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ABSTRACT

Designing molecules that bind to specific target proteins is a fundamental task
in drug discovery. Recent generative models leveraging geometrical constraints
imposed by proteins and molecules have shown great potential in generating
protein-specific 3D molecules. Nevertheless, these methods fail to generate 3D
molecules with 2D skeletal curtailments, which encode pharmacophoric patterns
essential to drug potency and synthesizability. To cope with this challenge, we
propose GraphVF, which integrates geometrical and skeletal restraints into a vari-
ational flow framework, where the former is captured through a normalizing flow
transformation and the latter is encoded by an amortized factorized Gaussian.
We empirically verify that our method achieves state-of-the-art performance on
protein-specific 3D molecule generation in terms of binding affinity and some
other drug properties. In particular, it represents the first controllable geometry-
aware, protein-specific molecule generation method, which enables creating bind-
ing 3D molecules with specified chemical sub-structures or drug properties.

1 INTRODUCTION

The de novo design of synthetically feasible drug-like molecules that bind to specific protein pockets
is a crucial yet very challenging task in drug discovery. To cope with such challenge, there has been
a recent surge of interest in leveraging deep generative models to effectively searching the chemical
space for molecules with desired properties. These machine learning models typically encode the
chemical structures of molecules into a low-dimensional space, which then can be optimized and
sampled to generate potential 2D or 3D molecule candidates (Jin et al., 2018; Shi et al., 2020; Zhu
et al., 2022; Hoogeboom et al., 2022). Along this research line, a more promising direction has also
been explored recently: generating 3D molecules that bind to given proteins.

Such binding 3D molecule generation is fundamentally important because binding in fact mainly
facilitates the functionalities of drugs. Fortunately, leveraging autoregressive models to generate
drug molecules (i.e., ligands) directly based on the 3D geometry of the binding pocket have shown
promising potential (Luo et al., 2021; Peng et al., 2022; Liu et al., 2022). These methods explic-
itly capture the fine-grained atomic interactions in the 3D space, and produce ligand poses that can
directly fit into the given binding pocket. Nevertheless, two critical issues remains unsolved for
these existing geometric approaches: 1) effective encoding and sufficient preservation of pharma-
cophoric structural patterns in the ligand candidates, and 2) controllable ligand generation that aims
at specified drug properties or sub-structures. The former prevents generating ligands that seem ge-
ometrically plausible, yet structurally invalid or pharmacophorically impotent; the later dominates
the synthesibility and the practical usefulness of the drugs. We further elaborate them next.

In practice, it is extremely valuable to keep track of the pharmacophoric patterns in the existing
ligands, which indeed determines a ligand’s bio-chemical activities and binding affinity to a large
extent (Wermuth et al., 1998). Consider, for example, the molecules of serotonin (a benign neu-
rostransmiter) and N,N-Dimethyltryptamine (DMT, a famous hallucinogen). As can be seen in
Figure 1a, serotonin and DMT share a large common bulk of their structures, which both possess
an indole and an ethylamine group, but differ enormously in their neural activities. In fact, the ex-
tra Methyl groups in DMT’s NHMe2 are pharmacophoric, inducing an attractive charge interaction
with Asp-231 (Gomez-Jeria & Robles-Navarro, 2015). This pharmacophoric feature gives rise to
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DMT’s binding affinity with the 5−HT2A binding site and produces hallucination. Such observa-
tions suggest that effectively enforcing pharmacophoric patterns in ligands is critical for binding.

Equally important, controlling molecular properties like solubility, polarizability and heat capacity
are instrumental to drug quality. This is to make sure that the synthesized drug molecules have good
exposure, i.e. absorption/distribution/metabolism/excretion (ADME) in vivo, and thus, sufficient
efficacy in clinical trials (Egan, 2010). It is worth noting that, although recent diffusion models
like EDM (Hoogeboom et al., 2022) have been popular for their capability to perform controlled
generation on these properties, performing such control while being pertinent to a given pocket
structure for binding remains under-explored by previous works.

Figure 1: (a) Comparison between Serotonin and DMT structure; (b) Binding pose of DMT with
5−HT2A, pay special attention to the interaction between NHMe2 and Asp-231.

To address the aforementioned two issues, we propose GraphVF, a protein-aware molecule gen-
eration framework that integrates both geometrical and skeletal constraints, aiming at controlling
over the structure and property of the generated ligands. To attain this goal, we leverage flow-based
architecture that combines amortized variational inference (Zhang et al., 2018) and autoregressive
normalizing-flow generation. In specific, global structure of the drug ligand is organized as a junc-
tion tree (Jin et al., 2018), and fine-grained geometrical context of the protein receptor is encoded via
a valence-aware E(3)-GNN. These two constraints are integrated into a variational flow architecture,
where the former enforces the variational distribution globally, while the latter administers the flow
transformations autoregressively.

We show empirically that, GraphVF generates drug molecules with high binding affinity to the re-
ceptor proteins, with or without the aid of reference ligands, outperforming state-of-the-art methods
in terms of binding affinity and some other drug properties. More importantly, GraphVF exposes
a clean-cut interface for imposing customized constraints, which is extremely useful in practice for
controlling the sub-structure and bio-chemical property of generated drug ligands. To specify what
our proposed model can actually do, we comprehensively compare GraphVF with several represen-
tative models for molecule generation in Table 1.

Our main contributions are summarized as follows.

• We devise a novel variational flow-based framework to integrate geometrical and skeletal
restraints for protein-specific 3D molecule generation.

• We propose the first controllable protein-specific molecule generation method, enabling
generating 3D molecules with specified chemical sub-structures or bio-chemical properties.

• We empirically demonstrate our method’s superior performance to state-of-the-art ap-
proaches on generating binding 3D molecules.

2 RELATED WORK

Non-Protein Specific Molecule Generation Different generative techniques have been applied to
the task of molecular generation, including Variational Autoencoders (VAEs) (Kingma & Welling,
2013), Diffusion Models (Sohl-Dickstein et al., 2015), Normalizing Flows (NFs) (Dinh et al., 2016),
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Table 1: Comparison among representative molecular generative methods.

Name Generative Model Moleculer Encoding Controlled Generation
Atom Bond 3D Coord. Ligand Struc. Receptor Conf. Generic Prop.

EDM Diffusion ✓ - ✓ - - ✓
DMCG VAE ✓ ✓ ✓ ✓ - -
JT-VAE VAE ✓ ✓ - ✓ - -

GraphAF Autoregressive Flow ✓ ✓ - - - -
GraphBP Autoregressive Flow ✓ - ✓ - ✓ -

Pocket2Mol Spatial Autoregression ✓ ✓ ✓ - ✓ -
GraphVF Variational Flow ✓ ✓ ✓ ✓ ✓ ✓

and Autoregressive Models (Van Oord et al., 2016). The line of work is usually context-free, aiming
to produce high-quality molecules from scratch, or to render reasonable 3D conformations of given
molecules. For example, JT-VAE (Jin et al., 2018) generates molecular graphs with the guidance of
a tree-structured scaffold over chemical substructures. GraphAF (Shi et al., 2020) uses a flow-based
model to generate atoms and bonds in an autoregressive manner. DMCG (Zhu et al., 2022) and
EDM (Hoogeboom et al., 2022) leverage equivariant diffusion or iterative sampling and de-noising
to generate 3D conformations from 2D structures. Unlike these methods, our approach aims at
generating molecules that bind to given 3D protein pockets.

3D Molecule Generation for Target Protein Binding With the wide availability of large-scale
datasets (Francoeur et al., 2020; Li et al., 2021) for target protein binding, recent works have been
able to generate drug ligands directly based on the 3D geometry of the binding pockets. For exam-
ple, Pocket2Mol (Peng et al., 2022) leverages a spatial-autoregressive model; it directly models the
p.d.f. for atom occurrence in the 3D space as a Gaussian mixture (GMM), and then iteratively places
the atoms from the learned distribution until there is no room for new atoms. GraphBP (Liu et al.,
2022), an autoregressive model, retains good model capacity via normalizing flow; variables are ran-
domly sampled from a compact latent space, before they are projected into the chemical space by
an arbitrarily complex flow transformation. Despise their promising potential, these methods ignore
the topological organization of the drug ligand itself, as well as the structural patterns and pharma-
cophoric features embodied in it. As a result, existing methods tend to generate ligands that seem
geometrically plausible, yet structurally invalid or pharmacophorically impotent. Our approach here
aims to address this problem. Also, our method enables controllable molecule generation, facilitat-
ing generating drug ligand candidates with specified chemical sub-structures or drug properties.

3 PRELIMINARIES

3.1 AUTOREGRESSIVE FLOW MODELS

Based on the prior distribution pZ , we can define a flow model (Dinh et al., 2014; Rezende &
Mohamed, 2015; Weng, 2018) as an invertible parameterized function fθ : z ∈ RD → x ∈ RD

, which maps the latent variable z ∼ pZ to the data variable x. Then we could calculate the log-
likelihood of a data point x by

log pX(x) = log pZ
(
f−1
θ (x)

)
+ log

∣∣∣∣det
∂f−1

θ (x)

∂x

∣∣∣∣ , (1)

and we hope that we could calculate the Jacobian determinant easily. Let xi be the i-th dimension
of x. Autoregressive flow model (Papamakarios et al., 2017) is a kind of flow model which is
formulated to be autoregressive. In case that for every i, xi is conditioned on x1...i−1, f−1

θ is
defined as the following transformation function:

xi = σi(x1...i−1)⊙ zi + µi(x1...i−1), i = 1...D, (2)

where ⊙ denotes element-wise multiplication, σi(·) ∈ R and µi(·) ∈ R are functions of x1...i−1.
Thus, we can easily calculate:

zi =
xi − µi

σi
, det

∂f−1
θ (x)

∂x
=

D∏
i=1

1

σi
. (3)
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3.2 PROBLEM FORMULATION AND NOTATIONS

Given a protein pocket, our task is to generate a ligand molecule that binds to the protein pocket. The
target protein pocket is represented by P = {aproi ,xpro

i }, i = 1...N , where N denotes the number of
atoms in the pocket. For the i-th atom in the protein, aproi represents its element and xpro

i represents
its coordinates in 3D space. We represent a ligand molecule as L = {aligi ,xlig

i ,blig
i }, i = 1...n,

where n is the number of atoms in the ligand, and for the i-th atom in the ligand, aligi , xlig
i , and

blig
i represents its element, 3D coordinates, and bonding relationships to the previous atoms in the

ligand, respectively. For every i, xi is a real vector and |xi| = 3, blig
i is an integer vector and

|blig
i | = i − 1. All bond types are represented by 1...b, and 0 indicates no bond or no bonding

information is provided. Additionally, we represent the 2D skeleton of a ligand molecule as R =

{aligi ,blig
i }, i = 1...n.

4 THE PROPOSED METHOD

In this section, we first introduce how we encode both the ligand scaffold and the protein-ligand
geometry information, and then detail how these two pieces of knowledge are fused into a variational
flow framework for binding geometric molecule generation.

4.1 LIGAND SCAFFOLDS ENCODING

Figure 2: A ligand molecule (e.g. DMT) is encoded for its structure patterns through sub-structure
parsing, graph clustering and tree encoding. By definition, the blue and green nodes belong to
canonical type (I), the grey node belong to canonical type (III), and other nodes belong to canonical
type (II).

Inspired by (Jin et al., 2018), structure patterns of the reference drug ligand are extracted in a
fragment-driven approach (Jin et al., 2018). In most cases, a reasonable molecule is a compilation of
canonical chemical sub-structures like rings and functional groups. Thus, encoding molecule struc-
tures on the granularity of fragments (rather than atoms) can preserve semantics on the sub-structure
level to the greatest extent. Figure 2 illustrates the overall procedure for fragment-based molecule
encoding, using DMT as an example. Following JT-VAE (Jin et al., 2018), the molecule scaffolds
are first parsed into a compilation of occluded canonical sub-structures: (I) rings, (II) non-ring co-
valent atom pairs, and (III) intersection atoms of 3+ sub-structures. Next, the resulting scaffolds are
further clustered into a tree structure R, which is then encoded into a molecular embedding φR via
a Gated Recurrent Unit (Chung et al., 2014) adapted for tree message passing, as follows.

sij =
∑

k∈N(i)\j
mki. (4)

zij = σ(Wzxi +Uzsij + bz). (5)
rki = σ(Wrxi +Urmki + br). (6)

m̃ij = tanh(Wxi +U
∑

k∈N(i)\j

rki ⊙mki). (7)

mij = (1− zij)⊙ sij + zij ⊙ m̃ij . (8)
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The resulting embedding φR, which encodes the sub-structures of ligands, is then split into halves as
(µR,ΣR) and parameterizes the latent distribution of the variational flow, which will be discussed
in detail in Section 4.3.

4.2 GEOMETRY GRAPH ENCODING

Equivariant graph neural networks like SchNet (Schutt et al., 2017) and EGNN (Satorras et al.,
2021) have become a routine component in this receptor-based line of work, which are essential
for encoding molecular features with roto-translational equivariance. Atoms around the binding
pocket are organized into a kNN/radius graph, based on their euclidean distance in the 3D space.
This graph organization is appropriate for modeling non-covalent interactions (hydrophobic, ionic,
hydrogen bond, etc.) between receptor atoms and ligand atoms. Nonetheless, it is still a worthwhile
effort to distinguish among different types of covalent (single, double, triplet, aromatic, etc.) and
non-covalent ones.

To explicitly incorporate bond information during geometry graph encoding, we devise Echnet,
a SE(3)-Invariant graph neural network. As an enhanced version to Schnet (Schutt et al., 2017),
Echnet encodes relative distance together with other SE(3)-Invariant edge features by concatenating
their representations and feeding them into message passing layers, as formulated as follows:

h
(0,ligk)
i = Emb(aligi ), i = 1...k − 1. (9)

h
(l,ligk)
i = h

(l−1,ligk)
i +

∑
(i′,i)∈E

h
(l−1,ligk)
i′ ⊙MLPl

G(ei′,i), l ≥ 1. (10)

where ei′,i = concat{Erbf(dist(i′, i)),Emb(blig
i [i′])}. (11)

Here blig
i [i′] denotes the i′-th coordinate in the vector blig

i , representing the bonding relationship
between the i-th atom and the i′-th atom in the ligand. Emb denotes ordinary embeddings for aligk

and blig
i [i′], while Erbf represents the embedding of dk with radial basis functions (Liu et al., 2022).

4.3 VARIATIONAL FLOW

The two types of encoding discussed in Section 4.1 and 4.2 are seamlessly incorporated in a varia-
tional flow framework, fulfilling the following special needs for binding ligand generation:

1) Integration of both binding pocket geometry and ligand structural patterns;
2) Generation of molecules with high binding affinity, even without reference ligands;
3) Controllable generation interface for customized bio-chemical constraints.

Figure 3: Framework for variational flow based generation. 3D conformational graph is encoded
autoregressively during flow transformation, whereas the 2D structure backbone is encoded globally
as amortized variational distribution.

We illustrate this variational flow framework in Figure 3, and discuss its training and generation
processes in detail next.

Training: Consider we are now in the ith step for training. Gi−1 is an intermediary 3D geometry,
which consists of atoms determined in the previous i − 1 steps, and depicts the fine-grained 3D
geometric dependencies inside the binding pocket. R is the complete 2D scaffold of a reference
drug ligand, which gives a holistic sense of the ligand structure, and is shared across all steps.
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xi is the ground truth label for the bond/atom to be generated in step i. The autoregressive flow
transformation fi is parameterized via geometric graph encoding of Gi−1. The latent distribution
pZ = N (µR,ΣR) is parameterized via tree message-passing along the junction tree of R.

Generation: In the ith step for generation, fi is parameterized like-wise, but the latent distribu-
tion pẐ (from which zi is sampled) can be flexibly parameterized, according to different generation
settings: (1) N (0, I) for regular pocket-based generation, and (2) N (µP ,ΣP) for controlled gener-
ation on given property P , which is encoded by taking the average over the (µR,ΣR)s of ligands
with the specific property P . x̂i = fi(ẑi) is the predicted atom/chemical bond, which concludes the
ith generation step.

Optimization: To achieve robust performance across the above generation settings, variational
flow is formalized into a bi-level optimization task during each training step i:

maximize pX(xi) , (12)

subject to DKL(X̂i||Xi) = DKL(Ẑ||Z) < τ, (13)

where Z and Ẑ are the latent distributions respectively for training and generation, and Xi = fi(Z)

and X̂i = fi(Ẑ) are the chemical space distributions during training and generation, respectively.
The discrepancy between ground-truth Xi and generated X̂i is regularized with Kullback-Leibler
(KL) divergence. Since fi is an invertible function, this is equivalent to regularizing the KL diver-
gence between Z and Ẑ. And thus, we can derive the practical form of loss function during training
step i as:

L⟩ = Lflow + βLKL (14)

=
1

2
(zi − µR)TΣ−1

R (zi − µR)− log

∣∣∣∣det
∂f−1

i (xi)

∂xi

∣∣∣∣ (15)

+ β ·DKL(N (µR,ΣR)||N (0, I)), (16)
where equation 15 is the flow loss term, derived from equation 1, and equation 16 is the KL loss
term. Note that in equation 15, the first term stands for the log likelihood of the amortized Gaussian
log pZ(z0).

It is worth noting that, in equation 14, β is a sensitivity hyper-parameter that trades off between
2D and 3D context, preventing model deterioration and boosting model robustness. For example,
decreasing β would encourage the diversity of the amortized distribution and allow for greater ϕR
expressiveness. However, this also makes the flow transformation more hinged on reference ϕR, and
prevents the model from scaling across diverse generative settings. By contrast, increasing β would
limit the expressiveness of the latent distribution, and degrade the model to a purely geometric
approach that provides no explicit control over other desired qualities. In other words, β can be
fine-tuned to find a good trade-off for different end applications.

4.4 NEW LIGAND GENERATION

We formalize the procedure of new ligand generation as a sequential decision-making process. At
each step, we generate all information of one atom in the ligand, as illustrated in Figure 4. To be
specific, at the k-th step we perform the following operations in sequential order.

Firstly, we construct a graph Gk based on P and Lk−1, where Lk−1 = {aligi ,xlig
i ,blig

i }, i =
1...k − 1 represents the generated part of the ligand. One atom is mapped to one node in Gk, and an
edge is created between two nodes if the distance between them is less than a certain constant c. In
Gk, atomic elements serve as node features, while bonding relationships and relative distances are
used as edge features. We create different node features for protein elements and ligand elements.
We then encode the protein and generated part of the ligand molecule and obtain node representa-
tions, using the Echnet (see Section 4.2) as encoder:

hligk

i ,hprok

j =Echnet(Gk), i = 1...k − 1, j = 1...N, (17)
Secondly, for every ligand atom, we predict whether it could serve as a focal atom (Liu et al., 2022).

focalki =MLPf (h
ligk

i ), k > 1, (18)

start1j =MLPs(h
pro1

j ). (19)
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Figure 4: An illustration of one generation step when k = 4. Details are discussed in section 4.4.

An atom in the ligand is regarded as a focal atom if and only if one or more bonds could be attached
to it. The whole generation process would terminate when no atom could serve as a focal atom.
After that, one atom is sampled from all focal atoms as fck. As for k = 1, we use another classifier
to predict that, for every atom in the target protein, whether it could serve as the start point of
generation. Then we sample one of the possible start points as fc1.

Based on fck, the closest atom to fck (denoted as fck1 ) and the second closest atom to fck (denoted
as fck2 ), we construct a local spherical coordinate system, in which we could write coordinates of
any atom as (dk, θk, ϕk). dk is the distance between fck and atom, θk is the angle formed by line
(fck, fck1) and line (fck, atom), and ϕk is the torsion angle formed by plane (fck, fck1 , fck2) and
plane (fck, fck1 , atom). Notice that (dk, θk, ϕk) is SE(3)-Invariant.

Finally, we use the variational flow model, as discussed in Section 4.3, to generate aligk , blig
k , dk, θk,

ϕk. We sequentially generate these features so that generating each feature is conditioned on all pre-
viously generated features, in order to better capture the underlying dependencies (Liu et al., 2022).
zka , z

k
b , z

k
d , z

k
θ , z

k
ϕ, however, are independently sampled from certain prior distribution and used as

latent variables in the variational flow. Under the setting for unconditional ligand generation, we
set the prior distribution as N (0, I). To be specific, we first generate aligk and blig

k in the following
steps:

µk
elex , σ

k
elex =MLPelex(h

ligk

fck
), (20)

aligk =argmaxx{σk
elexz

k
a + µk

elex}, (21)

h
ligk

a
i =hligk

i ⊙ Emb(aligk ), i = 1...k − 1, (22)

µk
bondx

[i], σk
bondx

[i] =MLPbondx
(h

ligk
a

i ), i = 1...k − 1, (23)

blig
k [i] =argmaxx{σk

bondx
[i]zkb + µk

bondx
[i]}, i = 1...k − 1, (24)

where ⊙ demotes element-wise multiplication, ele is a list of possible atom types and bond is a list
of possible bonding relationships (including no bond).

Similarly, we generate dk, θk, ϕk in a sequential order:
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h
ligk

b
i =h

ligk
a

i ⊙ Emb(blig
k [i]), i = 1...k − 1, (25)

µk
d, σ

k
d =MLPd(h

ligk
b

fck
), dk = σk

dz
k
d + µk

d, (26)

h
ligk

d
i =h

ligk
b

i ⊙ Erbf(dk), i = 1...k − 1, (27)

µk
θ , σ

k
θ =MLPθ(h

ligk
d

fck
,h

ligk
d

fck1
), θk = σk

θ z
k
θ + µk

θ , (28)

h
ligk

θ
i =h

ligk
d

i ⊙ Ecbf(dk, θk), i = 1...k − 1, (29)

µk
ϕ, σ

k
ϕ =MLPϕ(h

ligk
θ

fck
,h

ligk
θ

fck1
,h

ligk
θ

fck2
), (30)

ϕk =σk
ϕz

k
ϕ + µk

ϕ, (31)

where Ecbf denotes the embedding of ϕk with circular basis functions (Liu et al., 2022). Note that
we can directly derive xlig

k from xlig
fck

, xlig
fck1

, xlig
fck2

, dk, θk, ϕk.

5 EXPERIMENTS

Method High Affinity(%)↑
GraphBP 13.4

Pocket2Mol 27.2
GraphVF (ours) 31.1

GraphVF (w/o 2D encoder) 26.3

Table 2: Performance of different methods on 3D molecular generation based on protein pockets.
Higher values indicate better results. Best results are in bold.

5.1 3D MOLECULAR GENERATION CONDITIONED ON PROTEIN POCKET

Dataset. We use the benchmarking CrossDocked dataset (Francoeur et al., 2020), which contains
22.5 million protein-ligand pairs, to evaluate the generation performance of GraphVF. For fair com-
parison, we follow Pocket2Mol (Peng et al., 2022) to prepare and split the data.

Setup. Following GraphBP (Liu et al., 2022) and Pocket2Mol, we randomly sample 100 molecules
for every protein pocket in the generation stage. The quality of generated molecules is evaluated by
High Affinity, which estimates the percentage of generated molecules that have higher CNNAfinity
calculated by the Gnina program (McNutt et al., 2021). We choose GraphBP and Pocket2Mol as
our baselines, which reprent the state-of-art models for binding molecule generation. For GraphBP
and GraphVF, we trained them on the dataset for 40 epochs with the same hyperparameters. For
Pocket2Mol (Peng et al., 2022), we obtain the pre-trained model from their authors, and then com-
pute the scores using Gnina.

Results. The comparison results are presented in Table 5. We can see that our GraphVF outper-
forms the two state-of-the-art baselines in terms of binding affinity. Meanwhile, the last setting
in Table 5 indicates that GraphVF significantly benefits from the 2D encoder, namely the molec-
ular sub-structure constraint. Without the constraint, the High Affinity value for GraphVF drops
drastically from 31.1 to 26.3.

5.2 CONTROLLABLE GENERATION FOR SPECIFIED CHEMICAL SUB-STRUCTURES

Our pretrained framework could be used to encourage the desired sub-structures to be generated
without losing diversity. We carry out case studies on generation of molecules containing the follow-
ing motifs: oxhydryl, peptide bond, 6-member carbon ring, and 5-member ring containing element
S. For each motif, we collect µR̃ and σR̃ among 500 randomly sampled reference ligand molecules
that contain the motif as a sub-structure. Then we set the mean of µR̃ and σR̃ as the prior distribu-
tion during flow generation. Finally, we calculate the rate of the generated molecules that contain
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the desired sub-structures on the test set, which is compared with the results of directly sampling
from prior distribution N (0, I).

The experimental results are summarized in Table 3. With the prior distributions collected from
molecules that contains certain desired sub-structures, our model is more likely to generate ligand
molecules with those sub-structures.

Table 3: Controllable Generation for Specified Chemical Sub-structures.

Rate of desired sub-structure(%) w/ latent P w/o latent P
oxhydryl 51.7 42.8

peptide bond 6.4 1.5
6-member carbon ring 14.5 0.3

5-member ring containing element S 29.7 0.4

5.3 CONTROLLABLE MOLECULAR GENERATION FOR SPECIFIED DRUG PROPERTIES

Our framework can also be explicitly controlled to generate drug-like molecules with desired prop-
erties. To support this claim, we perform case studies under two classical pharmaceutic settings:

1) Antibiotic Discovery (Stokes et al., 2020) This task aims to identify molecules that inhibit the
growth of E. coli, a bacterium canonically used for testing antibiotic activity.

2) SARS Inhibition (Tokars & Mesecar, 2021). This task is to identify molecules that inhibit the
3CL protease of SARS-CoV, the pathogen to a respiratory pandemic during the 2000s.

For antibiotic discovery (likewise for SARS Inhibition), the inhibition scores of all the reference
ligands in the CrossDocked test set are evaluated via a pretrained ensemble model (Yang et al.,
2019). We select the top 5% among them with the highest inhibition scores, denoted as {Ra}a∈I ,
where I is the index set of all the selected ligands. The latent distribution for the desired property P
is defined as N (µP ,ΣP), which can be naturally parameterized as:

(µP ,ΣP) =
1

|I|
∑
a∈I

(µRa
,ΣRa

). (32)

Intuitively, this definition of (µP ,ΣP) contains inductive bias for the desired property P , and lig-
ands that are sampled from this distribution should be more likely to to possess property P .

Results for the two case studies are presented in Table 4, which clearly shows that the latent P is
effective in terms of manipulating desired properties of the generated molecules.

Table 4: Controllable Generation for Antibiotic Discovery and SARS Inhibition.

Avg. Inhibition(%) w/ latent P w/o latent P
Antibiotic 3.26 1.03

SARS 28.3 11.5

6 CONCLUDING REMARKS

We proposed GraphVF, a novel variational flow-based framework for controllable binding 3D
molecule generation. We empirically demonstrated that, through effectively integrating 2D struc-
ture semantics and 3D pocket geometry, GraphVF obtained superior performance to the state-of-
the-art strategies for pocket-based 3D molecule generation. We also experimentally showed that,
GraphVF can effectively generate binding molecules with desired ligand sub-structures and bio-
chemical properties.

We here demonstrate that domain constraints can be effectively leveraged by deep generative models
to improve the qualities of molecule design and fulfill the needs for controllable molecule generation.
Our studies here shed light on the potential of generating binding ligands with sophisticated domain
knowledge and finer-grained control over a variety of bio-chemical properties.
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