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Abstract

Normalization layers (e.g., Batch Normalization, Layer Normalization) were intro-1

duced to help with optimization difficulties in very deep nets, but they clearly also2

help generalization, even in not-so-deep nets. Motivated by the long-held belief3

that flatter minima lead to better generalization, this paper gives mathematical4

analysis and supporting experiments suggesting that normalization (together with5

accompanying weight-decay) encourages GD to reduce the sharpness of loss sur-6

face. Here “sharpness” is carefully defined given that the loss is scale-invariant, a7

known consequence of normalization. Specifically, for a fairly broad class of neural8

nets with normalization, our theory explains how GD with a finite learning rate9

enters the so-called Edge of Stability (EoS) regime, and characterizes the trajectory10

of GD in this regime via a continuous sharpness-reduction flow.11

1 Introduction12

Training modern deep neural nets crucially relies on normalization layers to make the training13

process less sensitive to hyperparameters and initialization. Popular normalization layers include14

Batch Normalization (BN) [43], Layer Normalization [9], etc. Normalization layers amount to a15

reparametrization of the neural net so that the loss becomes invariant to the scale of most parameters16

(and with a minor change, to all parameters): L(cw) = L(w) for all scalings c > 0 [43, 7, 61]. The17

current paper assumes this scale-invariance for all parameters and analyzes the trajectory of gradient18

descent with weight decay (WD):19

wt+1 ← (1− η̂λ̂)wt − η̂∇L(wt). (1)

Use of WD may appear nonsensical at first sight because traditionally it is used to penalize large20

parameter norm, which of course is inconsequential for scale-invariant loss — one can scale down the21

parameter norm arbitrarily without changing the loss value. However, the scale of the parameter does22

matter for gradient and Hessian, and thus WD can affect the training dynamics. In particular, simple23

calculus shows ∇L(w) = 1
‖w‖2∇L( w

‖w‖2 ) and ∇2L(w) = 1
‖w‖22

∇2L( w
‖w‖2 ), so WD is in effect24

trying to increase the norm of gradient and Hessian in training. This makes the training dynamics25

very different from unnormalized nets, and requires revisiting classical convergence analyses, as26

was done in various papers [7, 61, 64]. More notably, such a change in dynamics also yields a very27

different solution at the end — in particular a solution that generalizes better [102].28

The goal of the current paper is to improve mathematical understanding of how normalization together29

with accompanying WD can improve generalization. While this may arise from many places, we focus30

on sharpness-based generalization measures and exhibit settings where gradient descent persistently31

reduces sharpness in training normalized nets with WD, which we call the sharpness-reduction bias.32

See Figures 1 and 2 for experiments on matrix completion (with BN) and CIFAR-10.33
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Figure 1: Experiment on overparameterized matrix completion with Batch Normalization. Given 800
(32%) entries Ω of a rank-2 matrix M ∈ R50×50, use GD+WD to optimize the loss L(U ,V ) :=

1
|Ω|

∑
(i,j)∈Ω(BN([UV >]i,j)−Mi,j)

2, where U ,V ∈ R50×50 (thus no explicit constraint on rank). Starting
from step ∼ 2000, spherical sharpness drops significantly (b), which encourages low-rank (d) and causes the
test loss (MSE of all entries) to decrease from 1.12 to 0.013 (a). See also Appendix P.1.
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Figure 2: In training a smooth and scale-invariant VGG-11 on CIFAR-10 with (full-batch) GD+WD, the
spherical sharpness keeps decreasing and the test accuracy keeps increasing. BN is added after every linear
layer to ensure scale-invariance. 100% training accuracy is achieved after ∼ 680 steps (dotted line), but as the
training continues for 47k steps, the spherical sharpness keeps decreasing (b) and the test accuracy increases
from 69.1% to 72.0% (a). Then the training exhibits destabilization but the test accuracy is further boosted to
84.3%. Removing either of normalization or WD eliminates this phenomenon; see Appendices P.4 and P.5.

It is long believed that flatter minima generalize better [39, 49, 78], but the notion of sharpness/flatness34

makes sense only if it is carefully defined in consideration of various symmetries in neural nets. One35

of the most straightforward measures of sharpness is the maximum eigenvalue of Hessian, namely36

λ1(∇2L(wt)). But for normalized nets, this sharpness measure is vulnerable to weight rescaling,37

because one can scale the weight norm to make a minimizer arbitrarily flat [22]. Also, this sharpness38

measure may not decrease with the number of training steps: an empirical study by Cohen et al. [16]39

shows that for various neural nets (including normalized nets), GD has an overwhelming tendency40

to persistently increase λ1(∇2L(wt)) until it reaches the Edge of Stability (EoS) regime, a regime41

where λ1(∇2L(wt)) stabilizes around 2/η̂ (η̂ is the learning rate). See also Figure 2c.42

The sharpness measure we use in this paper takes the scale-invariance property into account. We note43

that techniques from previous works [75, 78, 27] can be easily adopted here to establish a PAC-Bayes44

bound on the test error, where our sharpness measure appears as an additive term (see Appendix C).45

Definition 1.1 (Spherical Sharpness). For a scale-invariant loss L(w) (i.e., L(cw) = L(w) for all46

c > 0), the spherical sharpness at w ∈ RD is defined by λ1(∇2L( w
‖w‖2 )), the maximum eigenvalue47

of the Hessian matrix after projecting w onto the unit sphere.48

1.1 Our Contributions49

In this work, we study the aforementioned sharpness-reduction bias of gradient descent with weight50

decay (GD+WD), assuming the loss L is scale-invariant due to the presence of normalization. For51
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constant learning rate η̂ and weight decay λ̂, we can rewrite gradient descent (1) on scale-invariant52

loss equivalently as Projected Gradient Descent (PGD) on the unit sphere with adaptive learning53

rates, θt+1 ← Π(θt − η̃t∇L(θt)), where θt := wt

‖wt‖2 is the direction ofwt, and η̃t is the “effective”54

learning rate at step t (defined in Section 3). We call η̃t adaptive because it can be shown that η̃t55

increases when gradient is small and decreases when gradient is large, which resembles the behaviors56

of adaptive gradient methods such as RMSprop [38]. Our main contributions are as follows:57

1. We theoretically show that once θt reaches a point near the manifold of minimizers of L, the58

effective learning rate η̃t will keep increasing until 2/η̃t roughly equals to the spherical sharpness,59

or in other words, gradient descent enters the EoS regime (Section 4.1).60

2. In the EoS regime, we show that for gradient descent with a small (but finite) learning rate, θt61

oscillates around the manifold and moves approximately along a sharpness-reduction flow, which62

is a gradient flow for minimizing spherical sharpness on the manifold (with gradient-dependent63

learning rate) (Section 4.2).64

3. As an application of our theory, we show that for linear regression with BN, GD+WD finds65

the minimizer that corresponds to the linear model with minimum weight norm, which looks66

surprisingly the same as the conventional effect of WD but is achieved through the completely67

different sharpness-reduction mechanism (Section 5).68

4. We experimentally verified the sharpness-reduction bias phenomena predicted by our theorem69

and its benefits to generalization on CIFAR-10 with VGG-11 and ResNet-20, as well as matrix70

completion with BN (Appendix P).71

5. We generalize our theoretical results of sharpness-reduction bias to a broader class of adaptive72

gradient methods, most notably a variant of RMSprop with scalar learning rate (Appendix B).73

Our proof technique is novel and may have independent interest to the ML community.74

Technical Contribution. The main challenge to establish our theorem is that we need to analyze75

the implicit bias of GD in the EoS regime. In particular, we crucially rely on step size being finite —76

this is in sharp contrast to many previous works on implicit bias of GD [87, 86, 70, 47, 32, 31, 60,77

82, 4, 14, 63, 71, 83, 88, 28] where the same bias exists at infinitesimal LR. Our analysis is inspired78

by a previous line of works [12, 17, 65] showing that label noise can drive SGD to move on the79

minimizer manifold along the direction of minimizing the trace of Hessian, but the key difference80

here is that we do not have any stochastic gradient noise. Instead, we study the EoS regime and81

exhibit that GD oscillates around the minimizer manifold by connecting it to power method. We show82

that this oscillation is a driving power that pushes the parameter to move on the manifold, and analyze83

the speed of this movement by modeling two key parameters of the dynamics as a 1-dimensional84

Hamiltonian system. To the best of our knowledge, our work is the first one that theoretically proves85

a sharpness measure to decrease in standard training processes with gradient descent, without any86

additional regularization such as label noise [12, 17, 65], or using non-standard variants of gradient87

descent update rule, e.g., using normalized GD or non-smooth wrappings on the loss function [8].88

2 Related Works89

Flatness and Generalization. It has been long believed that minima locate in a flat valley gen-90

eralize better [39]. Li et al. [58] first visualized the loss landscape of neural networks and found91

“sharp” minima generalizes worse. Keskar et al. [49], Wu et al. [94], Jastrzębski et al. [45] empirically92

verified the positive correlation between flatness and generalization. Neyshabur et al. [78] gave a93

theoretical explanation for generalization benefit of low sharpness using PAC-Bayes theory [75]. In94

light of this, Foret et al. [27] proposed SAM algorithm to improve the generalization of SGD by95

minimizing the sharpness of the loss. However, the definition of sharpness remains ambiguous in96

face of the positive homogeneity and invariance in ReLU networks [22], as networks with different97

sharpness may represent the same function. Towards resolving this challenge, multiple definitions98

of scale-invariant sharpness have been proposed [99, 100, 91, 81]. Kwon et al. [52] derived new99

algorithms with better generalization by defining new sharpness notions that are aware of positive100

homogeneity and invariance. He et al. [34] argued that the local minima of modern deep networks are101

more than being flat or sharp and could be asymmetric valleys. The theoretical implication of flatness102

has also been explored specifically for two-layer nets [12, 77, 33, 65, 21] and deep linear nets [76].103
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Understanding Normalization Layers. Ioffe and Szegedy [43] proposed BN with the original104

motivation to reduce Internal Covariate Shift (ICS), but Santurkar et al. [84] challenged this view105

by arguing that the effectiveness of BN comes from a smoothing effect on the training objective. A106

common feature of normalization layers (including BN, LN [9], GN [96]) is that they make the loss107

invariant to the scale of layer weights. Based on this, several existing works have reported that training108

neural nets with normalization and weight decay can go out of the scope of the classical optimization109

theory. Specifically, Li and Arora [61] showed that one can train the net to small loss even with110

learning rates exponentially increasing; Li et al. [62] showed that the dynamic of (full-batch) GD may111

leave the stable regime; Lobacheva et al. [67] empirically showed that the training loss can exhibit a112

periodic behavior that sometimes improves the test accuracy. However, despite a lot of effort devoted113

to understanding the optimization and generalization benefits of normalization in various specific114

settings, e.g., [92, 11, 102, 69, 20, 66, 18, 19, 68, 53, 73], we still lack a complete and rigorous115

analysis for the role of normalization in general, especially in terms of generalization.116

3 Preliminaries117

Let SD−1 := {θ ∈ RD : ‖θ‖2 = 1} be the unit sphere equipped with subspace topology. We say118

a loss function L(w) defined on RD \ {0} is scale-invariant if L(cw) = L(w) for all c > 0. In119

other words, the loss value does not change with the parameter norm. For a differentiable scale-120

invariant function L(w), the gradient is (−1)-homogeneous and it is always perpendicular to w, i.e.,121

∇L(cw) = c−1∇L(w) for all c > 0 and 〈∇L(w),w〉 = 0. The focus of this paper is the dynamics122

of GD+WD on scale-invariant loss. (1) gives the update rule for learning rate (LR) η̂ and weight123

decay (WD) λ̂. We use θt := wt

‖wt‖2 to denote the projection ofwt onto the unit sphere at step t. A124

number of works [92, 41, 7] propose to use the “effective learning rate” η̂
‖wt‖22

to measure the update125

efficiency of θt on SD−1. Inspired by this notion, we write GD+WD on scale-invariant loss as a126

specific kind of Projected Gradient Descent (PGD), and define η̃t := η̂

(1−η̂λ̂)‖wt‖22
to be the effective127

learning rate with slight abuse of terminology.128

Lemma 3.1. When the parameters wt are updated as (1), θt satisfies the following equation:129

θt+1 = Π(θt − η̃t∇L(θt)), (2)

where η̃t := η̂

(1−η̂λ̂)‖wt‖22
is called the effective learning rate at step t, and Π : w 7→ w

‖w‖2 is the130

projection operator that projects any vector onto the unit sphere.131

The convergence rate of GD+WD has been analyzed by Li et al. [64]. Here we present a variant of132

their theorem that bounds both the gradient and effective LR.133

Theorem 3.2 (Variant of Theorem D.2 in [64]). Let L(w) be a scale-invariant loss function and134

ρ2 := sup{‖∇2L(w)‖2 : w ∈ SD−1} be the smoothness constant of L restricted on the unit sphere.135

For GD+WD (1) with η̂λ̂ ≤ 1/2 and η̃0 ≤ 1
π2ρ2(1−η̂λ̂)

, let T0 :=
⌈

1
2η̂λ̂

ln
‖w0‖22
ρ2π2η̂

⌉
steps, there must136

exist 0 ≤ t ≤ T0 such that ‖∇L(θt)‖22 ≤ 8π4ρ2
2λ̂η̂ and η̃t ≤ 2

π2ρ2(1−η̂λ̂)
.137

4 GD+WD on Scale-Invariant Loss Functions138

This section analyzes GD+WD (1) on a scale-invariant loss L(w), in particular what happens after139

the approximate convergence of Theorem 3.2. We use wt to denote the trainable parameter at step t140

and θt := wt

‖wt‖2 to denote its projection onto SD−1. Section 4.1 analyzes the dynamics in the stable141

regime, where loss is guaranteed to decrease monotonically, and Theorem 3.2 suggests wt can get142

close to a local minimizer at some time t0. We show that the effective LR keeps increasing after t0,143

causing GD+WD to eventually leave this stable regime and enter a new regime which we call the144

Edge of Stability (EoS). In Section 4.2, we establish our main theorem, which connects the dynamics145

of wt in the EoS regime to a sharpness-reduction flow.146

4.1 GD+WD Eventually Leaves the Stable Regime147

A standard step of analyzing optimization methods is to do Taylor expansion locally for the loss148

function, and show that how the optimization method decreases the loss using a descent lemma. In149
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our case of scale-invariant loss functions, we useH(w) := ∇2L(w) ∈ RD×D to denote the Hessian150

matrix of L at w ∈ RD, and λH
1 (w) := λ1(H(w)) to denote the top eigenvalue ofH(w).151

Lemma 4.1 (Descent Lemma). For scale-invariant loss L(w), at step t of GD+WD we have152

L(θt+1) ≤ L(θt)− η̃t(1− η̃tλ(t)
max/2)‖∇L(θt)‖22.

where λ(t)
max := supα∈[0,η̃t]

{
λH

1 (θt − α∇L(θt))
}

is an upper bound of spherical sharpness locally.153

This descent lemma shows that the training loss L(θt) keeps decreasing as long as the effective LR154

η̃t is smaller than 2/λ
(t)
max, We call the regime of η̃t < 2/λ

(t)
max as the stable regime of GD+WD. If155

η̃t ≈ 2/λ
(t)
max with a small difference, then we call it as the Edge of Stability (EoS) regime. This EoS156

regime is conceptually the same as that defined by Cohen et al. [16]; see Appendix G.3 for discussion.157

Fix an initial pointw0 ∈ RD \ {0}. Now we aim to characterize the dynamics of GD+WD when LR158

η̂ and WD λ̂ are small enough. Theorem 3.2 shows that for some t0 ≤ T0, ‖∇L(θt0)‖22 ≤ O(λ̂η̂)159

and η̃t0 ≤ 1
π2ρ2

< 2
ρ2

, which means θt0 is an approximate first-order stationary point of L on the unit160

sphere. This does not guarantee that θt0 is close to any global minimizer, but in practice the training161

loss rarely gets stuck at a non-optimal value when the model is overparameterized [55, 79, 56, 101].162

We are thus motivated to study the case where θt0 not only has small gradient ‖∇L(θt0)‖22 ≤ O(λ̂η̂)163

but also is close to a local minimizer θ∗ ∈ SD−1 of L in the sense that ‖θt0 − θ∗‖2 ≤ O((λ̂η̂)1/2)164

(assuming smoothness, the latter implies the former).165

(a) (b)

(c)

Figure 3: (a), (b): The norm of wt
decreases when gradient is small and
increases when gradient is large. (c):
The trajectory of θt on a 3D scale-
invariant loss function. Darker color
means lower loss on the unit sphere,
and points in the black line are mini-
mizers (see Appendix F). In the end, θt
approaches the flattest one (red star).

As the gradient is small near the local minimizer θ∗, starting166

from step t0, the norm of wt decreases due to the effect167

of WD. See Figure 3a. Since the effective LR is inversely168

proportional to ‖wt‖22, this leads to the effective LR to169

increase. Then Theorem 4.3 will show that the GD+WD170

dynamic eventually leaves the stable regime at some time171

t1 > t0, and enters the EoS regime where η̃t ≈ 2/λ
(t)
max.172

To establish Theorem 4.3, we need to assume that L satis-173

fies Polyak-Łojasiewicz (PL) condition locally, which is a174

standard regularity condition in the optimization literature175

to ease theoretical analysis around a minimizer. Intuitively,176

PL condition guarantees that the gradient grows faster than177

a quadratic function as we move a parameter θ away from178

θ∗. Note that PL condition is strictly weaker than con-179

vexity as the function can still be non-convex under PL180

condition (see, e.g., [48]).181

Definition 4.2 (Polyak-Łojasiewicz Condition). For a182

scale-invariant loss L(w) and µ > 0, we say that L satisfies183

µ-Polyak-Łojasiewicz condition (or µ-PL) locally around a184

local minimizer θ∗ on SD−1 if for some neighborhood U ⊆185

SD−1 of θ∗, ∀θ ∈ U : 1
2‖∇L(θ)‖22 ≥ µ · (L(θ)−L(θ∗)).186

Theorem 4.3. Let L(w) be a C2-smooth scale-invariant187

loss that satisfies µ-PL around a local minimizer θ∗ on the188

unit sphere, and ρ2 := sup{‖∇2L(w)‖2 : w ∈ SD−1}.189

For GD+WD on L(w) with learning rate η̂ and weight190

decay λ̂, if at some step t0, ‖θt0−θ∗‖2 ≤ O((λ̂η̂)1/2) and191

η̃t0 ≤ 2
ρ2
< 2

λH
1 (θ∗)

, and if λ̂η̂ is small enough, then there192

exists a time t1 > t0 such that ‖θt1 − θ∗‖2 = O((λ̂η̂)1/2)193

and η̃t1 = 2
λH

1 (θ∗)
+O((λ̂η̂)1/2).194

4.2 Dynamics at the Edge of Stability195

From the analysis in the previous subsection, we know that196

θt can get close to a local minimizer θ∗ and enter the EoS197

regime at some step t1. But what happens after t1?198
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Figure 3c gives a warm-up example on a 3D scale-invariant loss L : R3 \ {0} → R, where the black199

line is a manifold Γ consisting of all the minimizers. In training with GD+WD, θt first goes close200

to a local minimizer ζ0, then Theorem 4.3 suggests that WD causes the effective LR to steadily201

increase until the dynamic enters the EoS regime. Now something interesting happens — θt moves a202

bit away from ζ0 and starts to oscillate around the manifold Γ . This oscillation is not completely203

perpendicular to Γ but actually forms a small angle that pushes θt to move downward persistently204

until θt approaches the minimizer ζ∗ denoted in the plot.205

For a general scale-invariant loss L : RD \ {0} → R, which minimizer does θt move towards? In206

this work, we consider the setting where there is a manifold Γ consisting only of local minimizers207

(but not necessarily all of them). We show that θt always oscillates around the manifold once it208

approaches the manifold and enters the EoS regime, and meanwhile θt keeps moving in a direction209

of reducing spherical sharpness.210

4.2.1 Assumptions211

Now we formally introduce our main assumption on the local minimizer manifold Γ .212

Assumption 4.4. The loss function L : RD \ {0} → R is C4-smooth and scale-invariant. Γ is a213

C2-smooth, (DΓ − 1)-dimensional submanifold of SD−1 for some 0 ≤ DΓ < D, where every θ ∈ Γ214

is a local minimizer of L on SD−1 and rank(H(θ)) = D −DΓ.215

Scale-invariance has become a standard assumption in studying neural nets with normalization216

layers [61, 62, 67]. For VGG and ResNet, the scale-invariance can be ensured after making minor217

changes to the architectures (see Appendix Q.1). The training loss L may not be smooth if the218

activation is ReLU, but lately it has become clear that differentiable activations such as Swish [80],219

GeLU [37] can perform equally well. Swish is indeed used in our VGG-11 experiments (Figure 2), but220

ResNet with ReLU activation also exhibits a sharpness-reduction bias empirically (see Appendix P.2).221

For any local minimizer θ ∈ Γ , the eigenvalues λH
k (θ) must be non-negative. And λH

k (θ) = 0 for222

all D − DΓ < k ≤ D, since Γ is of dimension DΓ − 1. The condition rank(H(θ)) = D − DΓ223

ensures that the Hessian is maximally non-degenerate on Γ , which also appears as a key assumption224

in previous works [65, 8, 25]. This condition simplifies the calculus on Γ in our analysis as it ensures225

that the null space of the matrixH(θ) equals to the tangent space of Γ at θ ∈ Γ . It is also closely226

related to PL condition (Definition 4.2) as Assumption 4.4 implies that L(θ) satisfies µ-PL (for some227

µ > 0) locally around every θ ∈ Γ on the unit sphere (Arora et al. [8], Lemma B.3).228

To ease our analysis, we also need the following regularity condition to ensure that the largest229

eigenvalue is unique. In our experiments, sharpness reduction happens even when the multiplicity of230

the top eigenvalue is more than 1, but we leave the analysis of that case to future work.231

Assumption 4.5. For all θ ∈ Γ , λH
1 (θ) > λH

2 (θ). That is, the top eigenvalue ofH(θ) is unique.232

4.2.2 Main Theorem233

First, we define ηin := η̂λ̂ as the intrinsic learning rate (name from Li et al. [62]) for convenience. As234

suggested in Theorems 3.2 and 4.3, θt can get close to a local minimizer and be in the EoS regime at235

some step t1: if ζ0 is the local minimizer, then ‖θt1 − ζ0‖2 = O(η
1/2
in ) and η̃t1 = 2

λH
1 (ζ0)

+O(η
1/2
in ).236

In our main theorem, we start our analysis from step t1 while setting t1 = 0 WLOG (otherwise we237

can shift the step numbers). We connect GD+WD in the EoS regime to the following gradient flow (3)238

on the manifold Γ minimizing spherical sharpness (with gradient-dependent learning rate), and show239

that one step of GD+WD tracks a time interval of ηin in the gradient flow.240

ζ(0) = ζ0 ∈ Γ ,
d

dτ
ζ(τ) = − 2∇Γ log λH

1 (ζ(τ))

4 + ‖∇Γ log λH
1 (ζ(τ))‖22

. (3)

Here we use the notation ∇ΓR(θ) for any R : RD → R to denote the projection of ∇R(θ) onto241

the tangent space Tθ(Γ ) at θ ∈ Γ . ζ(τ) reduces sharpness as it moves in direction of the negative242

gradient of log λH
1 (ζ(τ)) on Γ . A simple chain rule shows how fast the spherical sharpness decreases:243

d
dt

log λH
1 (ζ(τ)) = − 2‖∇Γ log λH

1 (ζ(τ))‖22
4 + ‖∇Γ log λH

1 (ζ(τ))‖22
≈
{− 1

2‖∇Γ log λH
1 (ζ(τ))‖22 for small gradient;

−2 for large gradient.
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Note that it is not enough to just assume that θ0 is close to ζ0. If θ0 = ζ0 holds exactly, then the244

subsequent dynamic of wt is described by wt = (1− η̂λ̂)tw0 with direction unchanged. There are245

also some other bad initial directions of w0 that may not lead to the sharpness-reduction bias. This246

motivates us to do a smoothed analysis for the initial direction: the initial direction is ζ with tiny247

random perturbation, where the perturbation scale is allowed to vary from exp(−η−o(1)
in ) to η1/2−o(1)

in ,248

and we show that a good initial direction is met with high probability as ηin → 0.1 Alternatively,249

one can regard it as a modeling of the tiny random noise in GD+WD due to the precision errors in250

floating-point operations. See Figure 4b; the training loss can never be exactly zero in practice.251

Initialization Scheme. Given a local minimizer ζ0 ∈ Γ , we initializew0 ∈ RD \ {0} as follows:252

draw ξ ∼ N (0, σ2
0I/D) from Gaussian and set the direction of w0 to ζ0+ξ

‖ζ0+ξ‖2 , where σ0 can take253

any value in [exp(−η−o(1)
in ), η

1/2−o(1)
in ]; then set the parameter norm ‖w0‖2 to be any value that254

satisfies
∣∣∣η̃0 − 2

λH
1 (ζ0)

∣∣∣ ≤ η1/2−o(1)
in , where η̃0 := η̂

(1−η̂λ̂)‖w0‖22
is the effective LR for the first step.255

Theorem 4.6. Under Assumptions 4.4 and 4.5, for GD+WD (1) with sufficiently small intrinsic256

learning rate ηin := η̂λ̂, if we follow the above initialization scheme for some ζ0 ∈ Γ , then with257

probability 1 − O(η
1/2−o(1)
in ), the trajectory of θt := wt

‖wt‖2 approximately tracks a sharpness-258

reduction flow ζ : [0, T ]→ Γ that starts from ζ0 and evolves as the ODE (3) up to time T (if solution259

exists), in the sense that ‖θt − ζ(tηin)‖2 = O(η
1/4−o(1)
in ) for all 0 ≤ t ≤ T/ηin.260

Remark 4.7 (Magnitude of Oscillation). As suggested by Figure 3c, θt actually oscillates around261

the manifold. But according to our analysis, the magnitude of oscillation is as small as O(η
1/2−o(1)
in ),262

so it is absorbed into our final bound O(η
1/4−o(1)
in ) for the distance between θt and ζ(tηin).263

4.2.3 Proof Idea264

Throughout our proof, we view GD+WD for wt as a PGD for θt with effective LR η̃t (Lemma 3.1).265

To track θt with ζ(tηin), for each step t, we construct a local minimizer φt ∈ Γ that serves as266

the “projection” of θt onto the manifold Γ , in the sense that the displacement xt := θt − φt is267

approximately perpendicular to the tangent space of Γ atφt. Our entire proof works through induction.268

According to the initial conditions, the dynamic is initially in the EoS regime: ‖xt‖2 ≤ η
1/2−o(1)
in269

and |η̃t − 2/λH
1 (φt)| ≤ η1/2−o(1)

in at t = 0. In our induction, we maintain the induction hypothesis270

that these two EoS conditions continue to hold for all t ≥ 0.271

Period-Two Oscillation. A key insight in our proof is that after a few initial steps, θt is oscillating272

around φt along the ±vH
1 (θ) directions, where vH

1 (θ) is a unit top eigenvector of H(θ) and is273

chosen in a way that vH
1 (θ) is continuous on Γ . More specifically, xt = htv

H
1 (φt) +O(‖xt‖22) for274

ht := 〈xt,vH
1 (φt)〉. The oscillation is of period 2: ht > 0 when t is even and ht < 0 when t is odd.275

See Figure 4d for an example.276

This oscillation can be connected to a power method for the matrix I − η̃tH(φt). In the EoS regime,277

we can approximate θt+1 (when xt is small) as θt+1 = Π(θt−η̃t∇L(θt)) ≈ Π(θt−η̃tH(φt)xt) ≈278

θt− η̃tH(φt)xt by Taylor expansions of∇L and Π : RD \ {0} → SD−1. We can further show that279

φt+1 ≈ φt due to our choice of projections. Then the connection to power method is shown below:280

xt+1 ≈ θt+1 − φt ≈ (I − η̃tH(φt))xt.

By simple linear algebra, vH
1 (φt) is an eigenvector of I − η̃tH(φt), associated with eigenvalue281

1− η̃tλH
1 (φt) ≈ −1. The remaining eigenvalues are {1− η̃tλH

i (φt)}Di=2, where λH
i (φt) is the i-th282

largest eigenvalue ofH(θt), and they lie in the range (−1, 1] since λH
i (φt) ∈ [0, λH

1 (φt)). Using a283

similar analysis to power method, we show that xt quickly aligns to the direction of ±vH
1 (φt) after a284

few initial steps, as the corresponding eigenvalue has approximately the largest absolute value.2285

To formally establish the above result, we need a tiny initial alignment between x0 and vH
1 (φ0), just286

as the initial condition in power method. This is where we need the initial random perturbation.287

1Here η−o(1)
in can be constant, O(log(1/ηin)), or O(polylog(1/ηin)), but not η−εin if ε > 0 is a constant.

As mentioned later, this need for random initialization is very similar to the one needed in power method for
computing eigenvalues.

2Our construction of φt ensures that xt only has a small overlap with the 1-eigenspace of I − η̃tH(φt), so
xt can only align to ±vH

1 (φt).
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Figure 4: Illustration of the oscillation and periodic behaviors of GD+WD on linear regression with
BN (see Sections 4.2.3 and 5). The training loss decreases to ≈ 10−14 in the first 1k steps and
achieves test loss 0.26. Starting from step ∼ 1k, the dynamic enters the EoS regime. (a). The test
loss decreases to 0.16 as a distance measure to the flattest solution (M) decreases towards 0; (b). The
training loss oscillates around ∼ 10−4 in the EoS regime; (c). 2/η̃t switches back and forth between
being smaller and larger than λH

1 (φt); (d). The parameter oscillates around the minimizer manifold
along the top eigenvector direction, and the magnitude of oscillation |ht| rises and falls periodically.

Oscillation Drives φt to Move. This period-two oscillation is the driving power to push φt to288

move on the manifold. The main idea here is to realize that the oscillation direction deviates slightly289

from the direction of ±vH
1 (φt) by using a higher-order approximation. We specifically use the290

Taylor approximation to show that this deviation leads φt to move slightly on Γ : after each cycle of291

oscillation, φt+2 ≈ φt − 4h2
t∇Γ log λH

1 (φt) +O(η
1.5−o(1)
in ), which resembles two steps of gradient292

descent on Γ to minimize the logarithm of spherical sharpness with learning rate 2h2
t ,293

Periodic Behavior of ht and η̃t. It remains to analyze the dynamics of ht so that we can know294

how fast the sharpness reduction is. Our analysis is inspired by an empirical study from Lobacheva295

et al. [67], which reveals a periodic behavior of gradients and effective learning rates in training296

normalized nets with weight decay. In our theoretical setting, we capture this periodic behavior by297

showing that ht and η̃t do evolve periodically. See Figures 4c and 4d for an example.298

The key is that η̃t changes as an adaptive gradient method: η̃t increases when gradient is small and299

decreases when gradient is large (due to the effect of WD; see Figures 3a and 3b), and in our case300

the gradient norm scales as |ht| since∇L(θt) ≈ htλH
1 (φt)v

H
1 (φt). According to our power method301

approximation, ht+2 ≈ (1− η̃tλH
1 (φt))

2ht, so |ht| decreases when η̃t < 2/λH
1 (φt). But |ht| cannot302

decrease forever, since η̃t increases when |ht| is sufficiently small. When η̃t rises to over 2/λH
1 (φt),303

|ht| changes from decreasing to increasing according to our approximation. But ht cannot increase304

indefinitely either, since η̃t decreases when |ht| is sufficiently large. A period is finally finished when305

η̃t drops below 2/λH
1 (φt).306

In our theoretical analysis, we connect this periodic behavior with a 1-dimensional Hamiltonian307

system (see Appendix H.2), and show that 2h2
t in each step can be approximated by its average value308

in the period without incurring a large error. Further calculations show that this average value is309

approximately 2ηin

4+‖∇Γ log λH
1 (ζ(tηin))‖2

, the learning rate in the flow (3) multiplied with ηin. We can310

therefore conclude that each step of φt (or θt) tracks a time interval of ηin in the flow.311

Extensions. We note that this periodic behavior is not limited to GD+WD on scale-invariant loss,312

as the above intuitive argument holds as long as the effective LR changes adaptively with respect313

to gradient change. Based on this intuition, an important notion called Quasi-RMSprop scheduler314

is proposed. For a PGD method, a learning rate scheduler is a rule for changing the effective LR315

in each step, and Quasi-RMSprop is a specific class of schedulers we define, including the way316

that the effective LR changes in GD+WD on scale-invariant loss (if viewed as PGD). Our proof317

is done in a unified way that works as long as the effective LR changes in each step according to318

a Quasi-RMSprop scheduler. As a by-product, a similar theorem can be proved for GD (without319

projection) on non-scale-invariant loss if the LR changes as a Quasi-RMSprop in each step. For320

example, we can extend our analysis to RMSprop with a scalar learning rate. See Appendix B.321
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5 Case Study: Linear Regression with Batch Normalization322

In this section, we analyze the GD+WD dynamics on linear regression with Batch Normalization323

(BN), as a simple application of our theory. Let {(xi, yi)}ni=1 be a dataset, where xi ∈ Rd and324

yi ∈ R are inputs and regression targets. We study the over-parameterized case where d� n, and325

we assume that the regression targets are generated by an unknown linear model.326

A classic linear model is parameterized by (w, b) ∈ Rd × R and outputs w>x + b given input x,327

but now we add a BN to the output. More specifically, we consider a batch-normalized linear model328

Φ(x;w, γ, β) := γ · w>x−µ1

σ1
+ β, where µ1, σ1 are the mean and variance of {w>xi}ni=1 over the329

whole dataset3, and the bias term b is cancelled out due to BN. Note that Φ(x;w, γ, β) is still a linear330

function with respect to x. Let µx ∈ Rd and Σx ∈ Rd×d be the mean and covariance of the input331

data {xi}ni=1. Then Φ(x;w, γ, β) can be rewritten as:332

Φ(x;w, γ, β) = w̃>x+ b̃, where w̃ := γw/‖w‖Σx , b̃ := β − w̃>µx. (4)

No matter how w is set, the output mean and variance of Φ are always β and γ2. To simplify our333

analysis, we fix β, γ to be non-trainable constants so that the mean and variance of Φ’s output match334

with those of {yi}ni=1, that is, we set β = µy and γ = σy to be the mean and standard deviation of yi335

over the whole dataset. Then the training loss is L(w) := 1
n

∑
i∈[n](Φ(xi;w, γ, β)− yi)2.336

Theorem 5.1. In our setting of linear regression with BN, the sharpness-reduction flow ζ defined in337

(3) converges to the solution w∗ ∈ Sd−1 that minimizes sharpness λH
1 (w∗) on Γ , regardless of the338

initialization. Moreover, the coefficients (w̃, b̃) associated with w∗ (defined in (4)) are the optimal339

solution of the following constrained optimization problem (M):340

min ‖w‖22 s.t. w>xi + b = yi, ∀i ∈ [n]. (M)

At first sight the result may appear trivial because the intent of WD is to regularize L2-norm. But this341

is deceptive because in scale-invariant nets WD changes from an explicit regularizer to an implicit342

one. This also challenges conventional view of optimization. GD is usually viewed as a discretization343

of its continuous counterpart, gradient flow (GF), and theoretical insight for the discrete update344

including convergence rate and implicit bias is achieved by analyzing the continuous counterpart (See345

Appendix A for a list). However, GF does not have the same sharpness-reduction bias as GD. As346

discussed in [61], adding WD only performs a time-rescaling on the GF trajectory on scale-invariant347

loss, but does not change the point that GF converge to if we project the trajectory onto the unit348

sphere. One can easily show that GF may converge to any zero-loss solution, but no matter how small349

LR is, GD exhibits the sharpness-reduction bias towards the optimal solution of (M). To our best350

knowledge, this result is the first concrete example where even with arbitrarily small LR, GD can still351

generalize better than GF under natural settings.352

6 Conclusions and Future Work353

We exhibited settings where gradient descent has an implicit bias to reduce spherical sharpness in354

training neural nets with normalization layers and weight decay, and we verified experimentally this355

sharpness-reduction bias predicted by our theorem as well as its generalization benefit on CIFAR-10.356

Our theoretical analysis applies to dynamics around a minimizer manifold and requires a small (but357

finite) learning rate so that we can show that the parameter oscillates locally and approximately tracks358

a sharpness-reduction flow. We note that in practice a decrease in spherical sharpness is observed359

even with moderate LR and even before getting close to a minimizer manifold. Explaining these360

phenomena is left for future work. Now we list some other future directions. The first is to generalize361

our results to SGD, where the sharpness measure may not be the spherical sharpness and could362

depend on the structure of gradient noise. Second, to understand the benefit of reducing spherical363

sharpness on specific tasks, e.g., why does reducing spherical sharpness encourage low-rank on matrix364

completion with BN (Figure 1)? Third, to study sharpness-reduction bias for neural net architectures365

that are not scale-invariant on all parameters (e.g., with certain unnormalized layers).366

3Note that the batch size is n here as we are running full-batch GD
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