieke, N., Hancox, J., Li, W., Milletari, F., Roth, H. R., Albarqouni, S., Bakas, S., Galtier, M. N., Landman,268

B. A., Maier-Hein, K., et al. (2020). The future of digital health with federated learning. NPJ digital medicine,269

3(1):1–7.270

[22] Roth, H. R., Chang, K., Singh, P., Neumark, N., Li, W., Gupta, V., Gupta, S., Qu, L., Ihsani, A., Bizzo, B. C.,271

et al. (2020). Federated learning for breast density classification: A real-world implementation. In Domain272

Adaptation and Representation Transfer, and Distributed and Collaborative Learning, pages 181–191. Springer.273

[23] Sarma, K. V., Harmon, S., Sanford, T., Roth, H. R., Xu, Z., Tetreault, J., Xu, D., Flores, M. G., Raman, A. G.,274

Kulkarni, R., et al. (2021). Federated learning improves site performance in multicenter deep learning without275

data sharing. Journal of the American Medical Informatics Association, 28(6):1259–1264.276

[24] Sheller, M. J., Edwards, B., Reina, G. A., Martin, J., Pati, S., Kotrotsou, A., Milchenko, M., Xu, W., Marcus,277

D., Colen, R. R., et al. (2020). Federated learning in medicine: facilitating multi-institutional collaborations278

without sharing patient data. Scientific reports, 10(1):1–12.279

[25] Sheller, M. J., Reina, G. A., Edwards, B., Martin, J., and Bakas, S. (2018). Multi-institutional deep learning280

modeling without sharing patient data: A feasibility study on brain tumor segmentation. In International281

MICCAI Brainlesion Workshop, pages 92–104. Springer.282

[26] Silva, S., Altmann, A., Gutman, B., and Lorenzi, M. (2020). Fed-biomed: A general open-source frontend283

framework for federated learning in healthcare. In Domain Adaptation and Representation Transfer, and284

Distributed and Collaborative Learning, pages 201–210. Springer.285

[27] Wang, H., Yurochkin, M., Sun, Y., Papailiopoulos, D., and Khazaeni, Y. (2020). Federated learning with286

matched averaging. arXiv preprint arXiv:2002.06440.287

[28] Warnat-Herresthal, S., Schultze, H., Shastry, K. L., Manamohan, S., Mukherjee, S., Garg, V., Sarveswara,288

R., Händler, K., Pickkers, P., Aziz, N. A., et al. (2021). Swarm learning for decentralized and confidential289

clinical machine learning. Nature, 594(7862):265–270.290

[29] Xie, Y., Wang, Z., Chen, D., Gao, D., Yao, L., Kuang, W., Li, Y., Ding, B., and Zhou, J. (2022).291

Federatedscope: A comprehensive and flexible federated learning platform via message passing. arXiv292

preprint arXiv:2204.05011.293

[30] Xu, A., Li, W., Guo, P., Yang, D., Roth, H. R., Hatamizadeh, A., Zhao, C., Xu, D., Huang, H., and Xu, Z.294

(2022). Closing the generalization gap of cross-silo federated medical image segmentation. In Proceedings295

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 20866–20875.296

[31] Ziller, A., Trask, A., Lopardo, A., Szymkow, B., Wagner, B., Bluemke, E., Nounahon, J.-M., Passerat-297

Palmbach, J., Prakash, K., Rose, N., et al. (2021). Pysyft: A library for easy federated learning. In Federated298

Learning Systems, pages 111–139. Springer.299

8


	Introduction
	FLARE Overview
	System Concepts
	Productivity Features
	Secure Provisioning in FLARE

	Federated Data Science
	Summary & Conclusion

