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ABSTRACT

Discovering causal structures of temporal processes is a major tool of scientific
inquiry because it helps us better understand and explain the mechanisms driving
a phenomenon of interest, thereby facilitating analysis, reasoning, and synthesis
for such systems. However, accurately inferring causal structures within a phe-
nomenon based on observational data only is still an open problem. Indeed, this
type of data usually consists in short time series with missing or noisy values for
which causal inference is increasingly difficult. In this work, we propose a method
to uncover causal relations in chaotic dynamical systems from short, noisy and
sporadic time series (that is, incomplete observations at infrequent and irregular
intervals) where the classical convergent cross mapping (CCM) fails. Our method
works by learning a Neural ODE latent process modeling the state-space dynam-
ics of the time series and by checking the existence of a continuous map between
the resulting processes. We provide theoretical analysis and show empirically
that Latent-CCM can reliably uncover the true causal pattern, unlike traditional
methods.

1 INTRODUCTION

Inferring a right causal model of a physical phenomenon is at the heart of scientific inquiry. It is
fundamental to how we understand the world around us and to predict the impact of future interven-
tions (Pearl, 2009). Correctly inferring causal pathways helps us reason about a physical system,
anticipate its behavior in previously unseen conditions, design changes to achieve some objective, or
synthesize new systems with desirable behaviors. As an example, in medicine, causality inference
could allow predicting whether a drug will be effective for a specific patient, or in climatology, to
assess human activity as a causal factor in climate change. Causal mechanisms are best uncovered
by making use of interventions because this framework leads to an intuitive and robust notion of
causality. However, there is a significant need to identify causal dependencies when only observa-
tional data is available, because such data is more readily available as it is more practical and less
costly to collect (e.g., relying on observational studies when interventional clinical trials are not yet
available).

However, real-world data arising from less controlled environment than, for instance, clinical trials
poses many challenges for analysis. Confounding and selection bias come into play, which bias
standard statistical estimators. If no intervention is possible, some causal configurations cannot be
identified. Importantly, with real-world data comes the major issue of missing values. In particular,
when collecting longitudinal data, the resulting time series are often sporadic: sampling is irregular
in time and across dimensions leading to varying time intervals between observations of a given
variable and typically multiple missing observations at any given time. This problem is ubiquitous
in various fields, such as healthcare (De Brouwer et al., 2019), climate science (Thomson, 1990), or
astronomy (Cuevas-Tello et al., 2010).

A key problem in causal inference is to assess whether one temporal variable is causing another or
is merely correlated with it. From assessing causal pathways for neural activity (Roebroeck et al.,
2005) to ecology (Sugihara et al., 2012) or healthcare, it is a necessary step to unravel underlying
generating mechanisms. A common way to infer causal direction between two temporal variables
is to use Granger causality (Granger, 1969), which defines “predictive causality” in terms of the
predictability of one time series from the other. A key requirement of Granger causality is then
separability (i.e., that information about causes are not contained in the caused variable itself). This
assumption holds in purely stochastic linear systems, but fails in more general cases (such as weakly
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coupled nonlinear dynamical systems) (Sugihara et al., 2012). To address this nonseparability issue,
Sugihara et al. (Sugihara et al., 2012) introduced the Convergent Cross Mapping (CCM) method,
which is based on the theory of chaotic dynamical systems, particularly on Takens’ theorem. This
method has been applied successfully in various fields such as ecology, climatology (Wang et al.,
2018), and neuroscience (Schiecke et al., 2015). However, as the method relies on embedding the
time series under study with time lags, it is highly sensitive to missing values and usually requires
long uninterrupted time series. This method is thus not applicable in settings with repeated short
sporadic time series, despite their occurrence in many practical situations.

To address this important limitation, we propose to learn the causal dependencies between time
series by checking the existence of convergent cross mappings between latent processes of those
time series. Using a joint model across all segments of sporadically observed time series and forcing
the model to learn the inherent dynamic of the data, we show that our method can detect causal
relationship from short and sporadic time series, without computing delay embeddings. To learn
a continuous time latent representation of the system’s state-space, we leverage GRU-ODE-Bayes
(De Brouwer et al., 2019), a recently introduced filtering method that extends the Neural ODE model
(Chen et al., 2018). Importantly for causal inference, the filtering nature of the model makes sure no
future information can leak into the past. We then check the existence of continuous maps between
the learnt latent representations and infer the causal direction accordingly.

In a series of increasingly challenging test cases, our method accurately detects the correct causal de-
pendencies with high confidence, even when fed very few observations, and outperforms competing
methods such as multi-spatial CCM or CCM with multivariate Gaussian process interpolation.

“X[t] causes Y[t]”

Figure 1: Schematic of the Latent-CCM rationale. If X[t] causes Y [t], there exists a continuous
map (dotted line) from the latent process of Y (HY ) to the latent process of X (HX ).

2 RELATED WORK

CCM to address failure of Granger causality. Granger causality (Granger, 1969) provided the
first significant framework to infer causal dependencies from time series. Relying on predictability
between dynamical systems, it was extended to account for different limitations, such as nonlinearity
(Chen et al., 2004) or instantaneous relationships (Schiatti et al., 2015). However, the assumption of
separability of information between causative and caused variables leads to the failure of the Granger
paradigm for a significant number of time series coupling scenarios (Sugihara et al., 2012) (see
Appendix D for a revealing worked out example). Convergent Cross Mapping, a technique based
on nonlinear state space reconstruction was introduced to tackle this issue (Sugihara et al., 2012).
Recently, several works have proposed extensions of CCM, such as the extended CCM, to address
issues such as synchrony (Ye et al., 2015) or to improve the discrimination of the confounding case
(Benkő et al., 2018). Synchrony occurs when one time series can be expressed as a function of
the other (e.g. Y (t) = φ(X(t)) and attractors of both dynamical systems become homeomorphic
to each other (Rulkov et al., 1995). This occurs when coupling between two chaotic system is too
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strong. Confounding, on the other hand, occurs when two variables are causally driven by a third
one. In general we say that X confounds the relation between Y and Z if X causes both Y and Z.

Huang et al. (2020) also proposed to predict directly the driving time series from the driven one with
reservoir computing, bypassing the delay embedding step, making it more robust to noise. However,
those methods still require long regularly sampled time series.

Causality for short or sporadic time series. Short time series are very common in practice and
there has been some work proposing to learn causality from short time series relying on state space
reconstruction. Ma et al. (2014) proposed a method for short, fully observed, unique time series.
Multi-spatial CCM (Clark et al., 2015), considered the problem of inferring causality from several
short fully observed snippets of the same dynamical system by computing delay embeddings com-
patible with the lengths of the time series and aggregating them. In comparison, on top of addressing
irregular sampling, our approach computes more informative state-space representations by sharing
a model across all segments. Techniques to infer causal direction from incomplete time series have
also been proposed, but all are relying on the Granger causality framework, which limits their appli-
cability to separable dynamical systems. They use direct partial correlations on regularly sampled
data (but with missing values) (Elsegai, 2019) or generalizations of similarity measures for sporadic
time series (Bahadori & Liu, 2012). To the best of our knowledge, this is the first work investi-
gating the identification of causal dependencies from short sporadic time series using state-space
reconstruction.

3 METHOD

We consider the problem of inferring a causal dependency between two temporal variables from
several segments of their multivariate time series X[t] ∈ RdX and Y [t] ∈ RdY . We assume that
X[t] and Y [t] have been generated by an unknown dynamical system. In this work, we refer to the
dynamical system of a time varying variableX as the smallest dynamical system that fully describes
the dynamics of X . As an example, let’s consider the following system of ODEs representing the
dynamics of X and Y :

dX(t)

dt
= f(X(t)) (1)

dY (t)

dt
= g(X(t)) + h(Y (t)). (2)

The dynamical system of X is given by Equation (1). On the other hand, the dynamical system of
Y is Equation (1) + (2) as Equation (1) is required to describe the dynamics of Y .

To account for the more general and most frequent case, we consider those time series are only
observed in segments of finite duration. X[t] and Y [t] then consist of collections of N short time
series (X1[t],...,XN [t])) and (Y 1[t],...,Y N [t])) respectively. Importantly, each segment of X and
Y is observed concomitantly. To proceed with a lighter notation, we’ll drop the superscript when
referring to a segment of time series.

Each of those time series is also sporadic namely the are not regularly sampled and not all dimen-
sions are observed each time.

In this work, we define the notion of causality by considering the equations of the dynamical system
as a structural causal model. In this framework, X causes Y if p(Y |do(X)) 6= P (Y ) where do(X)
is an intervention on X (Pearl, 2009). Then, if X causes Y , X is part of the dynamical system of Y
(X is required to describe the dynamics of Y ). In the case of the example described by Equations 1
and 2, X causes Y if g(·) is not a constant function.

3.1 CONVERGENT CROSS MAPPING AND TAKENS’ THEOREM

CCM aims at discovering the causal direction between temporal variables in dynamical systems by
checking if the state-space dynamics of their time series can be recovered from one another. As
shown above, if X causes Y , X is then contained in the dynamical system of Y and it should be
possible to recover a representation of the dynamical system of X from the dynamical system of Y .

3



Under review as a conference paper at ICLR 2021

A common way to obtain a representation of a dynamical system from its time series relies on
Takens’ embedding theorem (Takens, 1981).

Let X[t] ∈ RdX be issued from a chaotic dynamical system that has a strange attractor M with
box-counting dimension dM , where we define an attractor as the manifold toward which the state of
a chaotic dynamical system tends to evolve. The dynamics of this system are specified by a flow on
M, φ(·)(·) : R×M→M, where φτ (Mt) =Mt+τ andMt stands for the point on the manifold
at time index t. This flow is encoded in the ODE of the system. The observed time series X[t] is
then obtained through an observation function fobs(·) : X[t] = fobs(Mt). Takens’ theorem then
states that a delay embedding Φ with delay τ and embedding dimension k

Φk,τφ,α(Mt) = (α(φ0(Mt)), α(φ−τ (Mt)), . . . , α(φ−kτ (Mt)))

is an embedding of the strange attractorM if k > 2dM and α : RdM → R is a twice-differentiable
observation function. More specifically, the embedding map Φ is a diffeomorphism between the
original strange attractor manifoldM and a shadow attractor manifoldM′ generated by the delay
embeddings. Under these assumptions, one can then theoretically reconstruct the original time series
from the delay embedding.

The simplest observation function α consists in simply taking one of the dimensions of observa-
tions of the dynamical system. In this case, writing Xi[t] as the i-th dimension of X[t], Tak-
ens’ theorem ensures that there is a diffeomorphism between the original attractor manifold of
the full dynamical system and the shadow manifold M′ that would be generated by X ′[t] =
(Xi[t], Xi[t−τ ], . . . , Xi[t−kτ ]). To see how this theorem can be used to infer the causal direction,
let us consider the manifold MZ of the joint dynamical system resulting of the concatenation of
X[t] and Y [t]. We then generate two shadow manifoldsM′X andM′Y from the delay embeddings
X ′[t] = (Xi[t], Xi[t − τ ], . . . , Xi[t − kτ ]) and Y ′[t] : (Yj [t], Yj [t − τ ], . . . , Yj [t − kτ ]). Now, if
X unidirectionally causes Y (i.e., Y does not cause X), it means that X is part of an autonomous
dynamical system and that Y is part of a larger one, containing X. The attractor of Y is then the
same as the one of the joint dynamical system Z. By contrast, the attractor of X is only a subset
of it. From Taken’s theorem, it is theoretically possible to recover the originalMZ fromM′Y and
hence, by extension, recoverM′X fromM′Y . However, the contrary is not true and it is in general
not possible to recoverM′Y fromM′X .

The CCM algorithm uses this property to infer causal dependency. It embeds both dynamical sys-
tems X and Y and use k-nearest neighbors to predict points onM′X fromM′Y and inversely. The
result then consists in the correlation of the predictions with the true values. We write Ccm(X,Y )
the Pearson correlation for the task of reconstructingM′X fromM′Y ,

Ccm(X,Y ) = Corr(M′X ,M̂′X)

where M̂′X stands fro the prediction ofM′X obtained fromM′Y . Importantly, this measure is non-
symmetric as an non-injective map betweenM′X andM′Y would lead to an accurate reconstruction
being possible in one direction only.

To infer that there is a causal link between the predictor dynamical system and the predicted one,
this correlation should be high and, importantly, increase with the length of the observed time series,
as the observed manifolds become denser.

The potential results are then interpreted in the following way (1) X causes Y if one can reconstruct
with high accuracy M′X from M′Y ; (2) X and Y are not causally related (but not necessarily
statistically independent) if nor M′X nor M′Y can be reconstructed from the other; (3) X and Y
are in a circular causal relation if both M′Y and M′X can be reconstructed from the other. In the
extreme case of strong coupling, the two systems are said to be in synchrony, and it becomes hard
to distinguish between unidirectional or bidirectional coupling (Ye et al., 2015).

3.2 NEURAL ODES

Many continuous-time deterministic dynamical systems are usefully described as ODEs. But in
general, not all dimensions of the dynamical system will be observed so that the system is better
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described as an ODE on a continuous latent process H(t), conditioned on which the observations
X[t] are generated. For instance, when observing only one dimension of a 2 dimensional dynamical
system, we cannot find a flow φt(X) on that single dimension variable, but we can find one on the
latent process H(t). We then have the following description of the dynamics:

X[t] = g(H[t]) with
dH(t)

dt
= fθ(H(t), t) (3)

where θ represents the parameters of the ODE, fθ(·) is a uniformly Lipschitz continuous function
and g(·) is a continuous function. Learning the dynamics of the system then consists in learning
those parameters θ from a finite set of (potentially noisy) observations of the process X . Neural
ODEs (Chen et al., 2018) parametrize this function by a neural network. Learning the weights
of this network can be done using the adjoint method or by simply backpropagating through the
numerical integrator. Note that one usually allows X[t] to be stochastic (e.g. observation noise). In
that case, the mean of X[t] (rather than X[t] itself) follows Equation 3.

3.3 CAUSAL INFERENCE WITH LATENT CCM

A key step in the CCM methodology is to compute the delay embedding of both time series: Φ(X[t])
and Φ(Y [t]). However, when the data is only sporadically observed at irregular intervals, the prob-
ability of observing the delayed samples Xi[t], Xi[t − τ ], . . . , Xi[t − kτ ] is vanishing for any t.
X ′[t] and Y ′[t] are then never fully observed (in fact, only one dimension is observed) and nearest
neighbor prediction cannot be performed. What is more, short time series usually do not allow to
compute a delay embedding of sufficient dimension (k) and lag (τ ) (Clark et al., 2015).

Instead of computing delay embeddings, we learn the dynamics of the process with a continuous-
time hidden process parametrized by a Neural ODE (as in Eq. 3) and use this hidden representation
as a complete representation of the state-space, therefore eliminating the need for delay-embedding
that was limiting the applicability of CCM to long, constant sampling time series. A graphical
representation of the method is shown on Figure 1.

To infer causality between temporal variables from their time series X[t] and Y [t], the first step is
to train two GRU-ODE-Bayes models (De Brouwer et al., 2019), a filtering technique that extends
Neural-ODEs. Being a filtering approach, GRU-ODE-Bayes ensures no leakage of future informa-
tion backward in time, an important requirement for our notion of causality. The continuity of the
latent process is also important as it provides more coverage of the attractor of the dynamical sys-
tem. Indeed, a constant latent process in between observations (such as obtained with a classical
recurrent neural network such as GRU) would lead to fewer unique latent process observations.

The same model is used for all segments of each time series and is trained to minimize forecasting
error. We learn the observation function g, the ODE fθ and the continuous-time latent processH(t).
We write the resulting space of latent vectors from time series X on all segments asHX .

Causality is then inferred by checking the existence of a continuous map between HX and HY .
Analogously to CCM, we consider X causes Y if there exists a continuous map between HY and
HX . This is consistent becauseHX , just as the delay embedding ΦX , is a embedding of the strange
attractor of the dynamical system as stated in Lemma 3.1 for which we give the proof in the Ap-
pendix E.

Lemma 3.1. For a sporadic time series X[t] ∈ X satisfying the following dynamics,

X[t] = g(H(t)) with
dH(t)

dt
= fθ(H(t), t)

with g(·) and fθ continuous functions. If there exists one observation function αH ∈ C2 : X →
R along with a valid couple (k, τ ) (in the Takens’ embedding theorem sense) such that the map
Φk,τg(φH),αH

(H(t)) is injective, the latent process H(t) is an embedding of the strange attractor of
the full dynamical system containing X .
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The requirement of Φk,τg(φH),αH
being injective is not enforced in our architecture. However, with

sufficient regularization of the network, it is satisfied in practice as shown by our results in Section
4.5.

The same reasoning as in CCM then applies to the latent process and causal direction can be inferred.
The existence of a continuous map between the latent spaces of both time series is quantitatively
assessed with the correlation between the true latents of the driven time series and the reconstructions
obtained with a k-nearest neighbors model on the latents of the driven time series. For instance, for
a direction X → Y , we report the correlation between predictions of HX obtained from HY and
the actual ones (HX ). A strong positive correlation suggests an accurate reconstruction and thus
a causal link in the studied direction between the variables (e.g., X → Y ). By contrast, a weak
correlation suggests no causal link in that direction.

4 EXPERIMENTS

We evaluate the performance of our approach on data sets from physical and neurophysiology mod-
els, namely a double pendulum and neurons activity data. We show that our method detects the
right causal topology in all cases, outperforming multi-spatial CCM, as well as baselines designed
to address the sporadicity of the time series. The code is available in the supplementary material.

4.1 BASELINE METHODS

To the best of our knowledge, this is the first time CCM is applied to short sporadic time series.
Indeed, because of missing variables, many standard approaches are simply not applicable. The
main baseline consists in multi-spatial CCM (Clark et al., 2015) applied to regularly sampled data
with a sampling rate similar to the one of the sporadic data. We also compare our approach to
variants where multi-spatial CCM is applied to an interpolation of the sporadic time series using (1)
linear interpolation and (2) univariate and multivariate Gaussian Processes (GP and MVGP). For the
Gaussian Process, we chose a mixture of RBF and identity kernel and learn the parameters from
the data. To model multivariate GPs (MVGP), we used the combination of a Matern and a periodic
Matern kernel for the time dimension and used co-regionalization (Bonilla et al., 2008) with a
full-rank interaction matrix. We then use the mean of the posterior process as the reconstruction
subsequentially fed to the classical CCM method. Implementation was done with GPflow (Matthews
et al., 2017).

We also compared our approach to non-CCM causal discovery methods such as PCMCI (Runge
et al., 2019) and VARLinGAM (Hyvärinen et al., 2010). PCMCI uses conditional independence
testing between time series at differrent lags to infer causal dependencies. VARLinGAM learns
a graphical model of the longitudinal variables and their time lags, using the LinGAM method
(Shimizu et al., 2006). These methods do not allow for short sporadic time series as input but a
comparison with a less challenging non-sporadic variant of our datasets is presented in Appendix F.

4.2 PERFORMANCE METRICS

Our method assesses causality by detecting convergent reconstruction accuracy between the latent
processes of different time series. To account for both aspects in a single score, we use the dif-
ference between the correlation of the reconstruction and the target latent vector using the whole
data (Ccmfull) and the correlation using only 100 sample points (Ccm0), as shown on Figure 2 and
suggested in Clark et al. (2015). The score for the causal coupling from X[t] to Y [t] is then defined
as

ScX→Y = Ccmfull(X,Y )− Ccm0(X,Y ).

with a higher score implying more confidence in a causal relationship. Additionally, to quantify the
certainty about the presence of a causal edge in the data generation graph, we compare the obtained
scores with the ones that would be obtained with CCM on fully observed but independent time
series. We compute the Mann-Whitney U -statistics (Ma et al., 2014) and provide the corresponding
p-value.
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Figure 2: Pearson correlation of the reconstructions in function of the proportion of data used for
the Latent-CCM. Solid line represent the mean over the 5 repeats and the shaded area the range
of values. For both experiments, only the true causal directions show a convergent reconstruction.
Ccmfull is the score when the whole data is used. Ccm0 is the score when only 100 samples of the
latent space are used.

Nevertheless, in practice, one might not have access to the score of independent time series, making
it difficult to assess from the score only if a causal relationship is present. To address this issue,
we visualize the results graphically as shown in Figure 2. Causal directions should then stand out
clearly and have the characteristic convergent pattern (Sugihara et al., 2012).

4.3 DOUBLE PENDULUM

Description. The double pendulum is a simple physical system that is chaotic and exhibits rich
dynamical behavior. It consists of two point masses m1 and m2 connected to a pivot point and
to each other by weightless rods of length l1 and l2, as shown on Figure 4 in Appendix A. The
trajectories of the double pendulum are described by the time series of the angles of the rods with
respect to the vertical (θ1 and θ2), as well as the angular momenta p1 and p2 conjugate to these
angles. Each trajectory is then a collection of 4-dimensional vector observations.

To introduce causal dependencies from pendulum X to Y , we include a non-physical asymmetrical
coupling term in the update of the momentum conjugate to the first angle:

ṗY1 = −∂H
Y

∂θY1
− 2 · cX,Y (θY1 − θX1 ),

where cX,Y is a coupling parameter. The term corresponding to a quadratic potential incorporated
to the Hamiltonian of system Y results in an attraction on system Y by system X . Depending on
the values of cX,Y and cY,X , we have different causal relationships between X and Y . Namely, (1)
X causes Y iff cX,Y 6= 0, (2) Y causes X iff cY,X 6= 0 and (3) X is not causally related to Y if
cX,Y = cY,X = 0.

Data generation. We consider two cases of generating models. The first one consists of two double
pendulums (X[t] and Y [t]) with high observation noise with Y causing X . In this case, we set
cX,Y = 0 and cY,X = 0.2. The second consists of 3 double pendulums (X[t], Y [t] and Z[t]),
with one of them causing the other two (cZ,X = 0.5, cZ,Y = 1). We then infer the causal model
relations between those 3 variables in a pairwise fashion (i.e. we infer the causal direction between
all pairs of variables in the system). Remarkably, X and Y are here correlated but not causally
related. Graphical representations of both considered cases are presented in Figure 3. Parameters of
the pendulums (lengths and masses) are presented in Appendix A. We generate 5 trajectories with
different initial conditions (θ1 ∼ N (−1, 0.05) and θ2 ∼ N (0.5, 0.05)). We simulate observation
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noise by adding a random Gaussian noise n to the samples with n ∼ N (µ = 0, σ = 0.1) for the
first case and n ∼ N (µ = 0, σ = 0.01) for the second. To account for the short length of time
series usually encountered in the real world, we randomly split the trajectories in windows of 10
seconds. To simulate sporadicity, we sample observation uniformly at random with an average rate
of 4 samples per second. Furthermore, for each of those samples, we apply an observation mask
that keeps each individual dimension with probability 0.3. This whole procedure leads to a sporadic
pattern as shown in Figure 5 of Appendix A. We used 80% of available windows for training and
used the remaining 20% for hyperparameter tuning with the MSE prediction on future samples used
as model selection criterion. More details on this procedure is given in Appendix G.

X Y X

Z

Y

Figure 3: Graphical model representation of both cases considered in the main body of the paper.
Left: Case 1. Right: Case 2 (confounding).

4.4 NEURAL ACTIVITY DATA

We also evaluate our approach on neural activity data. We generate time series of the average mem-
brane potential of two populations of leaky integrate-and-fire neurons with alpha-function shaped
synaptic currents (iaf psc alpha) simulated by NEST-2.20.0 (Fardet et al., 2020). Each neuron popu-
lation contains 100 units with sparse random excitatory synapses within the population. We consider
two cases, one where population A unidirectionally excites population B and another case where
both populations fire independently. To account for the short and sporadic nature of real-world data,
we generate 5,000 windows of 20 seconds from which we sample 1 observation every second on
average. This leads to 20 samples being available on average per time window.

4.5 RESULTS

Results over 5 repeats for the double pendulums and the neural activity data are presented in Table 1
and in Figure 2. Because this method uses different metrics for inferring the underlying causal
graph, the results for PCMCI are presented in Appendix F, where we show that the method cannot
reliably infer the generative causal dependencies in our data.

Double Pendulum. Our approach is the only one to recover the right causal direction from the
sporadic data. The other baselines do not detect any significant correlation and thus no causal link
between double pendulums. Despite having access to constant sampling data, multi-spatial CCM is
also not able to detect the right data structure. We argue this is caused by the short length of time
series window, and thus the low number and quality of delay embeddings that can be computed. In
contrast, as our method shares the same model across all time windows, it represents more reliably
the (hidden) state-space at any point in time. Importantly, the perfect reconstruction for Case 2
shows that we can distinguish confounding from correlation between time series. Indeed, when
inferring causal directions between X and Y , variable Z is not used and thus hidden. Yet, our
methods detects no causal relation between X and Y . Figure 2(a) graphically presents the results of
our method for the second case, where it is obvious that the only two convergent mappings are the
ones corresponding to the true directions (solid blue and green lines), providing a strong signal for
the right underlying causal mechanism.

Neural activity For the neuron activity data, we observe that our method delivers the largest effect
size towards the true data generating model (Sc = 0.295). Baselines methods relying on imputation
do not provide any clear signal for a causal coupling (score 10 times lower). Multi-spatial CCM with
the regularly sampled original data provides similar signal than our approach but dampened. Inter-
estingly, we observe a small but significant correlation in the wrong direction (A ← B) suggesting
a small coupling in this direction. An inspection of Figure 2(b), however, will convince the reader
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Table 1: Average reconstruction scores Sc (and their standard deviations) in all directions for the
double pendulum and neural activity experiments. Standard deviations are computed using 5 repe-
titions. Significant correlations compared to noncoupled dynamical systems are in bold (p < 0.01).
Significance is computed using the Mann-Whitney rank test. Our approach detects the correct causal
structure. 3and 7 highlight correct and wrong direction detection respectively.

DATA MULTI-SPATIAL CCM LINEAR MVGP LATENT-CCM

PENDULUM

CASE 1
X → Y -0.017 ± 0.037 0.001 ± 0.006 0.009 ± 0.014 0.001 ± 0.013
X← Y 0.018 ± 0.0056 -0.011 ± 0.01 -0.001 ± 0.021 0.055 ± 0.001
AUC1→2 0.2 (P=0.98)3 0.49 (P=0.52) 3 0.66 (P=0.11) 3 0.55 (P=0.35) 3
AUC2→1 0.6 (P=0.23)7 0.17 (P=0.99) 7 0.44 (P=0.67) 7 1 (P<0.001) 3

CASE 2
X → Y 0.488 ± 0.074 -0.006 ± 0.005 -0.005 ± 0.009 0.001 ± 0.005
X ← Y 0.181 ± 0.119 -0.01 ± 0.01 -0.007 ± 0.012 0.009 ± 0.014
X → Z 0.054 ± 0.021 -0.002 ± 0.007 -0.002 ± 0.014 0.019 ± 0.017
Z→ X 0.324 ± 0.197 0.003 ± 0.004 0.012 ± 0.014 0.657 ± 0.105
Y → Z -0.071 ± 0.078 -0.005 ± 0.012 -0.003 ± 0.023 0.005 ± 0.011
Z→ Y 0.101 ± 0.052 -0.002 ± 0.006 -0.003 ± 0.016 0.555 ± 0.109
AUC1→2 1.00 (P<0.001)7 0.27 (P=0.95)3 0.31 (P=0.91) 3 0.78 (P=0.02) 3
AUC2→1 1.00 (P<0.001)7 0.2 (P=0.98)3 0.31 (P=0.92) 3 0.67 (P=0.09) 3
AUC1→3 0.98 (P<0.001)7 0.41 (P=0.74)3 0.61 (P=0.19) 3 0.79 (P=0.02) 3
AUC3→1 0.93 (P<0.001)3 0.25 (P=0.97) 7 0.81 (P=0.01) 3 1.00 (P<0.001) 3
AUC2→3 0.26 (P=0.97)3 0.4 (P=0.76)3 0.45 (P=0.63) 3 0.46 (P=0.62) 3
AUC3→2 0.79 (P=0.02)3 0.2(P=0.98) 7 0.43 (P=0.69) 7 1.00 (P<0.001) 3

NEURONS

COUPLED
A→ B 0.267 ± 0.001 0.045 ± 0.014 0.028 ± 0.006 0.295 ± 0.012
A← B 0.055 ± 0.003 0.014 ± 0.009 0.026 ± 0.010 0.033 ± 0.012
AUCA→B 1.00 (P=0.006)3 1.00(P=0.006) 3 1.00 (P=0.006) 3 1.00 (P=0.006) 3
AUCB→A 1.00(P=0.006) 7 1.00(P=0.006) 7 1.00(P=0.006) 7 1.00(P=0.006) 7

INDEPENDENT
A→ B -0.012 ± 0.001 0.001 ± 0.003 -0.002 ± 0.008 -0.006 ± 0.007
A← B -0.001 ± 0.001 -0.001 ± 0.003 -0.003 ± 0.005 -0.002 ± 0.008

that the main causal effect is indeed from A to B. This small correlation in the direction A← B is
also observed in the fully observed data as shown in Figure 6 in Appendix B.

5 CONCLUSION AND FUTURE WORK

In this work, we propose a novel way to detect causal structure linking chaotic dynamical sys-
tems that are sporadically observed using reconstruction of underlying latent processes learnt with
Neural-ODE models. We show that our method correctly detects the causal directions between tem-
poral variables in a low and irregular sampling regime, when time series are observed in only short
noncontiguous time windows and even in the case of hidden confounders, which are characteristics
of real-world data. Despite the apparent limitation of our method to chaotic systems, it has been
shown that CCM is broadly applicable in practice as many real dynamical systems are either chaotic
or empirically allow Takens’-like embeddings. As our work builds upon CCM theoretically, we ex-
pect the range of application to be at least as large and leave the application to other real-world data
for future work.
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A DOUBLE PENDULUM

Figure 4 presents a graphical representation of a double pendulum with its two masses and two
weightless rods. Figure 5 shows examples of trajectories generated by a double pendulum.

Figure 4: Physical representation of the double pendulum1

The double pendulum is a simple physically system that is chaotic and exhibits rich dynamical
behavior. The Lagrangian of the double pendulum is

L =
1

2
(m1 +m2)l21θ̇

2
1 +

1

2
m2l

2
2θ̇

2
2 +m2l1l2θ̇1θ̇2 cos(θ1 − θ2). (4)

The corresponding Hamiltonian can be derived using Legendre transform H =
∑
i θ̇ipi − L.

The system evolution can be simulated by integrating the Hamilton equations:

θ̇i =
∂H

∂pi

ṗi = −∂H
∂θi

The Jacobian of the right hand side is

J =


∂2H
∂θ1∂p1

∂2H
∂2p1

∂2H
∂p1∂θ2

∂2H
∂p1∂p2

− ∂2H
∂2θ1

− ∂2H
∂θ1∂p1

− ∂2H
∂θ1∂θ2

− ∂2H
∂θ1∂p2

∂2H
∂θ1∂p2

∂2H
∂p1∂p2

∂2H
∂θ2∂p2

∂2H
∂2p2

− ∂2H
∂θ1∂θ2

− ∂2H
∂p1∂θ2

− ∂2H
∂2θ2

− ∂2H
∂θ2∂p2

 .

Note that the diagonal elements cancelling in pairs, which results in a trace of zero that indicates the
volume-preserving property of the Hamiltonian flow according to Liouville’s theorem. This prop-
erty corresponds to information preservation in nondissipating physical systems. Consequently, a
noncoupled double pendulum does not have a proper attractor. However, for a given initial condi-
tion, and thus given energy, the possible states still form a densely populated volume in state-space.
Applying the nonphysical coupling term, the conservation rule do not hold anymore.

The real part of the eigenvalues of J are called the local Lyapunov exponents.

1Source: JabberWok / Wikimedia Commons, CC-by-3.0.
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Figure 5: Example of trajectories generated by a double pendulum. The solid lines represent the
true process and the dots the sampled measurements.

The direction of the largest expansion evolves as
dq

dt
= Jq

|q(0)| = 1

The largest Lyapunov exponent is given by

λ1 = lim
t→∞

1

t
log |q(t)|.

Note that in stationary processes J is constant, and the differential equation have a closed form
solution

q(t) = q(0)eJt,

and the local and global Lyapunov exponents are equal.

The largest Lyapunov exponent can be described intuitively as

|δ(t)| ≈ |δ(0)|eλ1t,

where δ(t) is defined as the difference between two phase-space trajectories, with initial condition
infinitesimally close to each other:

x′(t) = x(t) + δ(t), t ≥ 0

|δ(0)| ≤ ε.

We use numerical integration to compute the largest Lyapunov exponent of the double pendulum,
and verify that it is in the chaotic regime.

B INTERACTING NEURON POPULATIONS

The time series is the average membrane potential of two populations of leaky integrate-and-fire neu-
rons with alpha-function shaped synaptic currents (iaf psc alpha) simulated by NEST-2.20.0 (Fardet

13
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Table 2: Parameters [m, kg] and the largest Lyapunov exponents of the uncoupled pendulums (λ1 >
0 indicates chaotic behavior). We report means and their confidence interval over 10 repetitions with
initial angles perturbed with σ = 0.05 normal distributed noise.

SYSTEM l1 l2 m1 m2 θ1 θ2 λ1 AND CI (80%)

X ← Y
X 1 0.5 2.0 1.0 1 -0.5 0.306 (0.149, 0.468)
Y 0.5 1.0 0.5 4.0 1 -0.5 0.005 (0.001, 0.010)
WHOLE X → Y SYSTEM 0.318 (0.183, 0.422)

X ← Z → Y
X 0.5 1.0 2.0 1.0 1.0 -0.5 0.008 (0.006, 0.009)
Y 0.5 1.0 2.0 1.0 1.0 -0.5 0.008 (0.006, 0.009)
Z 1.0 1.0 1.0 3.0 1.0 -0.5 0.007 (0.005, 0.008)

WHOLE X ← Z → Y SYSTEM 0.090 (0.027, 0.510)

et al., 2020). Each population contains 100 units with sparse random excitatory synapses inside pop-
ulation, and unidirectionally from population A to population B. A Poisson generator with rate of
40kHz was used to excite the network.

Table 3: Neuron populations. Every non-specified model parameter is left at the default value.

Population tau m [ms] I e [µA]

A U(15.0, 16.0) 0.0
B N (15.0, 1.0) 60.0
C (not obs.) 10.0 0.0

Table 4: Synapses. Parameters have been tuned to achieve stable firing without depolarizing the
neuron populations.

From To connection type parameter

Poisson A fixed outdegree outdegree = 10
Poisson C fixed outdegree outdegree = 10

A A fixed indegree indegree = 67
B B fixed indegree indegree = 20
C C fixed indegree indegree = 67

C B fixed outdegree outdegree = 60

In Figure 6, we plot the reconstruction correlations of the coupled neuron populations obtained with
the fully observed time series (10 observations per second) and evaluated with standard CCM. We
observe a small convergence in the reconstruction in the non-causal direction, indicating potential
synchrony. As presented in Table 1, our approach also captures this small reconstruction signal.

C RESULTS WITH UNIVARIATE GAUSSIAN PROCESSES

In Table 5, we present the results of our experiments with univariate Gaussian Processes (GP). In
this case, we only learn a GP on the dimension of interest to compute the delay embeddings. As we
can see, results are slightly worse than when using multivariate Gaussian Processes (MVGP).
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Figure 6: Result of CCM on fully observed neural activity data. Despite a clear signal of A driving
B, we observe some positive correlation for the reconstruction in the noncausal direction.

Table 5: Average reconstruction scores Sc (and their standard deviations) in all directions for the
double pendulum and neural activity experiments. Standard deviations are computed using 5 repe-
titions. Significant correlations compared to noncoupled dynamical systems are in bold (p < 0.01).
Significance is computed using the Mann-Whitney rank test. Our approach detects the correct causal
structure. 3and 7 highlight correct and wrong direction detection respectively.

DATA SPATIAL CCM GP MVGP LATENT-CCM

CASE 1
X → Y -0.017 ± 0.037 0.002 ± 0.004 0.009 ± 0.014 0.001 ± 0.013
X← Y 0.018 ± 0.0056 -0.001 ± 0.003 -0.001 ± 0.021 0.055 ± 0.001
AUC1→2 0.2 (P=0.98)3 0.6 (P=0.22) 3 0.66 (P=0.11) 3 0.55 (P=0.35) 3
AUC2→1 0.6 (P=0.23)7 0.44 (P=0.67) 7 0.44 (P=0.67) 7 1 (P<0.001) 3

CASE 2
X → Y 0.488 ± 0.074 -0.01 ± 0.008 -0.005 ± 0.009 0.001 ± 0.005
X ← Y 0.181 ± 0.119 -0.000 ± 0.003 -0.007 ± 0.012 0.009 ± 0.014
X → Z 0.054 ± 0.021 -0.003 ± 0.003 -0.002 ± 0.014 0.035 ± 0.019
Z→ X 0.324 ± 0.197 0.061 ± 0.004 0.012 ± 0.014 0.657 ± 0.105
Y → Z -0.071 ± 0.078 -0.003 ± 0.003 -0.003 ± 0.023 0.005 ± 0.011
Z→ Y 0.101 ± 0.052 0.039 ± 0.008 -0.003 ± 0.016 0.555 ± 0.109
AUC1→2 1.00 (P<0.001)7 0.21 (P=0.98) 3 0.31 (P=0.91) 3 0.78 (P=0.02) 3
AUC2→1 1.00 (P<0.001)7 0.49 (P=0.53)3 0.31 (P=0.92) 3 0.67 (P<0.09) 3
AUC1→3 0.98 (P<0.001)7 0.35 (P=0.87) 3 0.61 (P=0.19) 3 0.79 (P=0.02) 3
AUC3→1 0.93 (P<0.001)3 0.74 (P=0.03)7 0.81 (P=0.01) 3 1.00 (P<0.001) 3
AUC2→3 0.26 (P=0.97)3 0.36 (P=0.85) 3 0.45 (P=0.63) 3 0.46 (P=0.62) 3
AUC3→2 0.79 (P=0.02)3 0.58 (0.26) 7 0.43 (P=0.69) 7 1.00 (P<0.001) 3

COUPLED
A→ B 0.267 ± 0.001 0.028 ± 0.006 0.028 ± 0.006 0.295 ± 0.012
A← B 0.055 ± 0.003 0.026 ± 0.010 0.026 ± 0.010 0.033 ± 0.012
AUCA→B 1.00 (P=0.006)3 1.00 (P=0.006) 3 1.00 (P=0.006) 3 1.00 (P=0.006) 3
AUCB→A 1.00(P=0.006) 77 1(P=0.006) 7 1.00(P=0.006) 7 1.00(P=0.006) 7

INDEPENDENT
X → Y -0.012 ± 0.001 -0.002 ± 0.008 -0.002 ± 0.008 -0.006 ± 0.007
X ← Y -0.001 ± 0.001 -0.003 ± 0.005 -0.003 ± 0.005 -0.002 ± 0.008
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D FAILURE OF THE GRANGER CAUSALITY FRAMEWORK

To show how the Granger causality framework fails in the general nonlinear dynamical systems
case, we consider the following coupled dynamical system:

X[t+ 1] = X[t](a− bX[t]− cY [t])

Y [t+ 1] = Y [t](d− eY [t])

Following Granger causality, including values of Y for predicting X[t + 1] should increase the
prediction accuracy, and thus hint towards a causal effect of Y on X . However, dynamics of X[t]
can be rearranged such that all information about Y [t] is contained in X[t] already. Indeed,

Y [t] =
−1

c
(

X[t]

X[t− 1]
− a+ b)(d+

e

c
(

X[t]

X[t− 1]
− a+ b).

Conditioning on Y [t] would not bring additional information and Granger causality would then fail
to uncover the right causal structure.

E PROOF OF LEMMA 3.1

Proof. We first write the map Φkg(φH),αH
(H(t)) in its full form:

Φkg(φH),αH
(H(t)) : H → Rk s.t.

Φkg(φH),αH
(H(t)) = (αH(g(φH,0(H(t)))), αH(g(φH,−τ (H(t)))), ..., αH(g(φH,−kτ (H(t)))))

= (αH(g(H(t))), αH(g(H(t− τ))), ..., αH(g((H(t− kτ)))))

= (αH(X[t]), αH(X[t− τ ]), ..., αH(X[t− kτ ])),

where the last line follows from the definition of the dynamical system. Φ then maps the latent
process to the delay embedding of X obtained with observation function αH .

As the observation function αH ∈ C2, the flow φH and the function g(·) are all continuous, this
implies that the map Φ is also continuous in H(t). It is also surjective as all delay embeddings (or
points in the state-space) will have at least one latent value generating this delay embedding. Indeed,
if we writeM′αH

as the shadow manifold of the delay embeddings of X with observation function
αH , we have that

∀m ∈M′αH
,∃h ∈ H s.t. Φkg(φH),αH

(h) = m.

Let us now assume that there exists a specific observation function α∗H such that Φ is injective. The
map Φα∗

H
is then bijective. Furthermore, as both H andM′α∗

H
are endowed with a metric, the map

Φα∗
H

is a homeomorphism betweenH andM′α∗
H

.

We now show that Φ is a homeomorphism for any observation function. From Takens’ theorem, any
delay embedding with valid observation function α, dimension k, and delay τ is a valid embedding
of the strange attractor of the dynamical system. There must then exists a homeomorphic map Ψ
between any two valid delay embeddings with different observation functions:

∀α, β ∈ C2,R → R ,∃ homeomorphism Ψα,β :M′α →M′β s.t.

∀mα ∈M′α,mβ ∈M′β ,Ψα,β(mα) = mβ .

By transitivity, there is now a homeorphism betweenH and any valid delay embedding defined with
observation function αH defined as Ψα∗

H ,αH
◦Φkg(φH),α∗

H
(H(t)). By Takens’ theorem,H is thus an

embedding of the strange attractor of the dynamical system containing X[t].
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F COMPARISON WITH PCMCI AND VARLINGAM

F.1 PCMCI

We compared our approach with PCMCI (Runge et al., 2019), a recently introduced method to
estimate causal networks from large-scale time series datasets. The method uses independence tests
at various time lags to infer causal links between time series. The method does not allow for sporadic
time series as a constant time lag is required for the conditional independence tests. Furthermore,
the method does not support a way to handle a collection of short time series from a common
dynamical system. We then used the method on a less challenging variant of our data where the
observations are sampled at a constant rate corresponding to the sampling rate used for generating
the sporadic time series. We only feed a very long time series without interruption. We used a
maximum time lag of 10 seconds and report the results of cases 1 and 2 of the double pendulum
for various significance thresholds in Table 6. We used the implementation of the method provided
by the authors at https://github.com/jakobrunge/tigramite/. Because the method
infers causality with a different score than ours, we report the inferred configuration at each repeat
and for each case. The different configurations are shown on Figure 7. For case 1, we observe that
PCMCI recovers the true causal graph 2 times out of 5 when the significance is set to p < 0.001.
For case 2, at all levels of confidence, PCMCI infers a fully connected graph (configuration ∆). We
suggest this results form the large number of time series for this configuration (12) as well as the
existence of complex coupling dynamics of the chaotic dynamical system, make the causal inference
challenging. An example of inferred causal network with PCMCI (case 1 with significance level of
p < 0.001) is presented on Figure 8.

F.2 VARLINGAM

We also compared the Latent CCM method with VARLinGAM (Hyvärinen et al., 2010). VAR-
LinGAM detects causal links between longitudinal variables by learning a directed acyclic graph
of interactions of the variables and their time lags. In particular, VARLinGAM derives the best
acyclic graph with the LinGAM method (Shimizu et al., 2006). We infer causality between the
group of variables X and another Y by checking the existence of causal edges between individ-
ual variables of X and Y . We used the implementation of VARLinGAM available at https:
//github.com/cdt15/lingam and use a maximum time lag of 10 seconds (same as for
PCMCI) and a minimum causal weight of 0.01. As for PCMCI, the score provided to infer a graph
is different than ours and we provide the results of the learnt causal graphs for cases 1 and 2 of the
double pendulum in Table 6. The method only recovers the true graph of case 1 in 60% of the time.
For case 2, the method fails to recover the causal generative model for all the repeats.

Table 6: Inferred causal configurations for double pendulum cases with PCMCI and Var-LinGAM.
Details of the configuration codes used are given on Figure 7. Sign. Level stands for significance
level.

MODEL CASE SIGN. LEVEL REPEAT 1 REPEAT 2 REPEAT 3 REPEAT 4 REPEAT 5

PCMCI CASE 1 p < 0.01 A (7) A (7) A (7) A (7) A (7)
p < 0.001 B (7) Γ (3) B (7) B (7) Γ (3)

CASE 2 p < 0.01 ∆ (7) ∆ (7) ∆ (7) ∆ (7) ∆ (7)
p < 0.001 ∆ (7) ∆ (7) ∆ (7) ∆ (7) ∆ (7)

VARLINGAM CASE 1 p < 0.01 A (7) A (7) A (7) A (7) A (7)
p < 0.001 A (7) A (7) Γ (3) Γ (3) Γ (3)

CASE 2 p < 0.01 A (7) B (7) B (7) B (7) Γ (7)
p < 0.001 Γ (7) Γ (7) A (7) Γ (7) Γ (7)
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Figure 7: Different configurations inferred by PCMCI in both double pendulum cases.
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Figure 8: Example of causal network inferred by the PCMCI method for case 1 (repeat 1) of the
double pendulum data. Significance level : p < 0.001.

G MODEL SELECTION PROCEDURE

When training GRU-ODE-Bayes models, we use 80% of the available time series samples as training
set and the remaining 20% as validation set. For training, we use the reconstruction loss proposed
by the authors (De Brouwer et al., 2019). For validation, we feed the time series until half of
the available horizons (e.g. for time series of length 10 seconds, we feed the 5 first seconds) and
compute the MSE on the reconstruction of the subsequent available samples. We choose the model
hyperparameters that minimize the MSE over the validation set. Note that we do not need test set
as our ultimate goal resides in causal direction inference and not in accurate forecasting of the time
series. Importantly, models for each time series are learnt independently and no information about
causal direction is available at any time in the process.

H SPORADIC DATA WITH MISSINGNESS NOT AT RANDOM

Experiments and results presented in Section 4.5 consider a a random sporadic sampling of the data.
The data is thus missing at random (MAR). In practice, however, the sampling of a process is usually
not fully random but rather depends on the value of the process itself. As a simple example, doctors
measure the blood pressure of patients more often when it’s high or likely to be high. The sampling
pattern then gives information about the value of the process we want to model.

In order to account for this bias occurring in practice, we consider also a variant of the double
pendulum dataset (case 1) where the missingness is not at random (MNAR) and with noise standard
deviation of 0.01. The sampling pattern we consider is the following. If the absolute value of the
angle of the first rod θ1 is larger than π

4 , we sample the process with a probability two times larger
than if the angle is smaller than π

4 . The sampling probability of an observation ps(Xt) is then :
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ps(Xt) =

{
p if θ1(Xt) ≤ π

4

2p if θ1(Xt) >
π
4

Note that the total number of observations is still kept constant with respect to the MAR case.

Figure 9 shows the results of latent CCM on the MNAR double pendulum data (case 1). We observe
that latent CCM is still inferring the correct causal directions, despite the sampling bias.
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Figure 9: Result of latent CCM on the MNAR double pendulum data (case 1 with low noise). The
correct causal directions are inferred.

Table 7: Results of latent CCM on the MNAR double pendulum data (case 1 with low noise).

X → Y Y → X

Sc −0.009± 0.008 0.399± 0.029
AUC 0.49 (p=0.52) 1 (p<0.001)

I USING A RNN INSTEAD OF A NEURAL-ODE

As Equation 3 in the paper suggests, we consider our observations are generated from a continuous
latent processH(t). Different techniques could be used to infer this processH(t) in our latent CCM
approach. Among those techniques, neural-ODE models such as [1] or [2] embody the assumptions
of Equation 3 and are thus a natural choice for the inference of informative latent vectors. Another
choice could be to learn those dynamics with a non-continuous recurrent neural network approach.
In this section, we compare Neural-ODE methods with using a standard recurrent neural network
(GRU) for learning the dynamics of the process. Because the processing of missing data across
dimensions is not well defined for GRU, we use a version of the data as in Appendix F, namely the
observations are sampled at a constant rate (similar to the one used for sporadic data, taking into
account the sampling across dimensions) and importantly, no missing dimensions are allowed. We
then use the learnt latent process to infer causal direction for case 2 of the double pendulum data.
Results are presented in Table 8. We observe that incorrect causal directions are inferred (from X
to Z and from Y to Z).
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Some theoretical properties of Neural-ODEs can help explain this result. Because of their continuous
resolution, Neural-ODEs allow to have a denser coverage of the attractor we want to reconstruct.
This feature is further strengthened by the fact that different integrators can be used to recover the
latent process, therefore allowing to tune the resolution of the learnt latent process. In the case of
physical systems, a symplectic integrator can also be used, to ensure conservation of energy and
more accurate learning of the dynamics.

Table 8: Results of latent CCM on the double pendulum data with latents learn from a GRU. Data is
constantly sampled with no missing values and simulated as for the case 2 of the double pendulum.

X → Y Y → X X → Z Z → X Y → Z Z → Y

Sc 0.013± 0.020 0.022± 0.019 0.108± 0.049 1.064± 0.057 0.053± 0.011 0.513± 0.018
AUC 0.34 (p=0.884)3 0.41 (p=0.753)3 1.00 (p<0.001)7 1.00 (p<0.001)3 1.00 (p<0.001)7 1 (p<0.001) 3

J COMPLEXITY OF THE METHOD AND BASELINES

As all methods require a k-nearest neighbors step for each pair of time series, the difference in com-
putation arises in the computation of the embeddings fed to the kNN. We then report the complexity
of computing the embeddings to be used for the cross-mapping in Table 9. Computing delay em-
beddings scales linearly in the number of embedding dimensions (H) and the number of samples in
each time series (M ). When using Gaussian Processes, one has first to infer the latent process at all
time points and invert a covariance matrix of size D×D which requires an additionalO(D3×M).
For latent-CCM, we avoid the computation of the delay embeddings but we require to train a Neural-
ODE model which requires O(H2) for each time step and at each observation.

Table 9: Time complexity for computing the embeddings in the different methods. Complexities
depend on the embedding dimension (H), the number of samples observed per time series (M ), the
length of each time series (T ) and the number of features in the time series (D).

Method Time complexity

Multi-spatial CCM O(H ×M)
GP O(H × T +M ×D3)
MVGP O(H × T +M3 ×D3)
Latent-CCM O(H2 × T +D ×H ×M +H2 ×M)
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