
Explaining Temporal Plans with Incomplete Knowledge and Sensing Information

Yaniel Carreno 1,2,3, Alan Lindsay 2, Ronald P. A. Petrick 1,2

1 Edinburgh Centre for Robotics, UK
2 Department of Computer Science, Heriot-Watt University, Edinburgh, UK

3 School of Informatics, University of Edinburgh, Edinburgh, UK
{y.carreno, alan.lindsay, r.petrick}@hw.ac.uk

Abstract

The challenge of explaining AI solutions is driven by the need
for trust, transparency in the decision process, and interac-
tion between humans and machines, which allows the first to
comprehend the reasoning behind an AI algorithm decision.
In recent years, Explainable AI Planning (XAIP) has emerged
to provide the grounds for querying AI planner behaviour in
multiple settings, such as problems requiring temporal and
numeric reasoning. This paper introduces an analysis of ex-
plainability for temporal planning problems that require rea-
soning about incomplete knowledge and sensing information.
We present an approach called Explainable AI Planning for
Temporally-Contingent Problems (XAIP-TCP) that defines a
set of interesting questions from the temporal and contingent
planning perspective, covering numeric, temporal, and con-
tingent notions in the presence of incomplete knowledge and
sensing information. We present an analysis of the main ele-
ments required to deliver compelling explanations for a new
set of domains motivated by real-world problems.

1 Introduction
As planning technology has matured over the years, we have
seen its adoption in a growing number of real-world appli-
cations (Maurelli et al. 2016; Hastie et al. 2018; Bernardini
et al. 2020). This can be attributed to the general applicabil-
ity of planning tools (Kerschke et al. 2019) and the relative
flexibility of the various languages available for representing
different types of problems (e.g., classical (McDermott et al.
1998), temporal (Fox and Long 2003)). Automated planners
operate over a problem model (consisting of domain proper-
ties, actions, goals, cost functions, etc.) that must capture
critical constraints about the underlying problem in order
for a generated plan—a structured collection of actions that
transforms the model’s initial state into a goal state—to be
effective for execution. Planning models for real-world ap-
plications can be quite complex, representing numeric and
temporal constraints and uncertainty about the world.

An issue of growing concern for AI-based approaches to
real-world applications is the explainability of the solution to
end users—interested parties interacting with the system—
and the process that brought it about (Smith 2012). The field
of Explainable Planning (XAIP) (Fox, Long, and Magazzeni

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: General architecture for plan explainability with
temporally-contingent problems. The XAIP-TCP reasoner
considers model properties and the output of the planning
and execution system to provide explanations to end users.

2017) aims to tackle this problem by considering the need
for trust, transparency, and interaction with humans in the
context of the planning process. Automated planning solu-
tions are particularly well suited for explanation generation
(Chakraborti, Sreedharan, and Kambhampati 2020) due to
their use of symbolic models—an approach that has previ-
ously been demonstrated by exploiting the planning model
to generate explanation content (Chakraborti et al. 2017; Ei-
fler et al. 2020).

In (Fox, Long, and Magazzeni 2017), a general roadmap
for XAIP is presented and key questions linking planner
behaviour to explainability are posed. The work focuses
on plan solutions generated by temporal planners, such as
POPF (Coles et al. 2010) and OPTIC (Benton, Coles, and
Coles 2012) which solve problems with numeric and tem-
poral constraints. However, the solutions do not consider
how they interact with potential uncertainty in the world
state. For example, Figure 1 shows a problem where an
Autonomous Underwater Vehicle (AUV) has to inspect and
close multiple valves with an unknown state (open or ¬open)
at planning time. In addition, the AUV needs to refuel during
the mission by coordinating with an Autonomous Surface
Vehicle (ASV). The ASV is available at different positions
in the environment for specific periods of time. These con-
straints are considered by the planning and execution system

to generate a plan solution that depends on the model proper-
ties (e.g., incomplete knowledge, temporal and numeric re-
quirements). On the planning side, the problem requires the
planner to generate multiple sub-plans that deal with all pos-
sible valve states. On the user side, an end user may query
the system to ask questions about a generated plan, e.g.:

• Why did you use action sense-valve?, or

• What happens if you remove action sense-valve?

In this paper, we extend the roadmap of (Fox, Long,
and Magazzeni 2017) to address the main challenges of
explainability for Temporally-Contingent Problems (TCPs).
We focus on temporal planning problems with numeric con-
straints where the action sequences required to reach a goal
lead to conditional plans resulting from the presence of in-
complete information and sensing actions. We extend the
work in (Smith 2012; Fox, Long, and Magazzeni 2017), by
presenting explainability that can help the questioner un-
derstand the problem’s solution considering the domain’s
properties represented in the model acquisition (Sreedharan
et al. 2020) and plan’s output. We (i) introduce the idea of
temporally-contingent planning problem, (ii) define a gen-
eral structure of a plan solution for temporally-contingent
planning problems, (iii) introduce two real-world domains
that contain temporal and numeric specifications, as well
as conditional elements associated to incomplete knowledge
and sensing information, and (iv) most importantly we intro-
duce Explainable Planning for Temporally-Contingent Prob-
lems (XAIP-TCP), defining the main questions and potential
answers to explain plans for these type of problems.

2 Example Domains
This section introduces two example domains that will mo-
tivate our approach and guide the analysis through the paper.
These domains1 are inspired by real-world problems that re-
quire both temporal and numeric reasoning to achieve a plan.
In addition, domain problems present unknown properties
that require sensing actions in the plan to acquire the incom-
plete/unknown information in the initial states, which leads
to planning solutions with multiple branches that respond to
all possible outcomes of these unknown properties. There-
fore, the use of sensing actions (Petrick and Bacchus 2002;
Hoffmann and Brafman 2005; Muise, Belle, and McIlraith
2014) solves the uncertainty in the world state. The solu-
tions we consider are branching plans (see Figure 3), where
each plan branch is conditioned on a possible value that a
sensing action could return. Plans (including plan branches)
may further be required to satisfy certain numeric and tem-
poral constraints. This added complexity in the structure of
the plans leads to challenges at the explanation level.

Domain 1 (Offshore Energy Platform): This domain is an
extension of the Inspection domain in (Carreno et al. 2020b),
where a robot has to move to specific locations by choosing
among various paths (P-AB1, P-BC1, P-BC2, ...). Figure 2
(left) shows a general representation of the problem, where

1See https://github.com/YanielCarreno/tcp-domains for domain
and problem definitions and potential plan solutions.

Figure 2: Illustration of the Offshore Energy Platform (left)
and the Valve-Manipulation (right) domains.

Figure 3: An example branched plan for Valve-Manipulation
domain. Incomplete knowledge is acquired using a sensing
action sense-valve. [t,d] represents the action start
time and its duration respectively.

green arrows indicate possible directions the robot can take
from each waypoint. We consider the situation where a robot
must reach WP-B and WP-C starting from WP-A. Single or
multiple paths can link points. Robots must use the same
paths for navigation, which increases the risk of collision.
A robot must observe if the path is clear before travelling a
route. The number of routes between points is fixed, with a
hierarchy based on distance. We consider that at least one of
the paths from a robot’s current position is always free.

The domain includes two actions, navigation and
sense-path, which are defined by parameters ?r -
robot ?wpi ?wpf - waypoint ?p - poi and ?s -
robot sensor (for the sensing action), where ?wpi and
?wpf are the initial and final locations defined by the type
waypoint. The type poi defines the state of the path be-
tween points which is unknown. Therefore, objects of the
type poi enclose elements of uncertainty that require a sens-
ing action to acquire the incomplete information. A plan
solution will present multiple branches after the sensing
action that leads to the possible property (path state) out-
comes. For this domain, ?p instances of type poi describe
the paths. The navigation action requires as precondi-
tions to know possible paths between two points and if the
path is free. Therefore, (path option ?wpi ?wpf ?p)

and (path free ?wpi ?p) have to hold.
WP-A and WP-B are connected by a single path. In

this case, the problem initial state defines the single path
connecting the points is known. Therefore, (path option
wp-a wp-b p-ab1) and (path free wp-a p-ab1) are
at the initial state. Multiple paths exist to navigate from WP-
B to WP-C. The first path checked is P-BC1 (shortest path)
which is occupied, leading to the sensing action to check
other paths. Here, the planner will consider fixed times for
sensing action. However, the duration of the navigation can
significantly change the plan makespan. Therefore, the im-
plementation of future actions can occur at different time
frames depending on the branch. These possible changes in
the implementation times have to be considered by the oper-
ators to implement further missions that might require coor-
dination amongst a fleet of robots.

Domain 2 (Valve-Manipulation): This domain represents
an updated version of the underwater domains used in (Mau-
relli et al. 2016; Carreno et al. 2020a). An offshore scenario
includes a set of blowout preventers (BOPs), structures with
a valve attached that can be open or closed. An AUV must
ensure that two valves (v1 and v2) are closed during a mis-
sion. The robot has to communicate data every time it is
recorded. In the initial state, the robot is at the deployment
base. From the base, it is possible to navigate to the BOPs,
and from there, the AUV can manipulate the valve. The ac-
tion the AUV should take depends on the state of the valve: if
the valve is open, it should be closed; if the valve is closed,
the AUV does not need to perform any action. The valve
state can be checked using a sensing action. In addition, the
robot needs to refuel during the mission to keep a certain
energy level by coordinating a refuel action with an ASV,
which is in multiple refuel points at different time slots. Fig-
ure 2 (right) shows a general representation of the environ-
ment. A plan solution for this problem (assuming no refu-
elling action) is presented in Figure 3 where, green squares
enclosed the sensing actions in the plan. The solution shows
a branched plan that consider the possible outcomes of the
valve state (unknown property at the planning time) that can
be acquired using a sensing action during the plan execution.

In this example the domain action sense-valve adds
knowledge related to possible valve states. The action
close-bop presents the precondition (state on ?v -
poi). Therefore, if during plan execution the AUV identifies
(state on v1) for valve v1 the branch to choose should
have the close-bop action. Otherwise, if ¬(state on
v1) the robot proceeds to execute the next action in the
plan associated with a different mission goal. The AI solver
needs to reason about possible action sequences consid-
ering the sensing action outputs. Valve-Manipulation in-
cludes temporal constraints, to support refuelling. In addi-
tion, the domain introduces numeric constraints associated
with data communication. Action close-bop has an ef-
fect that increases (data acquired ?r - robot) while
action sense-valve is conditioned by the robot data capac-
ity. This constraint makes the robot navigate to the surface
and communicate data, using action broadcast-data, be-
fore executing a new sensing action if data was previously

acquired. Therefore, the ¬(state on ?v) plan solution
presents a complete different sequence of actions.

For this domain, numeric constraints are required to con-
trol the data recorded when the valve is turned off. Temporal
constraints are essential for scheduling the refuelling activ-
ities, due to the ASV’s time availability at different loca-
tions. There is no sequence of actions that allows the AUV to
achieve the goal without the knowledge of the valve states:
choosing the correct action to execute after sensing the state
of a valve depends on the (run-time) result of whether and
when the valve is open or ¬ open. The characteristics of this
problem where the solution requires to consider temporal
and numeric constraints as well as reasoning about incom-
plete sensing information make it a temporally-contingent
planning problem.

3 Scene Setting for TCP
This section highlights the characteristics of the TCP model
and the plan structure, introducing features that define the
problem and guide the planning search. In this section we
define the TCP problem and present the components that
form a TCP problem model.

Planning Model: One of the common grounds for AI plan-
ning is the role of the model while finding the solution to a
problem. Models define the dynamics of domains, and they
are used to create plans. A temporally-contingent planning
problem Ptc is defined as Ptc = Pt ∪ Pc (see Definition 1),
where Pt describes the temporal planning problem 2 and Pc

represents the conditional planning problem.

Definition 1. A temporally-contingent planning problem is
a tuple Ptc := 〈P,V,A, δ, I,G, T 〉, where P is set of
atomic propositions; V is a set of task numeric variables
called fluents; A is a set of instantaneous and durative phys-
ical actions, where the duration of the actions is controllable
and known; I is the complete function defining the initial
state of propositions and fluents, I : P ∪ V → {>,⊥} ∪ R,
where > and ⊥ denote the defined and undefined values, re-
spectively; G is a set of goals, where G : P∪V → {>,⊥}∪R
is a (possibly partial) function that describes the goal con-
ditions; δ is a set of sensing actions (observations), separate
from A such that δ∩A = ∅ that considers temporal notions;
T is a set of time windows defined as TILs, where each TIL
l = 〈t(l), lit(l)〉 ∈ T defines the time t(l) and the literal
lit(l), specifying which p ∈ P becomes true (or false) at
time t(l).

Actions in the planning model are defined as physical ac-
tions (see Definition 2) or sensing actions (see Definition 3).
The sensing actions are non-deterministic actions that can
result in more than one possible state.

Definition 2. The set of physical actions A is a set of (de-
terministic) instantaneous ai (ai ∈ A) and durative actions
ad (ad ∈ A) where each action is a tuple 〈apre, aeff , adur〉,
apre is a set of conditions that must hold for the action to be

2We adopt the full PDDL2.1 (Fox and Long 2003) considering
propositional temporal planning problems with with timed initial
literals (TILs) (Cresswell and Coddington 2003).

applicable, aeff is the set of action effects, and adur is a set
of duration constraints.
Definition 3. The set of sensing actions δ is defined as
〈δpre, δeff , δdur〉 with δdur parameter representing a set
of duration constraints (controllable and known), δpre is
the preconditions required for sensing action δd being ex-
ecutable (a set of literals) and δeff defines the sensing ac-
tion effects (a set of literals) where a literal l in the set δeff
reveals the truth value of the unknown atomic proposition
p ∈ P at the end of the action. Sensing actions are always
defined as durative actions and hold the set of preconditions
and effect types defined for durative actions in Pt.

Action navigation in the Valve-Manipulation domain
represents a physical action (see Figure 4) that has fully de-
terministic effects, such as the location of the robot ?r: at the
action start (at ?r ?wpi), and at the end (at ?r ?wpf),
therefore, (explored ?wpf). Figure 5 shows the sensing
action sense-valve, which presents an effect associated
to define the true state of a valve. The action representa-
tion defines the robot ?r will acquire incomplete knowl-
edge regarding possible values of a particular literal l as
an effect of implementing the sensing action. The construct
(at end (K+ (proposition))) represents this and de-
fines the knowledge acquisition for a proposition with in-
complete information. Here, we present a general structure
of the construct, which depends on the designer and intro-
duces the non-deterministic behaviour in the domain. Other
authors such as (Hoffmann and Brafman 2005) use a dif-
ferent construct with the same objective. Besides, a sensing
action adds a set of deterministic effects as the physical ac-
tions, such as robot ?r is busy over the action duration, and
it is (available ?r) at the end of the action.

The specification of TCP problem models require addi-
tional information linked to the non-deterministic action def-
inition that guides the plan search. This addresses two ques-
tions that are associated with the sensing action:
• What is the incomplete knowledge at the initial state?, and
• How is the incomplete knowledge acquired/updated?.

The first question attempts to define the incomplete
knowledge associated with a particular proposition. Follow-
ing the Valve-Manipulation domain example, the problem
should define the possible (unknown) values (at planning
time) the proposition (state on ?v) might hold.

Examples of representing incomplete information in the
problem model are presented in Figure 6. The first exam-
ple indicates that the (state on v1) and (state on v2)
propositions are unknown in the initial state. The second
example is the case the flow ?f passing through a valve
?v is unknown and the number of possibilities (flows) is a
fixed set. Our representation of the incomplete knowledge
in the domain is inspired by previous approaches (Hoff-
mann and Brafman 2005; Petrick and Bacchus 2002) that
also consider uncertainty. The second question’s answer
leads to creating the sub-plans by defining which proposi-
tions associated with the unknown literal is hold in each
branch. Figure 7 shows a constructed example that de-
fines the updates associated with the incomplete informa-
tion that will be true in each branch. For instance, for

(:durative-action navigation

:parameters (?r - robot ?wpi ?wpf - wpoint)

:duration (= ?duration (/ (distance ?wpi ?wpf) ...))

:condition (and (at start (available ?r))

(at start (at ?r ?wpi)) (...))

:effect (and (at start (not (available ?r)))

(at start (not (at ?r ?wpi)))

(at end (at ?r ?wpf))

(at end (explored ?wpf)) (...))

)

Figure 4: Durative physical (PDDL) action navigation.

(:durative-action sense-valve

:parameters (?r - auv ?s - sensor ?v - poi ?wp - wpoint)

:duration (= ?duration 5)

:condition (and (over all (at ?r ?wp))

(over all (valve_at ?v ?wp))

(over all (camera_equipped ?r ?s)) (...))

:effect (and (at start (not (available ?r)))

(at end (available ?r)) (...)

(at end (K+ (state on ?v))))

)

Figure 5: Durative sensing (PDDL) action sense-valve.

valve v1, one update will lead to creating a branch that
considers (state on v1) (valve is open). Consequently,
action close-bop is required in the branch to close the
valve and reach the effect (valve closed wp32), where
(valve at v1 wp32). The second possible update defines
the valve as already closed (¬(state on v1)) and that
leads directly to reach the (valve closed wp32) proposi-
tion. In the second example, the knowledge-updates es-
tablishes a fixed number of possible flows passing through
the valve and when one of the flows is true, the others are
false (excluded).

The Planning and Execution System uses the elements in
the domain and problem to generate a solvable plan allowing
sensing actions to consider the proposition know-whether—
property, which defines the available knowledge associated
with a proposition p ∈ P .

The concept of know-whether describes the connection
between the sensing actions and the knowledge-updates.
The incomplete knowledge becomes available at run time
through the use of sensing actions, which specify the knowl-
edge’s acquisition details. The knowledge acquired is previ-
ously defined in the knowledge-updates and used at the
planning time to generate the set of action’s effects associ-
ated with the same unknown proposition (e.g., (state on
?v)). The deterministic effects introduced by a sensing ac-
tion will be true at the end of the action independently of the
real value of the unknown proposition. However, determin-
istic effects could affect the ordering of actions in different
branches depending on the true value of an unknown propo-
sition.

Plan Structure: The solution to the non-deterministic plan-
ning problem with temporal constraints Pt is thus a con-
tingent plan which induces a set of temporal plans. These

(:unknown-prop

(v1 (state on v1)) (v2 (state on v2))

)

(:unknown-prop

(v1 (flow-val v1 f1) (flow-val v1 f2) (flow-val v1 f3))

(v2 (flow-val v2 f1) (flow-val v2 f2) (flow-val v2 f3))

)

Figure 6: Construct unknown-prop associated to on/off
valve’s state (top) and possible valve’s flows (bottom).

(:knowledge-updates

(v1 (state on v1)

((not (state on v1)) => (valve_closed wp32)))

(v2 ...)

)

(:knowledge-updates

(v1 ((flow v1 f1) (not(flow v1 f2)) (not(flow v1 f3)))

((not(flow v1 f1)) (flow v1 f2) (not(flow v1 f3)))

((not(flow v1 f1)) (not(flow v1 f2)) (flow v1 f3)))

(v2 ...)

)

Figure 7: Construct knowledge-updates associated to
on/off valve’s state (top) and possible valve’s flows (bottom).

problems require combining temporal and contingent plan-
ning to deal with observations, incomplete information, tem-
poral and numeric constraints. The solution to this planning
problem requires an AI solver capable of solving a time-
knowledge aware plan Πtc (see Definition 4).

Definition 4. A time-knowledge aware plan Πtc for a
temporally-contingent planning problem Ptc is a transition
tree B, represented as an AND/OR graph, built on a set of
tuples πt := 〈a, t, d〉 and πc := 〈ψ, t, d〉, where a ∈ A is
a durative action, ψ ∈ δ is a durative sensing action, t is
the action starting time, d represents the action duration,
t ∈ R≥0, and d ∈ R>0 when actions have a duration.

Figure 8 shows a section of the general structure for a
temporally-contingent planning problem solution (plan out-
put) for the Valve-Manipulation domain. The contingency
elements are represented for the branches, which depends
on the effects of the sensing action. The temporal rea-
soning allows the agent to know the time associated with
action implementations for all contingent sub-plans. Re-
garding makespan, TCP plan solution introduces the know-
when concept—property that defines the time t at which the
proposition p ∈ P knowledge is available—in the plan time-
space to define the time a particular proposition is known.
The behaviour of the agent is described by one of those plans
depending on which outcomes occur at the time of execu-
tion. Table 1 shows an example of the real plan implemen-
tation for the Valve-Manipulation domain. For this example,
the sensor identify (at the running time) v1 is open and v2 is
closed. The knowledge acquisition during plan implementa-
tion guides the branch selection.

Time: (Action Name) [Duration]

0.00: (navigation auv base v1) [100.00]

100.01: (sense-valve auv v1) [30.00]

<BRANCH, 1, true, (state on v1)>

130.02: (close-bop auv v1) [50.00]

(...)

460.07: (sense-valve auv v2) [30.00]

<BRANCH, 2, true, (state on v2)>

(...)

<BRANCH, 2, false, (state on v2)>

490.08: (navigation auv v2 base) [197.67]

687.76: (recover auv base) [1.00]

<BRANCH, 1, false, (state on v1)>

130.02: (navigation auv v1 s3) [80.00]

(...)

Figure 8: A temporally-contingent plan solution for a Valve-
Manipulation domain problem.

Run-Time Plan Description

navigation (auv base v1) Navigate to v1
sense-valve (auv v1) Sense valve v1’s state
close-bop (auv v1) Close v1
navigation (auv v1 v2) Navigate to v2
sense-path (auv v2) Sense v2’s state
navigation (auv v2 base) Navigate to base
recover (auv base) Recover auv at base

Table 1: A run-time plan to manipulate valves.

4 Explanation Process: XAIP-TCP
This section highlights the main elements of model-based
and plan-based explanations and the global connections be-
tween these concepts and the TCP. We introduce preliminary
elements for TCP explainability that are used in Section 5
and Section 6 to explain the specifics of the solutions.

Model-based Explanation: Model-based explanations are
generated using algorithm-agnostic methods where the
model’s characteristics support the properties of a solution.
Model-based explanation aims to exploit the model to iden-
tify properties that can be used to build explanations (Ei-
fler et al. 2020). Explainability approaches based on the
model can use two considerations: (i) inference reconcilia-
tion; and/or (ii) model reconciliation. For inference reconcil-
iation processes (Zhao and Sukkerd 2019), it is common to
allow the users to introduce specific questions about a plan
(Fox, Long, and Magazzeni 2017), engage in explanatory di-
alogue, and/or introduce abstraction techniques that provide
the user with tools to understand the plan. In model recon-
ciliation approaches (Chakraborti et al. 2017; Chakraborti,
Sreedharan, and Kambhampati 2020) the focus is on the dif-
ference between the planner’s and the user’s models and ex-
planations are generated to align them.

A common point of interest to all approaches involved
in explaining AI planning solutions is knowing the model’s
properties. XAIP-TCP may consider the properties associ-
ated with the explanation of deterministic plans, previously

examined in (Fox, Long, and Magazzeni 2017; Cashmore
et al. 2019) with the non-deterministic elements in the prob-
lem. The first reference for the XIAP-TCP to explain a so-
lution involving non-deterministic effects are the model’s
properties specified by the Planning and Execution System
designer through the questions (see Section 3) that answer
the know-whether proposition.

Plan-based Explanation: A plan solution is a fundamental
component for XAIP. Planning mechanisms tend to make
deterministic and repeatable choices at each decision point.
Therefore, the choice of the actions in a plan is transpar-
ent at different levels, based on the task’s knowledge. The
execution of plans generates a sequence of pairs composed
of actions and observations which can be used: (i) to ex-
plore the reasons behind the choice of actions, and (ii) to
focus on aspects of state or of action choice, depending on
the question to provide explanations. In our work, the plan’s
output enhances the explanation of observations that lead
to multiple sub-plans. These sub-plans are associated with
acquiring knowledge or sensing information incomplete at
the initial state. Finally, plans support explainability associ-
ated with failures. XAIP-TCP can use the know-when con-
cept to explain knowledge acquisition process which might
involve sensing actions. This concept supports plan verbali-
sation over long-term horizons and large state spaces.

5 Explanation Process: Questions
This section introduces questions to guide the search for
explanations of a temporally-contingent planning problem
solution. The request for “reasons” explores the available
knowledge for the system and is unknown by the questioner.
The explanation of a plan should balance the complexity of
the (i) reasoning generated by the AI planner and (ii) the
question’s solution. We focus on inference reconciliation to
explain TCP. The formal questions represent an extension
to previous works (Fox, Long, and Magazzeni 2017; Eifler
et al. 2020) explaining the TCP complexity.

Q1: Why did you use action (a orψ) in Πtc?. For temporally-
contingent problems the implementation of an action (a or
ψ) could be linked to fulfil preconditions required for later
actions in the plan that (i) achieve goal states, (ii) maintain
resource constraints (e.g., battery level, etc.) in optimal lev-
els, or (iii) acquire sensing information.

Q2: Why did you use action a in Πtc after ψ?. The sensing
action has the role of providing the incomplete knowledge
we have in the initial state. The selection of a can be directly
linked to the knowledge offered by the execution of ψ. How-
ever, action a might also be influenced by opportunity and
the metric consequences of splitting a plan.

Q3: Why did you not do something different (at this stage)
or (in this branch)?. This question is a version of the Q2.
However, it considers direct alternatives to the initial solu-
tion proposed by the planner. This type of question directs
the analysis over the alternative the questioner mentions.

Q4: Why can you not do that?. This question is associated
with the possible unsolvability of planning problems. This

type of question tends to be difficult to explain in our do-
mains, considering the plan solution is not completely de-
terministic. We have a set of conditional sub-plans that we
might need to explore (all of them) to find why the plan fails.
These questions can query the domain about specific times
for action implementation (particularly sensing actions). For
instance, the SATELLITE TIME domain from IPC-4 considers
time constraints for the implementation of actions associated
to sensing. In our domains, the implementation of a sensing
action could depend on numeric constraints.

Q5: Why is what (branch N) proposes to do more cost
efficient than something else?. Our domains can present
branches with different numbers of actions and sequences
that might lead to analyse a wide range of different outputs.
This question is very specific to analyse the metric we use
for plan evaluation.

Q6: Why do I need to replan?. This question focuses on plan
execution and intends to analyse the reasons for replanning
at particular times. The idea is to look for explainability ele-
ments associated with the replanning times and failures. We
use the question to find the reasons for replanning related to
TCP’s characteristics.

6 Explanation Process: Answers Roadmap
In this section, we highlight a roadmap that allows the ques-
tioner to clarify the behaviour of an AI planner while solving
TCP. We define a set of answers to instances of the questions
described in Section 5 based on the domains that motivate
this paper. We focus on the tools to approach these questions
by analysing the properties of the model or the plan solution.
We use two plan solution examples obtained by combining
a contingent wrapper and a temporal planner:

Example 1 (Valve-Manipulation): Figure 9 shows the plan
solution considering two goals: (valve closed wp32)
and (valve closed wp34).

Example 2 (Offshore Energy Domain): Figure 10 shows the
contingent plan solution for two goals: (inspected pB)
and (inspected pC).

Explaining Direct Queries: Causality can explain the need
of executing a sensing action ψ early in the plan to support
the implementation of action a much later in the same plan.
In addition, causality can provide insights into the use of
action parameters (e.g., robot, sensor, actuator, etc.). We in-
troduce questions associated with the conditional elements
in our model. We use this Example 1 to answer instances of
questions Q1 and Q2.

Instance of Q1: Why did AUV use action sense-valve to
sense v1 or v2?. This question requires an analysis of the
causal structure of the plan, including both actions and sens-
ing actions (highlighted in red). The sensing actions provide
access to the value of state facts, and the appropriate course
of action might be quite different for each sensed value.
In this particular example, sensing the valve state is essen-
tial for goal completion. As such either (state on ?v) is
false and the goal is achieved, or the valve is open and the

Time: (Action Name) [Duration]

0.00: (navigation auv base v1) [100.00]

100.01: (sense-valve auv camera1 v1) [30.00]

<BRANCH, 1, true, (state on v1)>

130.02: (close-bop auv v1) [50.00]

180.03: (navigation auv v1 surfc.3) [67.00]

247.04: (refuel auv surfc.3) [43.80]

290.85: (broadcast-data auv surfc.3) [10.00]

300.86: (navigation auv surfc.3 v2) [70.10]

370.97: (sense-valve auv camera1 v2) [30.00]

<BRANCH, 2, true, (state on v2)>

400.98: (close-bop auv v2) [50.00]

450.01: (navigation auv v2 base) [160.00]

610.02: (broadcast-data auv base) [10.00]

<BRANCH, 2, false, v2, (state on)>

400.98: (navigation auv v2 base) [260.00]

<BRANCH, 1, false, (state on v1)>

130.02: (navigation auv v1 v2) [280.00]

410.03: (sense-valve auv camera1 v2) [30.00]

<BRANCH, 2, true, (state on v2)>

440.04: (close-bop auv v2) [50.00]

490.05: (navigation auv v2 surfc.5) [140.00]

630.06: (refuel auv surfc.5) [42.00]

672.07: (broadcast-data auv surf.5) [10.00]

682.08: (navigation auv surf.5 base) [320.00]

(...)

Figure 9: Temporally-Contingent plan solution for the in-
spection and manipulation of the valves v1 and v2.

goal is achieved through the close-bop action. However,
in some situations, sensing is used to determine the more
cost-effective route. Existing work on explanations for prob-
lems with uncertainty have assumed a policy plan structure,
e.g., (Amir and Amir 2018); however, we believe that the
structure of the branched plans might be exploited to sup-
port plan explanation. A starting point is in the exploitation
of visualisations for causal structures (Magnaguagno et al.
2017) and their extension for branching plans.

Instance of Q1: Why did AUV broadcast at sufc.3?. For
this domain one of the preconditions for manipulation ac-
tions is the data acquired is small than data capacity.
Therefore the basis of explanation in this example might be
an analysis of the use of constrained resources in the plan,
e.g., (Dvořák and Barták 2010). The answer to this question
could be: “The AUV needs to communicate data to free up
the data acquired before executing another ψ”.

Instance of Q2: Why did AUV use action close-bop for
v1 after sense-valve?. The answer to this question is at-
tached to the set of possible states after a sensing action. If
the action happens just after a sensing action, the explain-
ability can be based on the branch’s information. For in-
stance, an answer to this question can say: “The AUV starts
close-bop v1 at 130.02 mins considering v1 state on”.
An opportunity indicated by this example is in better ap-
proaches for reasoning about and communicating the con-
tribution of a particular (sensing) action to achieving a goal
or knowledge gain, perhaps using structures similar to plan
property dependencies (Eifler et al. 2020).

Instance of Q2: Why did AUV refuel at sufc.5 after sens-
ing v2?. Another essential property of TCP plan solutions
is they can consider the effect of temporal constraints using
TILs. In the Valve-Manipulation domain the AUV needs to
recharge during the mission. The query relates to the refuel
action at time 630.06 mins. The answer to the question fol-
low the same philosophy presented in (Fox, Long, and Mag-
azzeni 2017), and it can be: “The refuel ensures the AUV
battery is above the threshold for the subsequent actions in
the plan”. If we examine the sequence of actions in BRANCH
2, this is the case when valve v1 was closed. Therefore, the
AUV does not need to consume battery in closing the valve
or communicating data. This allows AUV to move to valve
v2 with enough battery to execute the inspection. The ques-
tion provides information about the branch, therefore we can
establish the reasoning comparing the times the refuel ac-
tion (highlighted in blue) is implemented for each branch
which is proportional to the battery consumed.

Explaining Contrastive Queries: The contrastive property
(Miller 2018) is also considered for XAIP-TCP. (Fox, Long,
and Magazzeni 2017) describes the solution to these queries
can take into account the number of actions in the “optional”
plan (after the introduction of human variations) or the devi-
ation in the goals achieved as a consequence of the changes
introduced. However, here we present additional contrastive
questions associated to the analysis of an entire branch. Ex-
ample 1 is linked to Q3.

Instance of Q3: Why did AUV not refuel at sufc.4 after
closing v2?. The AUV identifies the valve v1 is open and
needs to close it. The robot acquires data from the panel that
it needs to communicate. The AUV has to navigate to the
surface to execute the communication action. For this solu-
tion, the solver reasons the AUV has to reach the surface (to
communicate data) and finds a solution that matches with the
time the SV is at sufc.3. The explanability for this question
can be based on existing approaches in XAIP, such XAIP as
a service (Cashmore et al. 2019). For example, a foil can be
generated with the added constraint of refuelling at sufc.4.
The explanation is then based on the resulting increase in
the cost of the resulting plan branches. An interesting possi-
bility presented by the branched plan is to use the different
plan branches to provide comparisons, e.g., comparing the
locations of the AUV refuels in different branches.

Explaining Unsolvability Queries: Unsolvability queries
for XAIP-TCP analyse the failed attempt to implement ac-
tions in a given state. The solution to these questions can
consider model reconciliation properties (Sreedharan et al.
2019), in cases the action we want to implement prevents
the implementation of a goal. The action’s properties analy-
sis introduced by the validator VAL (Howey, Long, and Fox
2004) while evaluating the model, in cases, the current state
does not satisfy the action precondition. The following two
questions connect to Q4 and Example 1 and Example 2, re-
spectively.

Instance of Q4: Why can AUV not sense in advance?. This
question opens another set of interesting points around ex-
plainability. It suggests the user’s model does not capture

Time: (Action Name) [Duration]

0.00: (navigation husky1 pA pB Path1) [5.00]

5.01: (inspect-area husky1 pB) [10.00]

15.02: (position-camera husky1 camera1 Path1) [2.00]

17.03: (sense-path husky1 pB Path1) [3.00]

<BRANCH, 1, true, (path_free pB Path1)>

20.04: (navigation husky1 pB pC Path1) [8.00]

28.05: (inspect-area husky1 pC) [10.00]

<BRANCH, 1, false, (path_free pB Path1)>

20.04: (position-camera husky1 camera1 Path2) [2.00]

22.05: (sense-path husky1 pB Path2) [3.00]

<BRANCH, 2, true, (path_free pB Path2)>

25.06: (navigation husky1 pB pE Path2) [10.00]

35.07: (navigation husky1 pE pF Path2) [12.00]

47.08: (navigation husky1 pF pG Path2) [9.00]

58.09: (navigation husky1 pG pC Path2) [8.00]

67.01: (inspect-area husky1 pC) [10.00]

<BRANCH, 2, false, (path_free pB Path2)>

Figure 10: Temporally-Contingent plan solution for point in-
spection in an offshore energy simulator environment.

all of the constraints, and the solution could take inspiration
from model reconciliation approaches (Chakraborti et al.
2017). For this particular problem, the sensing actions have
to be implemented at a specific position to identify a sin-
gle state (from a set of possibilities). Therefore, we can ap-
proach the question saying: “The AUV needs to be posi-
tioned close to the valve to identify its state”. In general,
answering this question may require extending existing ap-
proaches to domains with temporal and numeric constraints,
which can support the application of sensing actions.

Instance of Q4: Why can Husky1 not navigate to pC with-
out sensing again at pB?. The plan solution to this domain
contains new reasoning associated with the sub-plans, which
must be explained. The sensing action is repeated every time
the output from the action sense-path is false. Separate
actions are used to represent distinct operations. e.g., the
camera needs to face a different direction. Figure 10 shows
the case where the maximum number of paths that can be
inputs or outputs to a point is two. The explainability could
follow the approach to queries: “Why is this not a solution?”
in (Sreedharan et al. 2020). The alternative case (where the
sensing action at 22.05 mins is prevented) leads to unsolv-
ability.

Explaining Metric Queries: For temporally-contingent
problems, we consider plan metrics to analyse the quality
of the plan solution. The majority of temporal planners base
their performance analysis on the plan makespan. This is
difficult in contingent planning, where planners ideally opti-
mise the tree as a whole, leading to the higher cost incurred
on a particular branch to improve the quality of the overall
plan. Understanding the dependencies between the costs in
different branches of a plan could provide useful insights for
an explanation, e.g., examining the impact when sub-plans
have additional cost limits. As a starting point, we consider
comparisons amongst alternative branches. The following
question represents an instance of Q5 for Example 2.

Instance of Q5: Why sensing Path1 first is more efficien-
t/cheap?. The explanation to this question is associated with
the total navigation time for Husky1 in each case: if Husky1
takes Path-1, time is 13 mins and for Path-2 the time is
44 mins. This is an example of how the branches can pro-
vide foils, which might form the basis for contrastive expla-
nations. The answer to this question can consider the plan
metric, which guides the plan solution optimisation.

Explaining Replanning Queries: Questions of this nature
are associated with planning execution. Therefore, visuali-
sation tools such as (Magnaguagno et al. 2017; Cashmore
et al. 2019) are helpful to explain the system behaviour.
(Fox, Long, and Magazzeni 2017) describes a way to explain
replanning by applying filtering over the set of preconditions
required for an action. If all preconditions are achieved, re-
planning is not needed. This analysis is relevant to our work.
However, we are also interested in explaining the best time
to replan if the plan presents conditional branches. An in-
stance of Q6 associated with Example 2 is described here.

Instance of Q6: Why does Husky1 need to replan after
sense-path actions return false?. The answer to this ques-
tion is attached to the knowledge acquired by implement-
ing the sensing action. In this example (see Figure 10), if
Path-1 and Path-2 are not free the plan cannot be com-
pleted. Therefore, the answer to the query should state that
none of the possible outputs of the sensing action became
available at the planning time. The replanning can be caused
due to the noise introduced by the sensory system during
plan execution which might prevent the acquisition of the
current path’s state. The reasoning around these questions
should consider the knowledge updates required after exe-
cuting a ψ. The answer to this question links to the run-time
plan execution as the state of the paths is known during the
plan implementation.

7 Conclusions
We have introduced Explainable Planning for Temporally-
Contingent Problems (XAIP-TCP), as a contribution to the
Explainable AI (XAI) challenge. The approach was evalu-
ated on a new set of domains, motivated by real-world prob-
lems. We define a set of interesting questions from the tem-
poral and contingent planning point of view that covers (i)
temporal reasoning, such as timed initial literals and dead-
lines; (ii) resources, using numerical fluents; (iii) and contin-
gent branches, offering more powerful modelling of mission
scenarios. We provide an analysis of the main elements re-
quired to deliver effective explanations. We obtained initial
results that can lead to additional alternatives of reasoning
around plan outputs. The work provides the opportunity to
interact with multiple planning choices at the planning and
execution time considering the contingency component of
our problem solutions. Future work will explore ways to de-
fine a good metric for explanation that considers the main
characteristics of these problems.

Acknowledgments
This work was funded and supported by the ORCA Hub
(orcahub.org), under EPSRC grant EP/R026173/1.

References
Amir, D.; and Amir, O. 2018. HIGHLIGHTS: Summarizing
Agent Behaviors to People. In AAMAS.

Benton, J.; Coles, A. J.; and Coles, A. 2012. Temporal
Planning with Preferences and Time-Dependent Continuous
Costs. In ICAPS.

Bernardini, S.; Jovan, F.; Jiang, Z.; Watson, S.; Weightman,
A.; Moradi, P.; Richardson, T.; Sadeghian, R.; and Sareh, S.
2020. A Multi-Robot Platform for the Autonomous Opera-
tion and Maintenance of Offshore Wind Farms. In Proceed-
ings of AAMAS, 1696–1700.

Carreno, Y.; Pairet, È.; Petillot, Y.; and Petrick, R. P. 2020a.
A decentralised strategy for heterogeneous auv missions via
goal distribution and temporal planning. In ICAPS, vol-
ume 30, 431–439.

Carreno, Y.; Pairet, È.; Petillot, Y.; and Petrick, R. P. 2020b.
Task Allocation Strategy for Heterogeneous Robot Teams in
Offshore Missions. In AAMAS, 222–230.

Cashmore, M.; Collins, A.; Krarup, B.; Krivic, S.; Maga-
zzeni, D.; and Smith, D. 2019. Towards explainable AI plan-
ning as a service. In XAIP Workshop.

Chakraborti, T.; Sreedharan, S.; and Kambhampati, S. 2020.
The emerging landscape of explainable automated planning
& decision making. In IJCAI, 4803–4811.

Chakraborti, T.; Sreedharan, S.; Zhang, Y.; and Kambham-
pati, S. 2017. Plan explanations as model reconciliation:
Moving beyond explanation as soliloquy. In IJCAI.

Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2010.
Forward-Chaining Partial-Order Planning. In ICAPS, 42–
49.

Cresswell, S.; and Coddington, A. 2003. Planning with
timed literals and deadlines. In Workshop of the UK Plan-
SIG, 23–35.

Dvořák, F.; and Barták, R. 2010. AI Planning with Time and
Resource Constraints. In Proceedings of Znalosti.

Eifler, R.; Cashmore, M.; Hoffmann, J.; Magazzeni, D.; and
Steinmetz, M. 2020. A New Approach to Plan-Space Expla-
nation: Analyzing Plan-Property Dependencies in Oversub-
scription Planning. In AAAI, 9818–9826.

Fox, M.; and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. JAIR 20:
61–124.

Fox, M.; Long, D.; and Magazzeni, D. 2017. Explainable
planning. In IJCAI-17 workshop on Explainable AI.

Hastie, H.; Lohan, K.; Chantler, M.; Robb, D. A.; Ra-
mamoorthy, S.; Petrick, R.; Vijayakumar, S.; and Lane, D.
2018. The ORCA Hub: Explainable Offshore Robotics
through Intelligent Interfaces. In HRI 2018 Workshop on
Explainable Robotic Systems.

Hoffmann, J.; and Brafman, R. 2005. Contingent planning
via heuristic forward search with implicit belief states. In
ICAPS.

Howey, R.; Long, D.; and Fox, M. 2004. VAL: Automatic
plan validation, continuous effects and mixed initiative plan-
ning using PDDL. In IEEE International Conf. on Tools with
Artificial Intelligence, 294–301.
Kerschke, P.; Hoos, H. H.; Neumann, F.; and Trautmann, H.
2019. Automated algorithm selection: Survey and perspec-
tives. Evolutionary computation 27(1): 3–45.
Magnaguagno, M. C.; Fraga Pereira, R.; Móre, M. D.; and
Meneguzzi, F. R. 2017. Web planner: A tool to develop clas-
sical planning domains and visualize heuristic state-space
search. In UIS Workshop ICAPS.
Maurelli, F.; Carreras, M.; Salvi, J.; Lane, D.; Kyriakopou-
los, K.; Karras, G.; Fox, M.; Long, D.; Kormushev, P.; and
Caldwell, D. 2016. The PANDORA project: A success story
in AUV autonomy. In IEEE OCEANS – Shanghai.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.;
Ram, A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998.
PDDL – The Planning Domain Definition Language (Ver-
sion 1.2). Technical Report CVC TR-98-003/DCS TR-1165,
Yale Center for Computational Vision and Control.
Miller, T. 2018. Contrastive explanation: A structural-model
approach. arXiv preprint arXiv:1811.03163 .
Muise, C.; Belle, V.; and McIlraith, S. 2014. Comput-
ing contingent plans via fully observable non-deterministic
planning. In AAAI, volume 28.
Petrick, R. P.; and Bacchus, F. 2002. A Knowledge-Based
Approach to Planning with Incomplete Information and
Sensing. In AIPS, 212–222.
Smith, D. E. 2012. Planning as an Iterative Process. In AAAI.
Sreedharan, S.; Chakraborti, T.; Muise, C.; Khazaeni, Y.;
and Kambhampati, S. 2020. –D3WA+–A Case Study of
XAIP in a Model Acquisition Task for Dialogue Planning.
In ICAPS, volume 30, 488–497.
Sreedharan, S.; Srivastava, S.; Smith, D.; and Kambhampati,
S. 2019. Why can’t you do that HAL? explaining unsolvabil-
ity of planning tasks. In IJCAI.
Zhao, E.; and Sukkerd, R. 2019. Interactive explanation for
planning-based systems: WIP abstract. In Proceedings of
the ICCPS, 322–323.

