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ABSTRACT

Conditional set generation learns a mapping from an input sequence of tokens
to a set. Several popular natural language processing (NLP) tasks, such as entity
typing and dialogue emotion tagging, are instances of set generation. Sequence-
to-sequence models are a popular choice to model set generation but this typical
approach of treating a set as a sequence does not fully leverage its key properties,
namely order-invariance and cardinality. We propose a novel data augmentation
approach that recovers informative orders for labels using their dependence infor-
mation. Further, we jointly model the set cardinality and output by listing the set
size as the first element and taking advantage of the autoregressive factorization
used by SEQ2SEQ models. Our experiments in simulated settings and on three
diverse NLP datasets show that our method improves over strong SEQ2SEQ base-
lines by about 9% on absolute F1 score. We will release all code and data upon
acceptance.

1 INTRODUCTION

Conditional set generation is the task of modeling the distribution of an output set given an input
sequence of tokens (Kosiorek et al), [2020). Several natural language processing (NLP) tasks are
instances of set generation, including open-entity typing (Choi et al.,2018) and fine-grained emotion
classification (Demszky et al., 2020). The recent successes of pretraining-finetuning paradigm has
encouraged a formulation of set generation as a sequence-to-sequence generation task (Vinyals et al.,
20165 | Yang et al.| 2018; Ju et al., [2020).

In this paper, we argue that modeling set generation as a vanilla SEQ2SEQ generation task is sub-
optimal as the SEQ2SEQ formulations do not explicitly account for two key properties of a set output:
order-invariance and cardinality. Forgoing order-invariance, vanilla SEQ2SEQ generation modeling
treats a set as a sequence, and thus assumes an arbitrary order between the elements it outputs.
Similarly, the cardinality of sets is ignored, as the number of elements to be generated is typically
not explicitly modeled. Although prior work has highlighted the importance of modeling the order-
invariant nature of both set inputs (Zaheer et al.,|2017) and outputs (Vinyals et al.||2016; Rezatofighi
et al., 2018), the question of effectively modeling set output using SEQ2SEQ models still remains an
open challengeﬂ

Our method addresses the challenges above by taking advantage of the auto-regressive factorization
used by SEQ2SEQ models and (i) imposing an informative order over the label space, and (ii) explic-
ity modeling cardinality. First, the label sets are converted to sequences using informative orders by
grouping labels and leveraging their dependency structure. A natural way to model this is to search
exhaustively for the best label orders. To efficiently search for such informative orders over a com-
binatorial space, our method imposes a partial order graph over the labels, where the nodes are the
labels and the edges denote the conditional dependence relations. We then generate the training data
with a fixed input and orders over the label set that are sampled by performing topological traversals
over the graph. Labels that are not constrained by dependency relations are augmented in different
positions in each sample, reinforcing the order-invariance. We then create an augmented training
dataset, where each input instance is paired with various valid label sequences sampled from the
dependency graph. Next, we jointly model a set with its cardinality by simply appending the size of
the set as the first element in the sequence.

' Our work focuses on settings where the input is a sequence, and the output is a set.
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Figure 1: The figure illustrates a sample task where given an input «, the output is a set of
shapes (e.g., triangle, half-square, line). The partial order graph (middle) arranges the label space
such that specific labels (triangle) come before more general labels (line). Listing the specific labels
first gives the model more clues about the rest of the set, leading to more informative sequences.
The size of each set is also added as the first element for joint modeling of output with size.

Figure [T]illustrates the key intuitions behind our method using sample task where given an input x,
the output is a set of shapes and their constituents (Y). To see why certain orders might be more
meaningful, consider a case where the output is a triangle consisting of a half-square and a line.
After first generating triangle as a shape, the model can generate a half-square with certainty (a
triangle will always contain a half-square). In contrast, the reverse order (generating half-square
first) still leaves room for two possible shapes: square and triangle. The order [triangle, half-square]
is thus more informative than [half-square, triangle]. The cardinality of a set can also be helpful. In
our example, a triangle is composed of two shapes, and a star with three. A model that first predicts
the number of shapes to generate can be more precise in its output and avoid over-generation, a
major challenge with language generation models (Welleck et al.,[2019; [Fu et al., [2021).

Empirically, we establish the utility and soundness of our approach by showing gains on three real-
world NLP datasets (~10% in F'—scores). This result is significant - we effectively show that simple
techniques such as augmenting cardinality and automated data augmentation approaches can sub-
stantially improve sequence to set generation tasks without any additional annotation overhead or
architecture changes. We also provide a theoretical grounding for our approach. Treating the order
as a latent variable, we show that TSAMPLE serves as a better proposal distribution when viewed via
a variational inference framework. Finally, we perform an in-depth analysis of the reasons behind
the sensitivity of the SEQ2SEQ framework on order by experimenting with a simulated experiment
that realistically mimics a conditional set generation setting.

Our contributions (i) we show an efficient way to model sequence-to-set prediction as an
SEQ2SEQ task by jointly modeling the cardinality and proposing a novel TSAMPLE data augmen-
tation approach to add informative sequences. (ii) we show theoretically and empirically that our
approach is better suited for set generation tasks than existing approaches.

2 BACKGROUND AND RELATED WORK

Notation Our focus is the setting where we are given a corpus D of {(x, Y;)}}~, where x; is
a sequence of tokens and Y, = {y,,y,,...,y,} is a set. For example, in multi-label fine-grained
sentiment classification, x; is a paragraph, and Y} is a set of sentiments expressed by the paragraph.
We use y; to denote an output symbol, [y,, Y y;] to denote an ordered sequence of symbols and

{y,, Y ¥y } to denote a set.

2.1 SET GENERATION USING SEQ2SEQ MODEL

Task Given a sample {(x4, Y¢)}7™,, the task of conditional set generation is to efficiently estimate
p(Ye | ).
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In this work, we adopt SEQ2SEQ models for the task. SEQ2SEQ models factorize p(Y; | «;) in an
autoregressive (AR) fashion using the chain rule:

p<Yt | mt) :p(Y1aYZa'-~7Yk ‘ wt)

k
=p(y; |wt)Hp(y]' ‘wia)’1~-~}’j—1) (1)
j=2
where we have used the order Y; = [y, ¥s,...,Y,] to factorize the joint distribution using chain

rule. In theory, any of the k! orders can be used to factorize the same joint distribution. In practice,
however, the choice of order is important. For instance, [Vinyals et al.| (2016) show that output
order affects language modeling performance when using LSTM based SEQ2SEQ models for set
generation.

Consider an example (x4, Y = {y;,y,}) pair. By chain rule, we have the following equivalent fac-
torizations of this sequence: p(Y; | @) = p(y, | )p(y, | €.¥,) = plyz | @)p(y, | 2, y,). How-
ever, order-invariance is only guaranteed with frue conditional probabilities, whereas the conditional
probabilities used to factorize a sequence are estimated by a model from a corpus. Thus, dependen-
ing on the order, the sequence factorizes as either p(y; | €)p(ys | @,y;) or By, | )p(y; | Z,y5),
which are not necessarily equivalent. Further, one of the two factorizations might closely approxi-
mate the true distribution, thus being a better choice.

2.2 EXISTING TECHNIQUES FOR SET GENERATION

Set generation for computer vision problems has received considerable attention. Specifically,
Rezatofighi et al.| (2018} 2020) investigate set outputs for vision tasks. Their learning procedure
involves jointly learning the order and the cardinality of the set. However, their method relies on
searching through a combinatorial space of permutations.

Zhang et al.| (2019) propose deep set prediction networks (DSPN), using an auto-encoder frame-
work with a set encoder for conditional generation of digits and image tags with a fixed maximum
number of elements. [Kosiorek et al.[|(2020) extend DSPN by additionally modeling the cardinality
of the output using an MLP. Finally, [Zhang et al.| (2020) explore the usage of energy-based models
for set prediction. Their learning and inference procedure relies on drawing samples from the set
distribution, which is prohibitively expensive for extremely high-dimensional spaces like text.

Our approach differs from their work in several important ways: i) instead of performing an ex-
haustive search over the sample space, we add informative order over labels in the input as a data
augmentation step, ii) we model cardinality simply by listing the set size as the first element of the
sequence, and thus jointly learn both it with the set output, and iii) Image classification and tagging
typically involves a small, independent number of tags. In contrast, NLP tasks have richer and larger
label space. Our method is more suitable for such tasks as it does not rely on exhaustive search over
label space and leverages label dependencies.

Chen et al.[(2021) explored the generation of an optimal order for graph generation given the nodes.
They observed that ordering nodes before inducing edges improves graph generation. However, in
our case, since the labels themselves are being generated, conditioning on the labels to create the
optimal order is not possible for non-trivial setups.

Non-SEQ2SEQ set generation These include using deep reinforcement learning for multi-label
classification (Yang et al) 2019) and combinatorial problems such as Sudoku (Nandwani et al.,
2020), and pointer networks (Ye et al., |2021) for extracting and generating keyphrases. Unlike
these works, our focus is on methods that can optimally adapt existing SEQ2SEQ models for set
generation. Since our approach does not involve directly changing the model parameters or training
procedure, we can leverage the advantages of the pretraining-finetuning paradigm and large-scale
language models, which have shown immense promise in several NLP tasks.

Connection with Janossy pooling |Murphy et al.| (2019) generalize deep sets by proposing to
encode a set of N elements by pooling permutations of P(N, k) tuples. With k = N, their method
is the same as pooling all N! sequences, and with k = 1, it reduces to deep sets. Our approach
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shares the spirit of tractable searching over N! with Janossy pooling. However, instead of iterating
over all possible 2-tuples, our method imposes pairwise constraints on the order of the elements.

2.3 MODELING SET INPUT

A number of techniques have been proposed for encoding set-shaped inputs (Santoro et al., 2017;
Zaheer et al. 2017; Lee et al., 2019; Murphy et al., 2019} [Huang et al., [2020; |Kim et al., 2021)).
Specifically, [Zaheer et al.| (2017) propose deep sets, wherein they show that pooling the represen-
tations of individual set elements and feeding the resulting features to a non-linear network is a
principled way of representing sets. [Lee et al.|(2019) present permutation-invariant attention to en-
code shapes and images using a modified version of attention (Vaswani et al.| 2017). We note that
our work focuses on settings where the input is a sequence, and the output is a set.

3 METHOD

In this section, we present TSAMPLE, a novel method that tractably creates informative orders over
sets. We also present our approach of jointly modeling cardinality and set output.

3.1 ADDING INFORMATIVE ORDERS FOR SET OUTPUT

As discussed in Section |2} SEQ2SEQ formulation requires the output to be in a sequence. Prior work
(Vinyals et al., 2016; |[Rezatofighi et al., 2018; |Chen et al., |2021) has noted that adding orders that
have the highest conditional likelihood given the input is an optimal choice. Unlike these meth-
ods, we create training data using orders sampled from TSAMPLE, thus completely sidestepping
exhaustive searching during training.

Our core insight is that knowing the optimal order between pairs of symbols in the output drastically
reduces the possible number of permutations. We thus impose pairwise order constraints for a subset
of labels. ~Speciﬁc.ally, given an output set Y: =¥y, Y9, - Yo if y;, y; are independent, they can
be added in an arbitrary order. Otherwise, an order constraint is added to the order between y;, y ;.

Learning pairwise constraints We estimate the dependence between elements y,, y; using point-

wise mutual information: pmi(y,,y;) = logp(y;,y;)/p(y;)p(y,). Here, pmi(y?—, ¥;) > 0 indi-
cates that the labels y;,y; co-occur more than would be expected under the conditions of indepen-
dence (Wettler & Rapp, |1993). We use pmi(y,,y;) > « to filter our such pairs of dependent pairs,
and perform another check to determine if the order between them should be fixed. For each de-
pendent pair y;, y;, the order is constrained to be [y;,y,] if logp(y; | y;) —logp(y; | y;) > B (y;
should come after y,), and [y, y;| otherwise. Intuitively, log p(y; | y,) —logp(y; | y;) > B implies
that knowledge that a set contains y,, increases the probability of y; being present. Thus, fixing the
order to [y;,y,] will be more efficient for generating a set with {y;, y,}.

Generating samples To systematically create permutations that satisfy these constraints, we con-
struct a topological graph GG; where each node is a label y; € Y, and the edges are determined
using the pmi and the conditional probabilities as outlined above (Algorithm[T)). The required per-
mutations can then simply be generated as topological traversals G (Figure[2)). To generate diverse
samples, we begin the traversal from a different starting node. We call this method TSAMPLE. Later,
we show that TSAMPLE can be interpreted as a proposal distribution in variational inference frame-
work, which distributes the mass uniformly over informative orders constrained by the graph.

Do pairwise constraints hold for longer sequences? While TSAMPLE uses pairwise (and not
higher-order) constraints for ordering variables, we note that the pairwise checks remain relevant
with extra variables. First, dependence between pair of variables is retained in joint distributions
involving more variables (y; Ly, = y; L y;, yx) for some y; € Y (Appendix|A.I). Further,
if y;,y; AL yp, then it can be shown that p(y; | y;) > p(y; | i) = »ply; | y;,u) >
p(yj | ¥, yr) (Appendix . The first property shows that the pairwise dependencies hold in the
presence of other elements of the set. The second property shows that an informative order continues
to be informative when additional independent symbols are added to it. Thus, our criterion of using
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pairwise dependencies between the elements of a set is still effective. Finally, we note that using
higher-order dependencies might be suboptimal for practical reasons: higher-order dependencies (or
including X') might not be accurately discovered due to sparsity, and thus causing spurious orders.

Algorithm 1 Generating permutations for Y,

R

Input: Set Y;, number of permutations n (y,)‘ /\ m/\ Yo ¥p Yie Yo Ym
Parameter: o, 8 I/ - . e ——
Output: n topological sorts over G;(V, E) AN t°”‘s’L°rf'°a' R
\ y’<‘ - Y., 1. Yir Vi Yim X
1: LetV = Yt, E = @ X b
2: fory,,y, € Y, do ) () Yo Yio Y Y3 Ym X
3. if pmi(y,,y;) > aand logp(y; | y;) —
logp(y; | y;) > B then . .
4: E=FEU Y; = Vi Figure 2: Our method first builds a graph G;
5.  endif over the set Y, and then samples orders from
6: end for G using topological sort (topo_sort). The
7: return topo_sort(G¢(V, E),n) topological sorting rejects samples that do not

follow the conditional probability constraints.

Complexity analysis Let Y be the label space (i.e., set of all possible labels), (x;, Y;) be a partic-
ular training example, N be the size of the training set, and c be the maximum number of elements
for any set Y, in the input. Our method requires three steps: 1) iterating over the training data to learn
conditional probabilities and pmi, and ii) given a Y, building the topo-graph G; (Algorithm/[I]), and
iii) traversing G; to create samples for (¢, Y;).

The time complexity of the first operation is O(Nc?): for each element of the training set, the
pairwise count for each pair y,, y; and unigram count for each y; is calculated. The pairwise counts
can be used for calculating joint probabilities. In principle, we need O(|Y|?) space for storing the
joint probabilities, but only a small fraction of the possible combinations appear together in practice.

Given a set Yy, the graph G is created in O(c?) time. Then, generating k samples from G requires
a topological sort, for O(kc) (or O(c) per traversal). For training data of size N, the total time
complexity is O(Nck).

The entire process (building the joint counts and creating graphs and samples) takes less than five
minutes for all datasets for our experiments (on an 80-core Intel Xeon Gold 6230 CPU) .

Why should augmenting with permutations help? We show that our method of augmenting
permutations to the training data can be interpreted as an instance of variational inference with the
order as a latent variable, and TSAMPLE as an instance of a richer proposal distribution. Let 7
be the j*" order over Y; (out of |Y;|! possible orders II), and 7;(Y;) be the sequence of elements
in Y; arranged with order 7;. Treating 7 as a latent random variable, the output distribution can
then be recovered by marginalizing over II: log pp(Y; | @:) = log > -y pe(m.(Y:) | @), where
pp is the SEQ2SEQ conditional generation model. While summing over II is intractable, standard
techniques from the variational inference framework allow us to write a lower bound (ELBO) on the
actual likelihood:

log po (Y | @) =log Y po(m=(Ys) | @) > Bgyr,)
wyell

Ingg(ﬂ'z (Yt) | wt)
q¢(7rz)

ELBO

= L(0,9)

In practice, the optimization procedure draws k samples from the proposal distribution ¢ to optimize
a weighted ELBO (Burda et al.| 2016} [Domke & Sheldon, [2018). Crucially, ¢ can be fixed (e.g., to
uniform distribution over the orders), and in such cases only 6 are learned (Appendix [C).

TSAMPLE can thus be seen as a particular proposal distribution that assigns all the weights to the
topological ordering over the label dependence graphs. We also experiment with sampling from a
uniform distribution over the samples (referred to as UNIFORM experiments in our baseline setup).
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We note that the idea of using an informative proposal distribution over space of structures to do
variational inference has also been used in the context of grammar induction (Dyer et al.,|2016) and
graph generation (Jin et al., 2018} (Chen et al., 2021)). Our formulation is closest in spirit to (Chen
et al.| (2021). However, in their graph generation setting, the set of nodes to be ordered is already
given. In contrast, we infer the order and the set elements jointly from the input.

3.2 MODELING CARDINALITY

Let m = |Y;| be the cardinality of Y; (or the number of elements in Y;). Our goal is to jointly
estimate m and Y; (i.e., p(m,Y; | x:)). Additionally, we want the model to use the cardinal-
ity information for generating Y;. To this end, we simply add the order information at the be-
ginning of the sequence. That is, we convert a sample (¢, Yy) to (x4, [|sY:], 7(Y})]), and then
train our SEQ2SEQ model as usual from & — [|sY:|,m(Y:)]. As SEQ2SEQ models use autore-
gressive factorization, listing the order information first ensures that the sequence factorizes as
p([IYe], 7(Ye)] | @) = p(IsYi| | @r)p(w(Ys) | |sYz|, ). Thus, the generation of Y is condi-
tioned on both the input and the cardinality as desired (note the p(m(Y;) | |sYz|, ) term).

Why should cardinality help? Unlike models like deep sets (Zhang et al., 2019), SEQ2SEQ mod-
els are not restricted by the number of elements generated in the output. However, the information
about the number of elements to be generated has two potential benefits: 1) it can help avoid over-
generation (Welleck et al., 2019} [Fu et al.,[2021)), and ii) unlike free-form text output, the distribution
of the set output size (p(|Y¢| | +)) might benefit the model to adhere to the set size constraint. Thus,
information on the predicted size can be beneficial for the model to predict the elements to be gen-
erated.

In the following section, we extensively test our proposed method via a simulated setting and em-
pirical analysis on diverse real-world datasets.

4 EXPERIMENTS

4.1 SIMULATION

We design a simulation to investigate the effects of
output order and cardinality on conditional set gen- s N
eration, following prior work that has found simu-

lation to be an effective for studying properties of n
deep neural networks (Vinyals et al, 2016} [Khan- a @ @
delwal et al, 2018). “

Data generation We use a graphical model (Fig- B
ure [3) to generate conditionally dependent pairs M
(z,Y), with different levels of interdependencies ~ -
among the labels in Y. Let Y = {y;,y5,---,¥,}
be the label space (i.e., label space). We sample a
dataset of the form {(x,y)},. @ is an n dimensional multinomial sampled from a dirichlet pa-
rameterized by «. The output set y = {y;,¥s,...,Yp} is created in B blocks, each block of
size k and y; € Y. A block is created by first sampling £ — 1 labels (y,) independently from
Multinomial (). The &*" label (y,) is sampled from either a uniform distribution with a probability
= € or is deterministically determined from the preceding k& — 1 labels. For block size of 1 (k = 1),
the output is simply a set of size B sampled from a where all the labels are independent. Similarly,
k = 2 simulates a situation with a high degree of dependence: each block is of size 2, with y,
sampled independently from the input, and the y, determined deterministically from y,,. Gradually
increasing the block size increases the number of independent elements.

Figure 3: Generative process for simulation.

4.1.1 SIMULATION RESULTS

We use the architecture of BART-base [Lewis et al.|(2020) without pre-training for all simulation

2All the simulations were repeated using three different random seeds, and we report the averages.
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TSAMPLE leads to higher set overlap and helps across all sampling types: To test our method
against UNIFORM, we use perplexity and jaccard coefficient. Jaccard coefficient captures the ability
of the model to generate more informative sequences, whereas perplexity captures the ability of
the model to be sensitive to order. We gradually augment the training data with orders sampled
from a uniform distribution over orders (UNIFORM) and TSAMPLE, and evaluate the learning and
the final set overlap using training perplexity and Jaccard score, respectively. The results show that
augmentations done TSAMPLE helps the model converge faster, and to a lower perplexity (Figure ]
left). TSAMPLE also consistently outperforms UNIFORM across block sizes (Figure [ right). We
observe that the efficacy of TSAMPLE reduces with increasing block size. This can be understood
by noting that as the number of independent elements increase, the effect of order on the joint
distribution diminishes (proof in Appendix [A.3). Further, we found that TSAMPLE is not sensitive
to the sampling type: across five different sampling types, including nucleus (Holtzman et al., 2020)
and greedy sampling, augmenting with TSAMPLE permutations yields significant gains (Table [5]in

Appendix [E).

— Baseline Uniform 100 Uniform 200 TSAMPLE 100 -+ TSAMPLE 200 M UNIFORM TSAMPLE

5

Perplexity
~
Jaccard Coefficient

0 0 -

1 2 3 2 4 8
Block size

Epochs

Figure 4: Effect of TSAMPLE on perplexity (left) and set overlap (right).

SEQ2SEQ models can learn cardinality
and use it for better decoding : We cre-
ated sample data from Figure [3] where
the length of the output is determined by

avg/max/min  unique train/test/dev
labels per sample labels samples per split

sum of the inputs X. We experimented GO-EMO 3.03/3/5 28 0.6k/0.1k/0.1k
with and without including cardinality as OPENENT 5.4/2/18 2519 2k/2k/2k
the first element. We found that training REUTERS 2.52/2/11 90 0.9k/0.4k/0.3k

with cardinality increases step overlap by
over 15%, from 40.54 to 46.13. Fur-
ther, the version with cardinality accu- Table 1: Dataset statistics.

rately generated sets which had the same

length as the target 70.64% of the times, as opposed to 27.45% for the version without cardinality. A
number of other findings, including conditions where order matters the most, effect of randomness
and independence on our task are included in Appendix

4.2 REAL-WORLD TASKS

To establish the efficacy of our approach in real-world data settings, we experiment with three dif-
ferent multi-label classification datasets:

e Go-Emotions classification (GO-EMO, [Demszky et al.| (2020)): This multi-label classification
task involves generating a set of emotions for an input paragraph.

e Open Entity Typing (OPENENT, (Choi et al.|(2018))): Given an input text with an entity tagged,
the task of open entity typing involves labeling the entity with free-form phrases. Since the set
of possible entity types is open, this task allows us to investigate our method in situations where
the label space is not constrained.

e Reuters-21578 (REUTERS, [Lewis| (1997)): A collection of newswire documents from Reuters,
where each article has to be labeled with a set of economic subjects mentioned in it.
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We treat all the problems as open-ended generation problems, and do not use any specialized pre-
processing. For all the datasets, we filter out samples with a single label. For each training sample,
we create n permutations over TSAMPLE to create the training data.

Baselines We experiment with the following three baselines (Table [2):

e SET SEARCH: each training sample (x, {y;,ys,-..,Ys}) is converted into k different training
examples {(x, yi)}le. During inference, unique elements generated by beam search are re-
turned as the set output. The size of the beam is set to the maximum possible set size in the
training data (Table [T). This is a popular approach for one-to-many generation tasks (Hwang
et al.,[2021).

e SEQ2SEQ: set elements are listed in a random order, and each sample is repeated n times.
e UNIFORM: n permutations are uniformly sampled from the possible permutations of labels.

Model We use BART-base (Lewis et al.,2020) with pre-training for all the tasks. We use n = 2 for
TSAMPLE and UNIFORM. For all the results, we use three epochs and the same number of training
samples. This controls for models trained with augmented data improving only because of factors
such as longer training time. All the experiments were repeated for three different random seeds, and
we report the averages. We conduct a one-tailed proportion of samples test (Johnson et al., [2000)
to compare the best model with SEQ2SEQ (we do not use SET SEARCH for calculating significance)
and underscore all results that are significant with p < 0.0005. For Algorithm[I] we experiment with
a = {0.5,1,1.5} and 5 = {log,(2),log,(3),log,(4)}. and use the implementation of topological
sort provided by networkx (Hagberg et al.|[2008) and ignore cycles. We found from our experiments
that hyperparameter tuning over «, 8 did not affect the results in any significant way. For all the
experiments reported, we use o = 1 and 8 = log,(3). We use a single GeForce RTX 2080 Ti for
all our experiments. Additional hyperparameter details in Appendix

Results Table [2| summarizes the empirical results on the tasks. We report macro precision, re-
call, and F-measure on individual datasets. We observe that across all the datasets, incorporating
cardinality and using TSAMPLE improves the performance significantly. When used with baseline
approaches across all the datasets, modeling cardinality as part of the output provides significant per-
formance gains. To complement, our TSAMPLE further improves the performance across datasets.
More specifically, we observe that both precision and recall improves, showing the overall efficacy
of our approach. TSAMPLE improves over UNIFORM and SEQ2SEQ by about 1% absolute F'-score
on average. Modeling cardinality provides a consistent performance gain of about 6% for SEQ2SEQ,
6% for UNIFORM, and 8% F-score for TSAMPLE. Overall, we achieve a net gain of 9% absolute
F-score by incorporating both informative orders and cardinality.

In further analysis, we observed that the comparatively lower performance SET SEARCH baseline
is due to two specific reasons - repeated generation of the same set of terms (e.g., person, business
for OPENENT) and generating elements not present in the test set. We also note that UNIFORM
does not improve over SEQ2SEQ consistently (both with and without CARD), showing that merely
augmenting with random permutations does not help.

4.3 ANALYSIS

To understand the nature of the label dependencies, we use qualitative examples from the datasets
for an in-depth analysis. For this analysis, we selected a random subset of 100 samples from each
of the datasets from the validation set.

What kinds of permutations does TSAMPLE create? As discussed in Section TSAMPLE
encourages highly co-occuring pairs (y;, y;) to be in the order y;,y; if p(y; | y;) > p(y; | y;). In
our analysis, this dependency in the datasets shows that the orders exhibit a pattern where specific
labels appear before the generic ones. For example, in case of entity typing, the more generic entity
event is generated after the more specific entities home game and match Figure (left).

Increasing n  We compare TSAMPLE and UNIFORM as n increases from n = 2 to 10. Figure 4.3
(right) shows that both TSAMPLE and UNIFORM improve as n is increased, with TSAMPLE outper-
forming UNIFORM across n.
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GO-EMO OPENENT REUTERS
P r F P r F D r F
SET SEARCH 10.7 7.0 74 265 314 263 109 71 75
SEQ2SEQ 274 262 234 554 424 446 248 138 156
UNIFORM 325 199 227 626 417 469 267 1277 152
TSAMPLE 367 198 233 60.0 445 48.0 265 128 158

SEQ2SEQ +CARD 33.0 283 268 625 447 505 341 218 243
UNIFORM + CARD 356 265 275 68.6 423 504 353 221 247
TSAMPLE + CARD 36.1 305 30.0 655 475 535 36.7 24.1 26.7

Table 2: Our main results: using permutations generated by TSAMPLE and adding cardinality gives
the best overall performance in terms of macro precision, recall, and F'—score score. Statistically
significant results are underscored. CARD stands for cardinality.

— GOEMO — OPENENT — REUTERS -~ GOEMO (U) -- OPENENT (U) -- REUTERS (U)

volleyball 60

Figure 5: Left: label dependencies used by TSAMPLE for OPENENT shows that the method puts
specific entities (e.g., volleyball) before generic ones (e.g., event). Right: TSAMPLE consistently
outperforms UNIFORM (marked as (U) in the legend) as n is increased.

Role of cardinality From the results 2, we observe that cardinality is crucial to modeling set
output. To study whether the models learn to condition on predicted set length, we compute an
agreement score - defined as the % of times the predicted cardinality matches the number of elements
generated by the model. We observe that the model effectively predicts the cardinality almost exactly
in both GO-EMO and REUTERS datasets (average 95%). While the exact match agreement is low in
OPENENT (35%), the model is within an error of 1 in 93% of the cases.

Reversing the order In order to check our hypothesis of whether only informative orders helping
with set generation, we invert the label dependencies returned by TSAMPLE for all the datasets and
train with the same model settings. Across all datasets, we observe that reversing the order leads to
an 11% and 12% drop in F'-score, respectively. The reversed order not only closes the gap between
TSAMPLE and UNIFORM, but in many instances, the performance is slightly worse than UNIFORM.

5 CONCLUSION

We present a novel method for performing conditional set generation using SEQ2SEQ models that
leverages both incorporating informative orders and adding cardinality information. Experiments
in simulated settings and real-world datasets show that our method is more effective than strong
baselines at set generation. We also present an in-depth analysis of our method along with the
empirical results. In the future, we want to extend this work to explore better proposal distributions
and to incorporate cardinality information in open-ended generation tasks like dialogue.
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ETHICS AND REPRODUCIBILITY STATEMENT

We take the following steps for reproducibility of our results:

1. All the experiments are performed for three different random seeds. In addition, we conduct
a proportion of samples hypothesis test to establish the statistical significance of our results.
We did not perform extensive hyperparameter tuning and used the same set of defaults for
baselines and our proposed method.

2. For all data augmentation experiments, we match the number of training samples and
epochs; all the models are trained for the same duration. This alleviates the concern that
the models perform well with augmented data merely because of the longer training time.

3. We conduct a proportion of samples test for all the experiments conducted on real-world
datasets and use a small p = 0.0005 to measure highly significant results, which are indi-
cated with an underscore.

Our work aims to promote the usage of existing resources for as many use cases as possible. In
particular, all our experiments are performed on the BASE-version of the model (BART) that can
relatively lower parameter count to conserve resources and help lower our impact on climate change.

We propose a method to use existing pre-trained language models more efficiently for set generation.
Our downstream datasets in this work do not contain any societally impactful or social themes.
Hence, we do not anticipate any misuse as-is. To the best of our knowledge, we did not encounter
any downstream tasks that can leverage our method for any negative impact. Despite that, it is
certainly possible we might have missed something, and we are happy to engage anonymously with
the reviewers, and the chairs and help address the concerns that may arise.
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A PROOFS

Let Y be the output space, y,,y;,y, € Y, and yi, € Y —y, —y, be a subset of the symbols excluding
Yir Y-

LemmaAly, Ly, =y, 1 (y;y;)

Proof Lety, L (y;y;) by contradiction. Then:

p(y: YY) = p(y)P(Y;¥k) (2)
Also,
Py y;) = > p(¥i¥,Vi)
YL€EZ
= > ply)p(y;vi) (equation[2)
YLEZ
=p(y;) > p(y;¥x)
YLE€EZ
= p(y;)p(y;) 3)
However,y; A ythusy, Ly = y; /L (y;y)-
Lemma A.2
p(y; 1y;) >p(y; 1y:) = ply; 1y 96) >0y, | Visy)
lina Yj AL Yk

Proof We have:
p(y; | Yj) > p(Yj 1Y)

= p(y;) <p(y;) 4)
p(y; k) = p(yr | y;)p(y;)
< p(ye | y;)p(y;) (Equation F)
=p(yx | y:)p(y;) OY; Lye = pye | y;) =p(yk | y;) = p(yx))
= p(¥;, Yk) (5
Thus,

p(Yir YY)

p(y; | yj‘7yk) = W

p(Yir Y Yr)

(Y, Yk)

=p(y; | ¥iYr) (6)

Lemma A3 Ify, Wl y; Vy,,y; €Y, the order is guaranteed to not affect learning.

Proof Let ; be the j*" order over Y (out of |Y|! possible orders II), and 7;(Y) be the sequence
of elements in Y arranged with ;.

p(y; | Yj) =p(y;)
= p(¥i¥j:¥i) = 2(Y)P(y; [ ¥)p(ys | visy;)
p(y:)p(y;)p(ye)
= p(ﬂm(YianaYk)) = p(ﬂn(YianaYk)) Vi, Tm € 11

In other words, when all elements are mutually independent, all possible joint factorizations will
simply be a product of the marginals, and thus identical.

(v; Ly, vy, y5)
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B DATASET
Input Output
Fine-grained emotion So there’s hope for the rest of us! {curiosity, gratitude
classification, [28] Thanks for sharing. What helped o timisnzl}i & ’
(Demszky et al.,|2020) you get to where you are? p
Open-entity typing [2519]
Some 700,000 cubic meters of {colony, region,
. caustic sludge and water burst location, hamlet,
(Choi et al | 2018) inundating [SPAN] three west area, village,

Hungarian villages [SPAN] and spilling.  settlement, community }

Reuters [90]
India is reported to have bought
(Lewis, [1997) two white sugar cargoes for. . . {ship, sugar}
..cargo sale, they said.

Table 3: Real world tasks used for experiments

C FIXING THE PROPOSAL DISTRIBUTION IN THE VAE FORMULATION

log pg(Y | ) = log Z po(m,(Y) | x)
eIl
q(m=)
= log Z ¢ ) m(Y) | ®)
Tz EH

=1logEy,(r.) [W}

> Eqy(my) logpo(Y, 72 | ®)] — By, (r,) [log g (72)]

log pe(m=(Y) | =
logpy (Y | ) =log > po(rms( >m>qu¢<ﬂz>[ (&( >)| :
T €11 4p\Tz

ELBO

= L(0,¢)

)

Where equation [7]is the evidence lower bound (ELBO). The success of this formulation depends on
the quality of the proposal distribution ¢ from which the orders are drawn. When ¢ is fixed (e.g.,
to uniform distribution over the orders), learning only happens for #. This can be clearly seen from
splitting Equation [7]into terms that involve just 6 and ¢:

VoL(0,0) =0
VoL(0,0) = VoEy, (x,) [logpe(Y, 7 | )]

D HYPERPARAMETERS

We list all the hyperparameters in Table 4]

E EXPLORING THE INFLUENCE OF ORDER ON SEQ2SEQ MODELS WITH A
SIMULATION

We design a simulation to investigate the effects of output order and cardinality on conditional set
generation, following prior work that has found simulation to be an effective for studying properties
of deep neural networks (Vinyals et al.,|2016; |Khandelwal et al., 2018)).

14
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Hyperparameter Value

GPU GeForce RTX 2080 Ti
gpus 1
auto_select_gpus false
accumulate_grad_batches 1
max_epochs 3

precision 32
learning_rate le-05
adam_epsilon 1e-08
num_-workers 16
warmup_prop 0.1

seeds [15143,27122, 999888]
add_Ir_scheduler true
Ir_scheduler linear
max_source_length 120
max_target_length 120
val_max_target_length 120
test_max_target_length 120

Table 4: List of hyperparameters used for all the experiments.

Data generation We use a graphical model (Figure [3) to generate conditionally dependent pairs
(z,Y), with different levels of interdependencies among the labels in Y. Let Y = {y,¥,,...,¥,}
be the set of output labels. We sample a dataset of the form {(x,y)}",. @ is an n dimensional
multinomial sampled from a dirichlet parameterized by «, and y is a sequence of symbols with each
y; € Y. The output sequence vy is created in B blocks, each block of size k. A block is created
by first sampling & — 1 prefix symbols independently from Multinomial(z), denoted by y, The
k' suffix symbol (y,) is sampled from either a uniform distribution with a probability = € or is
deterministically determined from the preceding k — 1 prefix terms. For block size of 1 (k = 1), the
output is simply a set of size B sampled from « (i.e., all the elements are independent). Similarly,
k = 2 simulates a situation with a high degree of dependence: each block is of size 2, with the prefix
sampled independently from the input, and the suffix determined deterministically from the prefix.
Gradually increasing the block size increases the number of independent elements.

— Block size 1 Block size 2 Block size 3 Block size 4
180

e R

n 135

a @ @ i

3
4w

) g
45

B

M [

i\ I 0 2 50 75

% Randomness.

Figure 6: The generative process for simulation
block sizes
E.1 MAIJOR FINDINGS
We now outline our findings from the simulation. We use the architecture of BART-base [Lewis

et al.| (2020) (six-layers of encoder and decoder) without pre-training for all simulations. All the
simulations were repeated using three different random seeds, and we report the averages.

Finding 1: SEQ2SEQ models are sensitive to order, but only if the labels are conditionally

dependent on each other. We train with the prefix y,, listed in the lexicographic order. At test
time, the order of is randomized from 0% (same order as training) to 100 (appendixly shuffled).

15

100

Figure 7: Perplexity vs. Randomness for varying
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As can be seen from Figure [7] the perplexity gradually increases with the degree of randomness.
Further, note that perplexity is an artifact of the model and is independent of the sampling strategy
used, showing that order affects learning.

Finding 2: Training with random orders makes the model less sensitive to order As Figure[§]
shows, augmenting with random order makes the model less sensitive to order. Further, augmenting
with random order keeps helping as the perplexity gradually falls, and the drop shows no signs of
flattening.

Finding 3: Effects of position embeddings can be overcome by augmenting with a sufficient
number of random samples Figure [§] shows that while disabling position embedding helps the
baseline, similar effects are soon achieved by increasing the random order. This shows that disabling
position embeddings can indeed alleviate some concerns about the order. This is crucial for pre-
trained models, for which position embeddings cannot be ignored.

— 0% — 100% — 200% - 0% (w/ope) --- 100% (w/ope) -- 200% (/o pe)
Block size 2 Block size 3 Block size 4 Block size 5

50 50 50 50

25 25 25 25

Figure 8: Augmenting dataset with multiple orders help across block sizes. Augmentations also
overcome any benefit that is obtained by using position embeddings.

Finding 4: TSAMPLE leads to higher set overlap We next consider blocks of order 2 where the
prefix symbol y,, is selected randomly as before, but the suffix is set to a special character y; with
50% probability. As the special symbol y;, only occurs with y,, there is a high pmi between each
(Y,,Y,) pair as p(y, | y,) = 1. Different from finding 1, the output symbols are now shuffled
to mimic a realistic setup. We gradually augment the training data with random and topological
orders and evaluate the learning and the final set overlap using training perplexity and Jaccard score,
respectively. The results are shown in Figure[0] Similar trends hold for larger block sizes, and the
results are included in the Appendix in the interest of space.

— Baseline Rand 100 — Rand 200 Topo 100 -+ Topo 200 M Random W Topo

Perplexity
~
Set overlap

1 2 3 Baseline 50% 100% 200%
Epochs % Augmentation

Figure 9: Effect of TSAMPLE on perplexity and set overlap. Left: Augmentations done TSAMPLE
helps the model converge faster and to a lower perplexity. Right: Using TSAMPLE, the overlap
between training and test set increases consistently, while consistently outperforming UNIFORM.

Finding 5: TSAMPLE helps across all sampling types We see from Table [3] that our approach
is not sensitive to the sampling type used. Across five different sampling types, augmenting with
topological orders yields significant gains.

Finding 6: SEQ2SEQ models can learn cardinality and use it for better decoding We created
sample data from Figure [6] where the length of the output is determined by sum of the inputs X.
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Beam Random Greedy Top-k Nucleus
UNIFORM  0.39£0.05 0.39+0.02 0.35£0.05 0.39+0.02 0.39£0.02
TSAMPLE  0.67£0.05 0.67+0.05 0.71£0.04 0.67+0.05 0.68=£0.05

Table 5: Set overlap for different sampling types with 200% augmentations.

The gains are con-

sistent across sampling types. Similar trends were observed for 100% augmentation and without
positional embeddings. Top-k sampling was introduced by (Fan et al.||2018), and Nucleus sampling

by (Holtzman et al., 2020).

We experimented with and without including cardinality as the first element. We found that training
with cardinality increases step overlap by over 13%, from 40.54 to 46.13. Further, the version with
cardinality accurately generated sets which had the same length as the target 70.64% of the times,

as opposed to 27.45% for the version without cardinality.

F ADDITIONAL RESULTS

We present all the results for the three tasks in Tables|[6] [7] and 8]

Pmicro  Pmacro  Tmicro Tmacro K micro K macro .7 accard
SET SEARCH 47.17 10.68 13.09 7.02 10.7 7.36 7.4
SEQ2SEQ 41.65 27.39 35.19 26.21 27.4 2341 23.4
SEQ2SEQ + CARD  39.77 33 38.02 28.31 33 26.79 26.8
UNIFORM + CARD 44.77 356 3296 2654 35.6 27.53 27.5
TSAMPLE + CARD 43.37 36.08 34.51 3054 36.1 30.01 30
UNIFORM- CARD  48.85 3245 2775 1986 325 22.67 22.7
TSAMPLE- CARD 50 36.68 29.84 19.84 36.7 23.31 23.3

Table 6: Results for GO-EMO.

Pmicro  Pmacro  Tmicro Tmacro K micro K macro J accard
SET SEARCH 70.04 1092 349 7.1 46.56 7.54 37.49
SEQ2SEQ 66.36 2474 42.28 13.78 51.64 15.58 443
SEQ2SEQ + CARD 73.02 34.17 53.8 21.85 61.95 24.28 59.08
UNIFORM + CARD 7426 35.31 5433 22.13 6275 24.74 58.95
TSAMPLE + CARD 75.65 36.67 5554 24.13 64.05 26.66 61.14
UNIFORM- CARD  69.56 26.68 38.15 1271 49.27 15.2 42.24
TSAMPLE- CARD  76.55 2649 41.78 1277 54.06 15.78 47.34

Table 7: Results for REUTERS.

Pmicro  Pmacro  T'micro T'macro F micro F macro .7 accard
SET SEARCH 24.65 26.5 2998 3144 2392 26.25 13.39
SEQ2SEQ 5278 554 39.84 4242 4145 44.63 24.6
SEQ2SEQ + CARD 61.26 6248 41.87 44.68 48.07 5048 27.84
UNIFORM + CARD 67.56 68.59 39.61 4225 47.98 50.4 26.89
TSAMPLE + CARD 64.58 6553 44.6 4746 51.2 5348 29.39
UNIFORM- CARD 60.93 62.57 39.09 41.69 442 46.85 25.26
TSAMPLE- CARD  58.02 59.88 42.63 4495 46.54 48.86 26.82

Table 8: Results for OPENENT.
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