
A Meta-Gradient Approach to Learning Cooperative

Multi-Agent Communication Topology

Anonymous Author(s)

Affiliation
Address
email

Abstract

In cooperative multi-agent reinforcement learning (MARL), agents often can only1

partially observe the environment state, and thus communication is crucial to achiev-2

ing coordination. Communicating agents must simultaneously learn to whom to3

communicate (i.e., communication topology) and how to interpret the received4

message for decision-making. Although agents can efficiently learn communication5

interpretation by end-to-end backpropagation, learning communication topology6

is much trickier since the binary decisions of whether to communicate impede7

end-to-end differentiation. As evidenced in our experiments, existing solutions,8

such as reparameterization tricks and reformulating topology learning as reinforce-9

ment learning, often fall short. This paper introduces a meta-learning framework10

that aims to discover and continually adapt the update rules for communication11

topology learning. Empirical results show that our meta-learning approach outper-12

forms existing alternatives in a range of cooperative MARL tasks and demonstrates13

a reasonably strong ability to generalize to tasks different from meta-training.14

Preliminary analyses suggest that, interestingly, the discovered update rules occa-15

sionally resemble the human-designed rules such as policy gradients, yet remaining16

qualitatively different in most cases.17

1 Introduction18

There have been significant successes of reinforcement learning (RL) recently. Many RL applications19

involve multiple agents learning and adapting simultaneously to achieve shared goals, which naturally20

fall into the framework of cooperative multi-agent RL (MARL). In addition to challenges in single-21

agent RL, there are (at least) two challenges unique to cooperative MARL: (i) Since all agents22

are updating their policies, the environment becomes nonstationary from the perspective of any23

individual agent, violating assumptions in traditional single-agent RL and perhaps resulting in24

learning instability; and (ii) Compared to single-agent RL, the issue of partial observability is often25

more severe in MARL, since each individual agent might only observe a fraction of the information26

in the global state, leading to potential failure to coordinate. To cope with (i), the paradigm of27

centralized training and decentralized execution (CTDE) [1, 2] have been proposed, where agents are28

trained with access to global information to mitigate the issue of nonstationarity and choose actions29

during execution independently in a decentralized manner. To cope with (ii), it is crucial to enable30

communication among agents during execution [3, 4], where agents share their local information31

to others, such that each agent can form better knowledge about the global state, leading to better32

cooperation. This paper aims to better address multi-agent communication during excecution under33

the CTDE paradigm.34

For effective multi-agent communication, individual agents must simultaneously solve the problem of35

communication interpretation, i.e., how to utilized the received messages from other agents to make36
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better decisions, and the preceding problem of communication topology, i.e., whom to communicate to.37

Recently, many research works have shown that it is effective to learn communication interpretation38

by end-to-end backpropagation (e.g., [5, 3]). However, the end-to-end learning of communication39

topology is much trickier, since the binary decisions of to whom to communicate impede end-to-end40

differentiation. Prior work either uses reparameterization tricks such as Gumbel-Softmax [6] to force41

differentiability (e.g., [7]) or reformulates the learning of communication decisions as an RL problem42

to apply policy gradient methods (e.g., [8]). However, these existing solutions are not completely43

satisfactory: Gumbel-Softmax is known to be unstable, especially for RL tasks; the formulation can44

dramatically slow down training due to the trial-and-error nature of RL, especially considering that45

the decision space for communication topology is often large.46

Motivated by the aforementioned challenges, in this paper we propose to employ a meta-learning47

framework that formulates the problem of discovering an update rule for learning communication48

topology. We then develop an architecture and an algorithm for discovering and adaptively adjusting49

the update rule in an online fashion, with several key design choices aimed to stabilize and facilitate50

the meta-learning process. Experimental results show that our algorithm outperforms alternative51

baselines such as Gumbel-Softmax and policy gradient for learning communication topology. Our52

ablation study confirms the importance of our key design choices for performance. We also conduct53

analyses showing that the meta-learned update rule can transfer to different tasks with reasonable54

effectiveness. Surprisingly, while it outperforms the policy gradient baseline in most cases, we found55

that the update rule discovered by the meta-learning framework occasionally resembles patterns of56

the policy gradient update rule, yet remaining qualitatively different.57

2 Related work58

Learning to learn. Meta-learning, aka learning to learn, refers to the objective of improving the59

learning process itself (usually an optimization process) to be effective for a variety of learning tasks.60

This idea has been around since the late 80s with various formulations such as improving the genetic61

programming process [9], learning update rules for neural networks [10], improving domain-invariant62

transfer of learned knowledge [11], and, more recently, identifying initial neural network parameters63

for fast adaptation [12] using meta-gradients, i.e., gradients obtained from backpropagation of the64

meta-learning objective. Recently, Xu et al. [13] introduced the framework of using meta-gradients65

to improve the learning of an RL agent, which has been applied to various components of an RL66

algorithm, including intrinsic rewards [14], auxiliary tasks [15], hyperparameters of an actor-critic67

loss function [16], update target [17, 18]. Meta-learning for multi-agent RL is relatively under-68

explored. Du et al. [19] have applied meta-gradients to the discovery of multi-agent intrinsic rewards.69

In contrast, our work has an orthogonal contribution of using meta-gradients to learn multi-agent70

communication topology.71

Communication in cooperative MARL. Communications between agents play an important role in72

solving the nonstationarity and partial observability in MARL. A popular training framework to solve73

the issue of nonstationarity is CDTE [2], where global information is obtained by all-to-all communi-74

cation during training (usually achieved by a centralized module) to mitigate nonstationarity, and no75

communication during execution to enable fast deployment. However, when agents only partially ob-76

serve the environment state, the augmentation of communication during execution becomes necessary.77

A commonly used way is to broadcast the messages from one agent to all the others during execution78

if the communication is determined necessary for the current time step[3][20][21]. However, such79

broadcasting of information is not only unscalable when the number of agents is large[22], but also80

can potentially include redundant or even harmful information [23][24]. Thus, finding topology81

graphs to selectively communicate is crucial. The topology can be obtained by trainable networks82

that make the communication decisions [25][22], or obtained naturally by the physical constraints83

e.g. only agents within certain distances are viewable [4]. We give a more detailed description of84

exiting methods on finding communication topology in Section 4.1, in distinction to our approach.85

3 Preliminaries86

We consider fully cooperative multi-agent tasks that can be modeled as Markov games [26] augmented87

with networked communication [4, 25], in which N agents, indexed by i 2 N := {1, .., N}, choose88

sequential actions. At each timestep t, the task has an global state st 2 S that is Markovian,89
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Figure 1: Left: Our architecture for learning communication topology of cooperative MARL tasks.
Right: Illustration of an agent i selecting its communicating neighbors at a particular timestep.

and observation function f
i : S ! O

i yields observation o
i
t 2 O

i, for each agent i where O
i is90

its observation space. At timestep t, each agent i chooses an action a
i
t 2 A

i a, forming a joint91

action at := (a1t , ..., a
N
t ) 2 A := ⇥iA

i that induces a transition of the global state according92

to the state transition function P (s0|s, a) : S ⇥ A ⇥ S ! [0, 1]. The N agents choose actions93

after selectively communicating through a time-variant network, defined by a undirected graph94

Gt := (N , Et) with vertex set N and edge set Et ✓ {(i, j) : i, j 2 N , i 6= j}. Specifically, let95

N
i
t := {j : (i, j) 2 Et} be the neighbors of agent i at timestep t. Based on its observation o

i
t, agent96

i selects a subset of its neighbors, Ci
t ✓ N

i
t , and request the observations from the selected subset,97

ot(Ci
t) := {o

j
t : j 2 C

i
t}. Then, agent i chooses action according to its policy ⇡

i, ait ⇠ ⇡
i(oit, ot(C

i
t)),98

conditioning on both its own observation and observations of the selected neighbors. We consider99

the fully cooperative setting in which agents optimize their policies with respect to global reward100

function r(s, a) : S ⇥A ! R and discount factor � 2 [0, 1]. The discounted return from timestep101

t is Gt =
P1

l=0 �
l
rt+l, where rt := r(st, at) is the reward at timestep t. The agents’ joint policy102

⇡ = (⇡1
, ...,⇡

N ) induce a value function, which is defined as V ⇡(st) = Est+1:1,at:1 [Gt|st], and103

action-value function Q
⇡(st, at) = Est+1:1,at+1:1 [Gt|st, at].104

4 Methods105

Figure 1 depicts our neural network architecture for solving the problem formulated in Section 3106

with a learned communication topology. The architecture is compatible with any instantiation of107

the CTDE framework. Specifically, it consists of a communication network for each agent, a policy108

network for each agent, and a centralizer module shared by all agents, which are described next in109

detail. For the rest of the paper, we omit the subscript of timestep t when the timestep is clear or110

irrelevant to the context.111

Comm Net. At each timestep, the communication network selects a subset of each agent’s neighbors112

to communicate with based on its current observation, and thus determining the communication113

topology. Specifically, we assume agent i’s observation o
i contains the IDs of its neighbors N i. Each114

agent i’s communication network c
i(·) takes o

i as input and outputs c
i j(oi) 2 [0, 1], 8j 2 N

i,115

which is interpreted as the probability that agent i communicates with neighboring agent j for its116

observation o
j . Letting I

i j be the corresponding Bernoulli random variable with mean c
i j(oi),117

the selected subset of communicating neighbors is thus Ci = {j 2 N
i : Ii j = 1}. The output size118

of the communication network is |N i
|. When |N

i
| is a constant (e.g., an agent has a constant number119

of n(< N) neighbors), and we can use a simple multi-layer perceptron (MLP) as the communication120

network. In general, |N i
| is a time-variant variable, and architecture choices such as LSTMs [27],121

transformers [28], and Graph Convolutional Nets (GCNs) [29] to deal with the variable output size.122

We use ✓
i
c to denote the parameters for the communication network of agent i.123

Policy Net. In this paper, we consider deterministic policies which are suitable for continuous action124

spaces. Our method can be straightforwardly adapted to the stochastic policy case. Specifically,125

the agent i’s policy network ⇡
i(·) takes as input its local observation o

i as well as the received126

observations o(Ci) and deterministically outputs an action ⇡
i(oi, o(Ci)) 2 A

i. In order to scale to an127
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arbitrary number of communicating neighbors, in practice we treat o(Ci) as a sequence of length |C
i
|128

use an LSTM network that processes the sequence. The final hidden state of the LSTM network is129

concatenated with local observation o
i and then fed into a multi-layer perceptron (MLP) to produce130

the action. We use ✓
i
⇡ to denote the parameters for the policy network of agent i.131

Centralizer. As an instantiation of the CTDE framework, our architecture involves a centralizer132

module that utilizes global information to guide the training of the modules for decentralized133

execution. As the communication and policy networks are the decentralized execution modules, the134

role of our centralizer is to provide learning signals for these two types of networks. We follow135

the prior work and consider the typical centralized critic that seeks to approximate the action-value136

function of the joint policy, Q(o, a) ⇡ Q
⇡(s, a), where o := (o1, ..., oN ) is the joint observation137

and a := (a1, ..., aN ) is the joint observation; if the global state s is conveniently available, joint138

observation o can be replaced by s. Given joint observation o 2 O, the communication networks and139

the policy networks {ci,⇡i
}i2N together define a (stochastic) joint policy ⇡ : O ! �(A) that maps140

the joint observation to a distribution over the joint action, where the stochasticity comes from the141

selection of communicating neighbors by the communication networks (assuming the policy network142

is deterministic). Letting the critic be parameterized by ✓Q, the critic can be trained by minimizing143

the temporal difference (TD) error:144

L(✓Q) = E(o,a,r,o0)⇠D
⇥
(Q(o, a; ✓Q)� y)2

⇤
, y = r + �Q

0(o0, a0; ✓0Q)|a0⇠⇡0(o0) (1)

where D is the replay buffer recording joint observations and actions; TD target y is computed by145

the target critic network Q
0 with delayed parameters ✓

0
Q and target joint policy ⇡

0 with delayed146

parameters of the communication and policy networks. Following MADDPG [2], the centralized147

critic can be used to guide the optimization of each agent i’s network parameters by the optimization148

of149

max
✓i
⇡,✓

i
c

J(✓i⇡, ✓
i
c) with J(✓i⇡, ✓

i
c) = E(o,a)⇠D

⇥
Q(o, ai, a�i; ✓Q)|ai=⇡i(oi,o(Ci);✓i

⇡),Ci⇠ci(oi;✓i
c)

⇤
. (2)

Using the chain rule on the deterministic policy network a
i = ⇡

i(oi, o(Ci); ✓i⇡), the gradient w.r.t. ✓i⇡150

is derived as151

r✓i
⇡
J(✓i⇡, ✓

i
c) = E(o,a)⇠D

⇥
r✓i

⇡
⇡
i(oi, o(Ci); ✓i⇡)raiQ(o, ai, a�i)|ai=⇡i(oi,o(Ci);✓i

⇡),Ci⇠ci(oi;✓i
c)

⇤
.

(3)

4.1 Problem of learning communication topology and existing solutions152

In contrast with the policy network, the gradient of objective (2) w.r.t. the communication network’s153

parameters ✓ic cannot be obtained via the chain rule, since the sampling procedure for the commu-154

nicating neighbors, Ci
⇠ c

i(oi; ✓ic), is non-differentiable. Before presenting our solution using the155

meta-gradient framework in Section 4.2, we here review existing solutions in prior work:156

No communication, i.e., C
i
t = ? 8i, t. At the other extreme of the no communication topology,157

no agent communicates with any neighbor at any time, and thus the action choice is only based158

on the local observation, i.e., ait ⇠ ⇡
i(oit) 8i, t. Early work on CTDE, e.g., MADDPG [2], uses159

no communication as the default topology. No communication suffers from the issue of partial160

observability of individual agents.161

Full communication, i.e., C
i
t = N

i
t 8i, t. This solution bypasses the problem of communication162

topology learning by simply letting all agents always communicate with all neighbors. Prior work such163

as DIAL [5] and CommNet [3] employs such full communication topology. Such topology suffers164

from large communication overhead, especially when the number of agents is large. Moreover, later165

work (e.g., TarMAC [20]), as well as our empirical results in Section 5, shows that full communication166

can even hinder the learning performance, presumably because the agents are forced to interpret167

usually excessive messages received from all neighbors.168

RL for communication topology. The communication decisions {Ii j
t }j2N i

t
made by agent i at169

timestep t can be viewed as a |N i
t |-bit action in the RL sense, with reward rt simply being the original170

task reward. Therefore, any (multi-agent) RL algorithm can in principle be applied to obtain the171

update for the communication network c
i that makes the decisions, e.g., REINFORCE [30]:172

�✓
i
c / E

h
r✓i

c

P
t

P
j2N i

t

⇣
log ci j(Ii j

t |o
i
t; ✓

i
c)
⌘
Gt

i
8i 2 N (4)
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where the expectation is w.r.t. trajectories generated by on-policy parameters {✓ic, ✓i⇡}i2N . This idea173

of reformulating topology learning as an RL problem has been explored in prior work. For example,174

I3CNet [8] uses REINFORCE to train a single gating mechanism for each agent to decide whether175

to broadcast its observation to all of its neighbors. However, no prior work has attempted to use176

RL for training agent-to-agent communication decision-making like our communication network.177

We include REINFORCE as a baseline in our experiments, yet we do not claim it as our main178

contribution.179

Reparameterization tricks. Reparameterization tricks are widely used to address the non-180

differentiability caused by sampling. Specifically, Straight Through Gumbel-Softmax [6] can be used181

for categorical samplings like I
i j
t ⇠ c

i j(oit). While convenient to use, Gumbel-Softmax can be182

very unstable. Without carefully chosen regularizers, Gumbel-Softmax can easily degenerate to full183

communication, as evidenced in prior work [7, 31, 32] and our experiments.184

4.2 Learning communication networks with meta-gradients185

Inspired by the success of single-agent meta-RL [13, 14, 18], we here develop a meta-gradient186

framework to train the communication networks. Our main hypothesis of this work is that the commu-187

nication topology learning rule obtained from our meta-gradient based optimization outperforms the188

traditional methods based on the policy gradient and Gumbel-Softmax . The meta-gradient approach189

will yield a learning rule with independent advantage estimates for each (i, j) pair of agents (cf.190

Â
i j
t in (5)), which potentially reduces variance and speeds up learning compared with the policy191

gradient method (4) which share the same advantage estimate Gt for all pairs of agents. Moreover,192

the meta-learned update rule does not involve any reparameterization tricks such as Gumbel-Softmax193

that can result in unstable learning.194

As for the architecture, the centralizer module is augmented with a backward LSTM network195

that takes as input the reverse trajectory of all the agents and produces the update direction for196

each agent’s communication network. Specifically, the backward LSTM takes as input xt :=197

[rt, dt, �, {ci j(oit)}(i,j)2N⇥N i
t
] at each timestep t of a trajectory, where rt is the shared reward,198

dt is the binary value indicating episode termination, � is the discount factor, and c
i j(oit) is the199

probability of agent i communicating with neighbor j at timestep t that is computed by communication200

network c
i(·). Since |N i

t | is in general a time-variant variable, the size of input xt is time-variant. We201

assume |N
i
t | to be bounded by d (i.e., an agent has at most d neighbors), which is always possible202

since d can be set to N � 1. Thus, the size of input xt is time-invariant, and xt can be flattened for the203

LSTM input. The LSTM outputs, for each agent-neighbor pair of (i, j) 2 N ⇥N
i
t at each timestep204

t, a scalar Âi j
t 2 R that defines the update of the communication network:205

�✓
i
c / E

h
r✓i

c

P
t

P
j2N i

t

⇣
log ci j(Ii j

t |o
i
t; ✓

i
c)
⌘
Â

i j
t

i
8i 2 N . (5)

Compared with the REINFORCE update in Equation (4), the term of return Gt is replaced by Â
i j
t206

that is computed by the backward LSTM.207

We use ⌘ to denote the meta-parameters for the backward LSTM network that defines the update of208

Equation (5). The objective of our meta-learning framework is to find the meta-parameters ⌘ that209

leads to high expected return after a number of K updates for the communication network parameters210

✓c := {✓
i
c}i2N , given some fixed policy network parameters ✓⇡ := {✓

i
⇡}i2N211

argmax
⌘

JK(⌘) := E✓c(0)[G(✓c(K))] (6)

where the expectation is w.r.t. random initializations of ✓c(0); the initial ✓c(0) is updated K times212

to ✓c(K) using the fixed ⌘, (✓c(0) ! ... ! ✓c(K) | ⌘); G(✓c(K)) := E[
P1

t=0 �
t
rt|✓c(K), ✓⇡] is213

the expected return for the communication network after the K updates ✓c(K) and the fixed policy214

network parameters ✓⇡ .215

Since the updates of ✓c are differentiable with respect to ⌘, we can consider optimizing objective216

(6) with the meta-gradient derived using the chain rule r⌘JK(⌘) = r✓c(K)JK(⌘)r⌘✓c(K), with217

r✓c(K)JK(⌘) obtained from the policy gradient, e.g., REINFORCE:218

r⌘JK(⌘) = E✓c(0)

h
r⌘

P
t

P
(i,j)2N⇥N i

t

⇣
log ci j

⇣
I
i j
t |o

i
t; ✓

i
c(K)

⌘⌘
Gt (✓c(K))

i
(7)
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where Gt(✓c(K)) := E[
P1

t0=t �
t0
rt0 |✓c(K), ✓⇡] is the expected return starting from timestep t. The219

true meta-objective (6) and its meta-gradient (7) require backpropagation through the entire K220

updates of ✓c, which is infeasible due to memory constraint if K is large. In practice, we perform221

meta-gradient optimization every a small number of K updates while continually updating ✓c to the222

end of learning.223

Concurrent parameter updates. The derivation of meta-gradient (7) assumes fixed policy network224

parameters, which makes the environment stationary from the perspective of the communication225

networks and thus the policy gradient can be used to calculate r✓c(K)JK(⌘). In practice, to speed up226

learning we consider concurrent updates for all parameters, including the communication networks227

✓c, the policy networks ✓⇡ , and the centralized critic ✓Q.228

Learned baseline. To reduce variance, we separately use a baseline V (ot;�) ⇡ Gt parameterized by229

� to approximate the expected return under the current communication and policy networks, which is230

learned using n-step TD:231

�� /

⇣
G

�,n
t � V (ot;�)

⌘
r�V (ot;�), G

�,n
t =

Pn�1
k=0 �

k
rt+k+1 + �

n
V (ot+n;�).

The Gt(✓c(K)) term in meta-gradient (7) is replaced by G
�,n
t � V (ot;�), where the trajectory for232

computing G
�,n
t is sampled from the on-policy parameters (✓c(K), ✓⇡(K)) that have been concur-233

rently updated. In our empirical work, we also use a learned baseline for the original REINFORCE234

(4) for fair comparison.235

Entropy regularization. We also propose to add entropy regularization on the communication236

network outputs ci j to encourage exploration and facilitate learning. The regularized meta-gradient237

becomes238

r⌘(K) := r⌘JK(⌘) + �r⌘
P

t

P
(i,j)2N⇥N i

t
H

�
c
i j

�
o
i
t; ✓

i
c(K)

��
(8)

where H(·) is the entropy of the Bernoulli distribution c
i j that is determined by the post-update239

✓
i
c(K), and � 2 R+ is the regularization coefficient.240

Blending intermediate meta-gradients. The regularized meta-gradient r⌘(K) is derived through241

the parameters after the K-th update, i.e., ✓c(K). In practice, we find it effective to blend it with242

meta-gradients derived through the intermediate parameters, resulting in our final update for meta-243

parameters ⌘:244

�⌘ /
1
K

PK
k=1 r⌘(k) (9)

where r⌘(k) is the meta-gradient derived through ✓c(k) in the same way as Equation (8).245

5 Experiments246

We aim to answer the following questions in Sections 5.1-5.3, respectively:247

• How effective is our algorithm for learning cooperative communication topology?248

• How effective is the meta-parameters after being optimized?249

• How important are the design choices described in Section 4.2?250

• What kind of update rule is learned from the meta-learning process?251

Environment. We consider the following scenarios in multiple particle environment (MPE) [33]: (1)252

cooperative navigation: N agents move as a team to cover N landmarks. Each agent observes its253

location and velocity, the relative location of the nearest l landmarks, and the relative location of other254

agents. Our experiments include the tasks of (N = 3, l = 3) as navigation_N3_l3, (N = 6, l = 1)255

as navigation_N6_l1, and (N = 6, l = 6) as navigation_N6_l6. (2) predator and prey: N256

cooperating predators (agents) are tasked to capture M preys. The preys are environment-controlled257

by fixed policies that are pretrained. The movement of both predators and preys is impeded by L258

landmarks. Each predator observes its location and velocity, the relative location of the nearest l259

landmarks and the nearest l preys, and the relative location of other predators. Our experiments260

include the tasks of (N = 3,M = 1, l = 3) as predator_prey_N3_l3, (N = 6,M = 2, l = 1) as261

predator_prey_N6_l1, and (N = 6,M = 2, l = 6) as predator_prey_N6_l6. (3) cooperative262

6



Figure 2: Training curves of three runs comparing our algorithm of meta-learning communication
topology against the baselines. Y-axis: episodic reward. X-axis: training step (1e6).

push: N cooperating agents are tasked to push a large ball to a target position. Each agent observes263

its location and velocity, the relative position of the large ball and the target position, and the relative264

location of other agents. We include the tasks of N = 3 as push_N3 and N = 6 as push_N6.265

Implementation details. Consistent with prior implementations [2, 34] on MPE, the trajectory266

length is set to be equal to the episode length, which is 25 timesteps. The meta-parameters are267

updated every K = 10 updates of the parameters, after a grid search over K 2 {1, 5, 10, 20}. All268

algorithms are implemented using JAX [35].269

Baselines. We compare our meta-gradient approach against the four baselines discussed in Section270

4.1: no-communication, full-communication, learning communication topology with the policy271

gradient algorithm of REINFORCE, and learning communication topology with Straight Through272

Gumbel-Softmax (STGS). For the ablation study in Section 5.3, we additionally compare against273

variants of our algorithm with changes to our key design choices.274

5.1 Effectiveness of the meta-learning framework275

Figure 2 shows the training curves comparing our method of meta-learning communication topology276

against the four baselines. Please view all of the figures in this section in color. Our key observation277

is that: no method is uniformly the best among all tasks, yet our method is consistently comparable278

to the best for most tasks while each baseline can perform significantly worse in some tasks. Full279

communication is, perhaps surprisingly, among the worst in all tasks except for push_N3. No280

communication is among the worst in push_N3 and worse than the best in push_N6. REINFORCE is281

among the worst in navigation_N3_l3, predator_prey_N6_l1, and push_N3. STGS is among282

the worst in all tasks except for navigation_N6_l1 and push_N3. Our meta-learning method is283

consistently among the top two in all eight tasks.284

5.2 Effectiveness of the meta-learned update rule285

Figure 3: Effectiveness of fixed meta-parameters.

Our algorithm continually updates meta-parameters ⌘ online. An interesting question is: how effective286

is the communication topology learning rule defined by some fixed ⌘ that is obtained after meta-287

gradient optimization? Figure 3 compares training curves for the two tasks of navigation_N6_l6288
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Figure 4: Left: Training curves for ablation study. For each task, we normalize its episodic reward to
[0, 1]. Right: Visualization of the normalized REINFORCE and meta-learned advantages computed
from an episode of predator_prey_N6_l1.

and predator_prey_N6_l1 using fixed ⌘ that is randomly initialized, or obtained after 10k or 50k289

episodes, with the online updated ⌘ as a reference point. We consider both the settings in which the290

fixed ⌘ is obtained from the same task and from a different task. As a sanity check, meta-learned291

⌘ (either fixed or online updated) outperforms random initialized ⌘. In navigation_N6_l6, the292

meta-learned, fixed ⌘ can outperform the online updated ⌘, even for the ⌘ obtained from the other293

task of predator_prey_N6_l1. However, in predator_prey_N6_l1, the online updated ⌘ tends294

to perform best. This indicates that the answer to our question is task-dependent: some tasks may295

require continually updating meta-parameters for best performance.296

5.3 Ablation study and analyses of learned communication topology297

Our ablation study that examines the effect of our design choices of entropy regularization and298

intermediate meta-gradients introduced in Section 4.2, as well as the effect of the number of parameter299

updates K per meta-update Figure 4 (left) summarizes the ablation results . The results show that300

both design choices are crucial for performance. As for K, an intermediate value such as 5 and 10301

tends to work better than the extreme values of 1 and 20.302

To distinguish REINFORCE-learned and meta-learned typologies, we compare the REINFORCE303

advantage (i.e., Gt � V (ot;�) for Equation (4) with learned baseline �) and the meta-learned304

advantage (i.e., Âi j
t computed by ⌘ for Equation (5)) that respectively define the two update rules305

for the communication network. Figure 4 (right) visualizes the normalized advantages computed from306

a same episode of predator_prey_N6_l1. We present the meta-learned advantage Âi j
t computed307

by both the randomly initialized ⌘ and the updated ⌘ after 50k episodes, for the agent indexed by308

i = 1 against its neighbors j 2 {2, ..., 6}. It is clear that the meta-learned ⌘ yields advantages that309

differ from those at initialization and are contrastingly different among the neighbors j. Interestingly,310

although most updates are significantly different, there is evidence that the meta-learned update rule311

occasionally resembles the REINFORCE update rule (see agent 4) for some trajectories.312

6 Conclusion and discussion313

In this paper, we have proposed a novel meta-learning framework to discover adaptive update rules314

for learning communication topology in an online manner. Empirical results showed that our method315

outperforms existing alternatives in a range of cooperative MARL tasks. Preliminary analyses suggest316

that the discovered update rules resemble the human-designed rules such as policy gradients, yet317

remaining qualitatively different. We next acknowledge several limitations of this work, which point318

out promising future directions. Although we provided in Section 5 preliminary analyses on the319

topology learning update rules discovered by our meta-learning algorithm, its nature is not yet fully320

understood. It might be interesting and enlightening to better understand the discovered update rules321

for future work. Moreover, our meta-learning algorithm continually adapts the update rules online,322

and the meta-learned update rules exhibit limited generalization ability as shown in Figure 3. It323

remains an open question how we can discover topology learning update rules (defined by fixed324

meta-parameters) that work well for a large variety of MARL tasks.325
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