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Abstract

We introduce implicit Deep Adaptive Design (iDAD), a new method for performing1

adaptive experiments for implicit models in real-time, based on the Bayesian2

optimal experimental design (BOED) framework. iDAD amortizes the cost of3

experimental design by learning a design policy network upfront, which can then be4

deployed quickly at the time of the experiment. The iDAD network can be trained5

on any model which simulates differentiable samples, unlike previous design6

policy work that requires a closed form likelihood and conditionally independent7

experiments. At deployment-time, iDAD allows design decisions to be made in8

milliseconds, in contrast to traditional approaches to adaptive BOED that require9

heavy computation during the experiment itself. We illustrate the applicability of10

iDAD on a number of experiments, and show that it provides a fast and effective11

mechanism for performing adaptive design with implicit models.12

1 Introduction13

Designing experiments to maximize the information gathered about an underlying process is a key14

challenge in science and engineering. Most such experiments are naturally adaptive—we can design15

later iterations on the basis of data already collected, refining our understanding of the process with16

each step [29, 38, 44]. For example, suppose that a chemical contaminant has accidentally been17

released and is rapidly spreading; we need to quickly discover its unknown source. To this end,18

we measure the contaminant concentration level at locations ξ1, . . . , ξT (our experimental designs),19

obtaining observations y1, . . . , yT . Provided we can perform the necessary computations sufficiently20

quickly, we can design each ξt using data from steps 1, . . . , t− 1 to narrow in on the source.21

Bayesian optimal experimental design (BOED) [5, 26] is a principled model-based framework for22

choosing designs optimally; it has been successfully adopted in a diverse range of scientific fields23

[45, 50, 52]. In BOED, the unknown quantity of interest (e.g. contaminant location) is encapsulated24

by a parameter θ, and our initial information about it by a prior p(θ). A simulator, or likelihood,25

model y|θ, ξ describes the relationship between θ, our controllable design ξ, and the experimental26

outcome y. To select designs optimally, the guiding principle is information maximization—we select27

the design ξ∗ that maximizes the expected (Shannon) information gained about θ from the data y, or28

equivalently, that maximizes the mutual information between θ and y.29

This naturally extends to adaptive settings by considering the conditional expected information gain30

given previously collected data. The traditional way to do this is to fit a posterior p(θ|ξ1:t−1, y1:t−1)31

after each iteration, and then select ξt in a myopic fashion using the one-step mutual information [see32

44, for a review]. Unfortunately, this approach necessitates significant computation at each t and does33

not lend itself to selecting optimal designs quickly and adaptively.34

Recently, Foster et al. [13] proposed an exciting alternative approach, called Deep Adaptive Design35

(DAD), that is based on learning design policies. DAD provides a way to avoid significant computation36

at deployment-time by, prior to the experiment itself, learning a design policy network that takes37
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past design-outcome pairs and almost instantaneously returns the design for the next stage of the38

experiment. The required pre-training is done using simulated experimental histories, without the39

need to estimate any posterior or marginal distributions. DAD further only needs a single policy40

network to be trained for multiple experiments, further allowing for amortization of the adaptive41

design process. Unfortunately, DAD requires conditionally independent experiments and only works42

for the restricted class of models which have an explicit likelihood model that we can simulate from,43

evaluate the density of, and calculate derivatives for, which substantially reduces its applicability.44

To address this shortfall, we instead consider a far more general class of models where we require only45

the ability to simulate y|θ, ξ and compute the derivative ∂y/∂ξ, e.g. via automatic differentiation [3].46

Such models are ubiquitous in scientific modelling and include differentiable implicit models [14],47

for which the likelihood density p(y|θ, ξ) is intractable. Examples include the Lotka Volterra model48

used in ecology [14], and models from chemistry and epidemiology [1].49

Specifically, to perform rapid, adaptive experimentation with this large class of models, we introduce50

implicit Deep Adaptive Design (iDAD), a method for learning adaptive design policy networks without51

likelihoods. To achieve this, we introduce likelihood-free lower bounds on the total information52

gained from a sequence of experiments, which iDAD utilizes to learn a deep policy network that53

amortizes the cost of experimental design for implicit models and can be run in milliseconds at54

deployment-time. To this end, we show how the InfoNCE [49] and NWJ [30] bounds, popularized in55

representation learning, can be applied to the policy-based experimental design setting.56

We also relax DAD’s requirement for experiments to be conditionally independent, allowing its57

application in complex settings like time series data, and through innovative architecture adaptations58

also provide improvements in the conditionally independent setting as well. This further expands the59

model space for policy-based BOED, and leads to additional performance improvements.60

Critically, iDAD forms the first method in the literature that can practically perform real-time adaptive61

BOED for implicit models: previous approaches are either not fast enough to run in real-time for62

non-trivial models, or require explicit likelihood models. We illustrate the applicability of iDAD on a63

range of experimental design problems, highlighting its benefits over existing baselines, even finding64

that it often outperforms costly non-amortized approaches.65

2 Background66

The BOED framework [26] begins by specifying a Bayesian model of the experimental process,67

consisting of a prior on the unknown parameters p(θ), a set of controllable designs ξ, and a data68

generating process that depends on them y|θ, ξ; as usual in BOED, we assume that p(θ) does not69

depend on ξ. In this paper, we consider the situation where y|θ, ξ is specified implicitly. This means70

that it is defined by a deterministic transformation f of a base (or noise) random variable ε which71

is independent of the parameter θ and the design ξ; most commonly ε ∼ N (ε; 0, I). The function72

f(ε; θ, ξ) is typically not known in closed form but implemented as a stochastic computer program73

(simulator) with input (θ, ξ) and random variables (random seed) ε. Even if this is not the case, the74

resulting induced likelihood density p(y|θ, ξ) is still generally intractable, but sampling is possible.75

Having acquired a design-observation pair (ξ, y), we can quantify the amount of information we have76

gained about θ by calculating the reduction in entropy from the prior to the posterior. We can further77

assess the quality of a design ξ before acquiring y by computing the expected reduction in entropy78

with respect to the marginal distribution of the outcomes, p(y|ξ) = Ep(θ)[p(y|θ, ξ)]. The resulting79

quantity I(ξ) is of central interest in BOED and is called the expected information gain (EIG),80

I(ξ) := Ep(θ)p(y|θ,ξ) [log(p(θ|ξ, y)/p(θ))] = Ep(θ)p(y|θ,ξ) [log(p(y|θ, ξ)/p(y|ξ))] , (1)

which is equivalent to the mutual information (MI) between the parameters θ and data y when perform-81

ing experiment ξ. The optimal ξ∗ is then the one that maximises the EIG, i.e. ξ∗ = arg maxξ I(ξ).82

Performing this optimization is a major computational challenge, since the information objective is83

doubly intractable [39]. For implicit models, the cost becomes even greater as the likelihood itself is84

also not available in closed form, such that estimating it, along with the marginal likelihood, for any85

fixed value of ξ is already a major computational problem [9, 15, 27, 47].86

Finding the ξ∗ that maximises the mutual information in (1) is called static experimental design. In87

practice, however, we are often more interested in performing multiple experiments adaptively in88

a sequence ξ1, . . . , ξT , so that the choice of each ξt can be guided by past experiments, namely the89

histories ht−1 := {(ξi, yi)}i=1:t−1 ∈ Ht−1. The typical approach in such settings is to sequentially90
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perform posterior inference followed by a one-step look ahead (myopic) BOED optimization. In91

other words, to determine the designs ξ1, . . . , ξT , we sequentially optimize the objectives92

Iht−1
(ξt) := Ep(θ|ht−1)p(yt|θ,ξ,ht−1) [log(p(yt|θ, ξ, ht−1)/p(yt|ξ, ht−1))] , t = 1, . . . , T. (2)

However, such approaches incur significant computational cost during the experiment itself, particu-93

larly for implicit models [12, 16, 24]. This has critical consequences: in most cases they cannot be94

run in real-time, undermining one’s ability to use them in practice.95

2.1 Policy-based adaptive design with likelihoods96

For tractable likelihood models, Foster et al. [13] proposed a new framework, called Deep Adaptive97

Design (DAD), for adaptive experimental design that avoids expensive computations during the98

experiment. To achieve this, they introduce a parameterized deterministic design function, or policy,99

πφ that takes the history ht−1 as input and returns the design ξt = πφ(ht−1) to be used for the next100

experiment as output. This set-up allows them to consider the objective101

IT (πφ) = Ep(θ)p(hT |θ,πφ)
[∑T

t=1
Iht−1

(ξt)

]
, ξt = πφ(ht−1), (3)

which crucially depends on the policy π rather than the individual design ξt. Learning a policy102

up-front, rather than designs, is what allows adaptive experiments to be performed in real-time.103

Under the assumption that yt is independent of ht−1 conditional on θ and the design ξt so that104

p(yt|θ, ξ, ht−1) = p(yt|θ, ξ), Foster et al. [13] showed that the objective can be simplified to105

IT (πφ) = Ep(θ)p(hT |θ,πφ)
[
log

p(hT |θ, πφ)

p(hT |πφ)

]
, p(hT |θ, πφ) =

∏T

t=1
p(yt|θ, ξt). (4)

To deal with the marginal p(hT |πφ) in the denominator, the authors then derived several optimizable106

lower bounds on IT (πφ), such as the sequential Prior Contrastive Estimation (sPCE) bound107

LsPCET (πφ, L) = Ep(θ0)p(hT |θ,πφ)p(θ1:L)

[
log

p(hT |θ0, πφ)
1

L+1

∑L
`=0 p(hT |θ`, πφ)

]
≤ IT (πφ) ∀L ≥ 1. (5)

The parameters of the policy φ, which takes the form of a deep neural network, are then learned108

prior to the experiment(s) using stochastic gradient ascent on this bound with simulated experimental109

histories. Design decisions can then be made using a single forward pass of πφ during deployment.110

Unfortunately, training the DAD network by optimizing (5) requires the likelihood density p(hT |θ, π)111

to be analytically available—an assumption that is too restrictive in many practical situations. The112

architecture for DAD is also based on assuming conditionally independent designs, which is unsuitable113

in some settings like time-series data. Our method lifts both of these restrictions.114

3 Implicit Deep Adaptive Design115

We have seen that the traditional step-by-step approach to adaptive design for implicit models116

[12, 16, 24] is too costly for quick deployment, whilst the existing policy-based approach makes117

overly restrictive assumptions that prevent it being applied to implicit models. We aim to relax the118

restrictive assumptions on policy-based BOED, making it applicable to all differentiable implicit119

models. This requires a new training objective for the design policy network that is not based on120

conditionally independent experiments and does not involve an explicit likelihood, along with new121

neural architectures that work for non-exchangeable models like time series.122

3.1 Information lower bounds for policy-based experimental design without likelihoods123

To establish a suitable likelihood-free training objective for the implicit setting, our high-level idea124

is to leverage recent advances in variational mutual information [see 35, for an overview], which125

have shown promise for static BOED [12, 22, 23]. While using these bounds in the traditional126

sequential BOED framework of (2) would not permit real-time experiments, one could consider127

a naive application of them to the policy objective of (3) by replacing each Iht−1
with a suitable128

variational lower bound that uses a ‘critic’Ut : Ht−1×Θ→ R to avoid explicit likelihood evaluations.129

An effective critic successfully encapsulates the true likelihood, tightening the bound. Although its130
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form depends on the choice of bound, critics are parametrized and trained in the same way, namely131

by a neural network Uφt which is optimized to tighten the bound. Unfortunately, replacing each Iht−1132

involves learning T such critic networks and requires samples from all posteriors p(θ|ht−1), which133

will typically be impractically costly.134

To avoid this issue, we show that we can obtain a unified information objective similar to (4), even135

without conditionally independent experiments. The following proposition therefore marks the first136

key milestone in eliminating the restrictive assumptions of [13], by establishing a unified objective137

without intermediate posteriors that is valid even when the model itself changes between time steps.138

Proposition 1 (Unified objective). Consider the data generating distribution p(hT |θ, π) =139 ∏
t=1:T p(yt|θ, ξt, ht−1), where ξt = π(ht−1) are the designs generated by the policy and, un-140

like in (4), yt is allowed to depend on the complete history ht−1. Then we can write (3) as141

IT (π) = Ep(θ)p(hT |θ,π) [log p(hT |θ, π)]− Ep(hT |π) [log p(hT |π)] . (6)

Proofs are presented in Appendix A. The advantage of (6) is that we can draw samples from142

p(θ)p(hT |θ, π) simply by sampling our model and taking forward passes through the design network.143

However, neither of the densities p(hT |θ, π) nor p(hT |π) are tractable for implicit models.144

To side-step this intractability, we observe that IT (π) takes an analogous form to a mutual information145

between θ and hT . For measure-theoretic reasons this is technically not correct because the ξ1:T146

are deterministic given y1:T (see Appendix A for a full discussion). However, the following two147

propositions show that we can treat IT (π) as if it were this mutual information. Specifically, we148

show that the InfoNCE [49] and NWJ [30] bounds on the mutual information can be adapted to149

establish tractable lower bounds on our unified objective IT (π). These two bounds both utilize a150

single auxiliary critic network Uψ which is trained simultaneously with the design network.151

Proposition 2 (NWJ bound for implicit policy-based BOED). For a design policy π and a critic152

function U : HT ×Θ→ R, let153

LNWJ
T (π, U) := Ep(θ)p(hT |θ,π) [U(hT , θ)]− e−1Ep(θ)p(hT |π) [exp(U(hT , θ))] . (7)

Then IT (π) ≥ LNWJ
T (π, U) holds for any U . Further, the inequality is tight for the optimal critic154

U∗(hT , θ) = log p(hT |θ, π)− log p(hT |π) + 1.155

Proposition 3 (InfoNCE bound for implicit policy-based BOED). Let θ1:L ∼ p(θ1:L)=
∏
i p(θi) be156

a set of contrastive samples where L ≥ 1. For design policy π and critic function U :HT×Θ→R, let157

LNCET (π, U ;L) := Ep(θ0)p(hT |θ0,π)Ep(θ1:L)

[
log

exp(U(hT , θ0))
1

L+1

∑L
i=0 exp(U(hT , θi))

]
. (8)

Then IT (π) ≥ LNCET (π, U ;L) for any U and L ≥ 1. Further, the inequality is tight in the limit as158

L → ∞ for the optimal critic U∗(hT , θ) = log p(hT |θ, π) + c(hT ), where c(hT ) is an arbitrary159

function depending only on the history. The optimal critic recovers the sPCE bound in (5).160

We propose these two alternative bounds due to their complementary properties: the NWJ bound161

can have large variance, but tends to be less biased (note LNCET ≤ log(L + 1) [35]). While162

the NWJ critic must learn to self-normalize, the InfoNCE bound avoids this issue but is still not163

tight even when the optimal critic is found (for finite L). Consequently, only the NWJ objective164

recovers the true optimal policy, i.e. π∗ = arg maxπ maxU LNWJ
T (π, U) which does not equal165

arg maxπ maxU LNCET (π, U ;L) in general. We provide further discussion in Appendix B.166

In practice, we represent both the policy π and the critic U as neural networks, πφ and Uψ respectively,167

so that the lower bounds become a function L(πφ, Uψ) of their parameters. By optimizing L(πφ, Uψ)168

with respect to φ we improve the quality of the designs proposed by the design network, while169

optimizing ψ ensures that the bound becomes tighter, therefore resulting in more accurate estimates170

of the mutual information. Simultaneous optimization of φ and ψ, as discussed in the next section,171

therefore leads to a design network that can choose high-quality designs.172

The propositions also show that an estimate of the likelihood function can be extracted from the final173

trained critic Uψ∗ for a fixed history hT of real data. We can use this to compute an approximate174

posterior over θ given the collected real data in the designed experiment. This means that we can175

perform likelihood-free inference after training the critic, which importantly extends previous results176

[22, 23] from the static to the adaptive policy-based experimental design setting.177
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Algorithm 1: Implicit Deep Adaptive Design with (iDAD)
Input: Differentiable simulator f , prior p(θ), number of experimental steps T
Output: Design network πφ, critic network Uψ
while Computational training budget not exceeded do

Sample θ ∼ p(θ) and set h0 = ∅
for t = 1, ..., T do

Compute ξt = πφ(ht−1)
Sample εt ∼ p(ε) and compute yt = f(εt; ξt, θ, ht−1)
Set ht = {(ξ1, y1), ..., (ξt, yt)}

end
Estimate∇φ,ψLT (πφ, Uψ) as per (10) where LT (πφ, Uψ) is either NWJ (7), or InfoNCE (8)
Update the parameters (φ, ψ) using stochastic gradient ascent scheme

end
For deployment, use the deterministic trained design network πφ to obtain a designs ξt directly.

To use these bounds in practice, two key challenges remain. First, we must set up a scheme to178

optimize our chosen lower bound with respect to φ, ψ using stochastic optimization methods [20, 42].179

Second, we must choose a suitable neural architecture for the critic Uψ and the design network πφ.180

3.2 Gradient estimation181

To optimize these bounds using stochastic gradients, we must account for the fact that the parameter182

φ affects the probability distributions with respect to which expectations are taken. We deal with this183

problem by utilizing the reparametrization trick [28, 41], for which we assume that design space Ξ184

and observation space Y are continuous. To this end, we first formalize the notion of a differentiable185

implicit model in the adaptive design setting as186

yt = f(εt; ξt(ht−1), θ, ht−1), where θ ∼ p(θ), εt ∼ p(ε) ∀t ∈ {1, . . . , T} (9)

and we assume that we can compute the derivatives ∂f/∂ξ and ∂f/∂h. Interestingly, it is possible to187

use an implicit prior without access to the density p(θ), and we do not need access to ∂f/∂θ.188

Under these conditions, we can express the bounds in terms of expectations that do not depend on φ189

or ψ, and hence move the gradient operator inside. For LNCET (πφ, Uψ;L), for example, we have190

∇φ,ψLNCET = Ep(θ0:L)p(ε1:T )

[
∇φ,ψ log

exp(Uψ(hT (ε1:T , πφ), θ0))
1

L+1

∑L
i=0 exp(Uψ(hT (ε1:T , πφ), θi))

]
. (10)

While each element of the history hT depends on φ in a possibly nested manner, we do not need to191

explicitly keep track of these dependencies thanks to automatic differentiation [3, 34].192

Like DAD, our new method—which we call implicit Deep Adaptive Design (iDAD)—is trained with193

simulated histories hT = {(ξi, yi)}i=1:T prior to the actual experiment, allowing design decision to194

be made using a single forward pass during deployment. Unlike DAD, however, it does not require195

knowledge of the likelihood function, nor the assumption of conditionally independent designs, which196

significantly broadens its applicability. A summary of the iDAD approach is given in Algorithm 1.197

3.3 Network architectures198

Having established that policy-based BOED with implicit models is possible to do with a single199

critic network Uψ, it is essential to choose its architecture carefully as that will not only facilitate200

training, but also help achieve tighter bounds which will in turn lead to better designs. The critic201

network, unlike the design policy, takes two inputs—a complete history hT and a parameter θ, which202

belong to different spaces and typically have very different dimensions. To deal with this, we first203

represent the inputs hT and θ as vectors in Rd, using two encoder networks Eψh and Eψθ , which,204

once trained, correspond to approximate sufficient statistics [7]. We then define our critic to be the205

dot product between the two vector representations, Uψ(hT , θ) = Eψh(hT )>Eψθ (θ), corresponding206

to a separable critic architecture typically used in the representation learning literature [2, 6, 49].207

Rather than encoding the entire history hT immediately, we first encode individual design–208

outcome pairs with a network Eψ0
and then concatenate the encodings into a vector Rcat(hT ) =209
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(Eψ0(ξ1, y1), . . . , Eψ0(ξT , yT )). This is then passed through final fully connected head layers, Hψ1 .210

Our history encoder is therefore Eψh = Hψ1(Rcat(hT )). This generic architecture does not assume211

conditional independence of the data and is applicable to all models we consider. However, as the212

following proposition shows, when conditional independence does hold, the critic is still invariant to213

the order of the history—something which can be utilized to construct more efficient architectures.214

Proposition 4 (Permutation invariance). Let U : HT × Θ → R be a critic and let σ be a permu-215

tation acting on a history h1T yielding h2T = {(ξσ(i), yσ(i))}Ti=1. If the data generating process is216

conditionally independent of its past, then the critic is invariant under permutations of the history, i.e.217

p(θ)
∏T

t=1
p(yt|θ, ξt(ht−1), ht−1) = p(θ)

∏T

t=1
p(yt|θ, ξt) =⇒ U(h1T , θ) = U(h2T , θ). (11)

Attention to history. We propose utilizing a more advanced permutation invariant lower level218

architecture based on self-attention [51]—a popular deep learning module [10, 19, 32, 40]. Namely,219

we incorporate self-attention mechanisms, inspired by the Image Transformer of [33] in both the220

design and critic networks. As we show later, this provides notable further empirical gains.221

Design network for non-exchangeable data. The proposed design network architecture in [13] is222

based on pooling [53], and requires conditional independence. The concatenation approach described223

above is also not appropriate for the design network, since the πφ takes intermediate histories224

ht as input. To ensure the inputs are of equal length, we use zero-padding so that Rcat(ht) =225

(Eφ0
(ξ1, y1), . . . , Eφ0

(ξt, yt), 0 . . . , 0). We note that the design–outcome encoder can be shared226

between the critic and the design network, i.e. setting Eψ0
= Eφ0

, which can bring further efficiency.227

4 Related work228

Adaptive policy-based BOED has only recently been introduced [13] and has not yet been extended229

to implicit models—the gap that this work addresses. Previous approaches to adaptive experiments230

usually follow the two-step greedy procedure described in Section 2. Methods for MI/EIG estimation231

without likelihoods include the use of variational bounds [11, 12, 22] and ratio estimation [21, 24];232

approximate Bayesian computation together with kernel density estimation [36]; and approximating233

the intractable likelihood first, for example via polynomial chaos expansion [18], followed by234

applying likelihood-based estimators, such as nested Monte Carlo [39]. The maximization step235

in more traditional methods tends to rely on gradient-free optimization, including grid-search,236

evolutionary algorithms [37], Bayesian optimization [11, 24], or Gaussian process surrogates [31].237

More recently, gradient-based approaches have been introduced [11, 22], some of which allow the238

estimation and optimization simultaneously in a single stochastic-gradient scheme [12, 17, 23].239

From a posterior estimation perspective, likelihood-free inference can be performed via approximate240

Bayesian computation [27, 47], ratio estimation [48], conventional MCMC for methods that make241

tractable approximation to the likelihood [17, 18], or as a byproduct of MI estimation [12, 21, 23, 24].242

5 Experiments243 Table 1: Key properties of considered methods
Adaptive Real-time Implicit

Random 7 N/A 3
Equal interval 7 N/A 3
MINEBED 7 N/A 3
SG-BOED 7 N/A 3
Variational 3 7 3
DAD 3 3 7
iDAD 3 3 3

We evaluate the performance of iDAD on a num-244

ber of real-world experimental design problems245

and a range of baselines (summarized in Ta-246

ble 1). Since we aim to perform adaptive exper-247

iments in real-time, we focus mostly on base-248

lines that do not require significant computa-249

tional time during the experiment. These in-250

clude heuristic approaches that require no train-251

ing, namely equal interval designs (when possible) and random designs, as well as static BOED252

approaches. The latter are also non-adaptive strategies, which learn a set of designs ξ1, ..., ξT prior to253

the experiment by optimising the mutual information objective of Equation (1). The static BOED254

approaches we consider are the MINEBED method of [22] and the likelihood-free ACE approach of255

[12], where we use the prior as a proposal distribution, referring to this baseline as SG-BOED. We256

also implement the expensive traditional non-amortized myopic strategy described in Section 2, for257

which we use the mean-field variational posterior estimator of [11] at each experiment step. Finally,258

where possible, we compare our method with DAD [13], in order to assess the performance gap259

that would arise if we had an analytic likelihood. This comparison is done primarily for evaluation260
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Table 2: Upper and lower bounds on the total information, I10(π), for the location finding experiment
in Section 5.1. The bounds were estimated using L = 5× 105 contrastive samples. Errors indicate
±1 s.e. estimated over 4096 histories (128 for variational). Deployment time was measured on a
CPU (GPU for variational) and errors were calculated on the basis of 10 runs.

Method Lower bound Upper bound Deployment time (sec.)

Random 4.7914 ± 0.0403 4.7941 ± 0.0405 N/A
MINEBED 5.5183 ± 0.0283 5.5217 ± 0.0284 N/A
SG-BOED 5.5466 ± 0.0280 5.5490 ± 0.0281 N/A
Variational 4.6385 ± 0.1440 4.6438 ± 0.1456 758.4 ± 1%
iDAD (NWJ) 7.6942 ± 0.0448 7.8061 ± 0.0495 0.0167 ± 2%
iDAD (InfoNCE) 7.7500 ± 0.0386 7.8631 ± 0.0425 0.0168 ± 2%

DAD 7.9669 ± 0.0342 8.0335 ± 0.0375 0.0070 ± 6%

purposes—as it has access to the likelihood density DAD serves as an upper bound on the performance261

iDAD can achieve; one should use explicit likelihood methods whenever possible.262

The main performance metric that we focus on is the total EIG, IT (π), as given in (4). In cases263

where the likelihood is available we estimate the total EIG using the sPCE lower bound in (5) and264

its corresponding upper bound, the sequential Nested Monte Carlo bound [sNMC; 13]. To ensure265

that the bounds are tight, we evaluate them with a large number of contrastive samples, i.e. L ≥ 105.266

Where the likelihood is truly intractable, we assess the iDAD strategy in a more qualitative manner,267

by looking at the optimal designs and approximate posteriors.268

For the adaptive experiments, we further consider the deployment time (i.e. the time required to269

propose a design), which is a critical metric for our aims. All deployment times exclude the time270

needed to determine the first experiment as that can be computed up-front, during the training phase.271

We implement iDAD by extending PyTorch [34] and Pyro [4] to provide an implementation that272

is abstracted from the specific probabilistic model. Code is provided in the Supplement and full273

experiment details are given in Appendix C.274

5.1 Location Finding in 2D275

We first demonstrate our approach on the location finding experiment from [13]. Inspired by the276

acoustic energy attenuation model of Sheng and Hu [46], this experiment involves finding the277

locations of multiple hidden sources, each emitting a signal with intensity that decreases according to278

the inverse-square law. The total intensity—a superposition of these signals—is measured with noise.279

The design problem is choosing where to measure the total signal in order to uncover the sources.280

We train iDAD networks to perform T = 10 experiments to locate 2 sources (see Appendix C.3281

for additional results). We incorporate attention mechanisms in both the design and the critic282

networks. Table 2 shows the performance of each method. We can see that iDAD has a very small283

performance gap to DAD and substantially outperforms all baselines, including, perhaps surprisingly,284

the traditional (non-amortized) adaptive variational approach, despite its large computational budget.285

The particularly poor performance of the variational approach is likely driven by the inability of286

the mean-field variational family to capture the highly non-Gaussian true posterior, highlighting287

the detrimental effect wrong posteriors can have on determining optimal designs in the traditional288

sequential BOED setting. Overall, this experiment demonstrates that iDAD is able to learn near-289

optimal amortized design policies without likelihoods and can be run in milliseconds at deployment.290

Ablation: attention to history. We next assess the benefit of utilizing our more sophisticated291

permutation invariant architectures, compared to the simple pooling of [53] used in [13]. Our292

approach incorporates attention layers into both networks that we train. This leads us to four293

possible combinations of network architectures. Table 3 compares the efficacy of the resulting design294

policies and strongly suggests that incorporating attention mechanisms in either and/or both networks295

improves performance, with inclusion in the design network particularly important.296

5.2 Pharmacokinetic model297

Our next experiment is taken from the pharmacokinetics literature and has been studied in other298

recent works on BOED for implicit models [22, 54]. Specifically, we consider the compartmental299

7



Table 3: Lower and upper bounds on mutual information I10(π) for different network architectures
on location finding experiment using the InfoNCE bound. All estimates obtained as in Table 2.

Design Critic Lower bound Upper bound

Attention Attention 7.7500 ± 0.0386 7.8631 ± 0.0425
Attention Pooling 7.5670 ± 0.0366 7.6317 ± 0.0386
Pooling Attention 7.3981 ± 0.0398 7.4701 ± 0.0424
Pooling Pooling 7.1346 ± 0.0374 7.1921 ± 0.0405
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Figure 1: Plots for pharmacokinetics experiment. a) Visualisation of model showing concentration
level as a function of measurement time for 3 values of θ, resulting in a quick (θq), average (θa),
or slow (θs) trajectory. b) Designs selected by an iDAD policy trained with InfoNCE. c) Mutual
information lower bounds achieved by iDAD and baselines. All estimates obtained as in Table 2.

model of [43], for which the distribution of an administered drug through the body is governed by300

three parameters: absorption rate kα, elimination rate ke and volume V , which form the parameters of301

interest, i.e. θ = (kα, ke, V ). Given T = 5 patients, the design problem is to adaptively choose blood302

sampling times, 0 ≤ ξt ≤ 24 hours, for each, measured from the the point the drug was administered303

(with patient 2 not being administered until after sampling patient 1 etc). Plausible concentration304

trajectories are shown in Figure 1a). Full details and further results are given in Appendix C.4.305

We first qualitatively consider the design policy of iDAD (trained with the InfoNCE objective) in306

Figure 1b). As we have not yet observed any data, the optimal design for the first patient (bottom row)307

is the same for all θ. For the second patient, only guided by ξ1 and the outcome y1, iDAD is already308

able to distinguish between quickly and slowly decaying concentration trajectories: it proposes a309

significantly earlier measurement time for the quickly decaying trajectory (purple triangle, θq) and310

later time for the slowly decaying one (yellow diamond, θs). For the third patient, iDAD always311

targets the peak of the drug concentration distribution which is quite similar for all θ. Measurements312

for the last two patients are made soon after the drug has been administered (∼ 15− 30 min), when313

concentration levels increase rapidly, to capture information about how quickly the drug is absorbed.314
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Figure 2: Convergence of mu-
tual information lower bounds.

To provide more quantitative assessment and compare to our base-315

lines, we again consider the final EIG values as shown in Fig-316

ure 1c). This reveals that the iDAD strategies perform best among317

the methods that are applicable to implicit models, confirming that318

the learnt policies propose superior designs. The performance gap319

to DAD, which relies on explicit likelihoods, is not statistically320

significant (at the 5% level) for iDAD trained with InfoNCE, while321

significant, but still small, for NWJ.322

Finally, we consider the convergence of the iDAD networks under323

different training objective and compare to DAD for reference. As324

shown in Figure 2, although all three converge to approximately325

the same value, they do so at rather different speeds: while DAD326

requires about 5000 gradient updates, implicit methods need longer327

training and tend to exhibit higher variance, particularly NWJ.328

5.3 SIR Model329

In this experiment we demonstrate our approach on an implicit model from epidemiology. Namely, we330

consider a formulation of the stochastic SIR model [8] that is based on stochastic differential equations331
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Figure 3: a) Epidemic trajectories for 3 realization of (β, γ) with different reproduction numbers
R = β/γ. b) Designs selected by an iDAD policy trained with NWJ. c) Example posterior estimates
from the critic network given data generated with the ground-truth parameters shown by the red cross.

(SDEs), as done by [23]. Here, individuals in a fixed population can move from a susceptible state332

S(τ) to an infected state I(τ), after which they can move to a recovered state R(τ). The dynamics333

of these two events are governed by two model parameters, the infection rate β and the recovery334

rate γ, which we wish to estimate. Our aim is to determine the optimal measurement times at335

which to measure the state populations, in particular the number of infected I(τ). This implicit336

model is challenging because data simulation is expensive, since we need to solve many SDEs, and337

experimental designs have a time-dependency. See Appendix C.5 for full details.338

Table 4: MI lower bounds (±1 s.e.).
Method Lower bound
Random 1.9049 ± 0.0317
Equal interval 2.8670 ± 0.0031
MINEBED 3.0058 ± 0.0030
iDAD (NWJ) 3.0429 ± 0.0024

We here perform T = 5 experiments and train iDAD with339

the NWJ bound as done previously. Results for InfoNCE340

are discussed in the Appendix. We compare our iDAD341

approach to random designs, equidistant designs, and the342

static MINEBED approach (DAD cannot be run because343

the problem corresponds to a true implicit model). This344

yields the lower bound estimates presented in Table 4,345

which show that iDAD outperforms all compared meth-346

ods, though it should be noted that these results are also influenced by the biases in the estimation347

process that are difficult to avoid because the model is implicit. In general though, iDAD should be348

more adversely effected by this bias than the baselines, see the Appendix C.5 for discussion.349

Figure 3 further summarizes important qualitative results for this model. Figure 3a) shows different350

epidemic trajectories, i.e. number of infected I(τ), as a function of measurement time τ . Figure 3b)351

shows the learned iDAD policy for the same three underlying true parameters considered in Figure 3a).352

Importantly, diseases with a significantly different profile, e.g. a slow or a fast spread, result in different353

sets of optimal designs, highlighting the adaptivity of iDAD. Finally, Figure 3c) shows an example354

posterior distribution estimate from the learnt iDAD critic network, which we see is consistent with355

the ground truth parameters.356

6 Discussion357

Limitations. The benefit that iDAD can be used in live experiments comes at the cost of substantial358

pre-training which can be computationally expensive. This though is mitigated by its amortization359

of the adaptive design process, such that only one network needs training even if we have multiple360

experiment instances. The cost–performance trade–off can also be directly controlled by judicious361

choices of architecture. Another natural limitation is that the use of gradients naturally restricts the362

approach to continuous design settings, something which future work might look to address.363

Conclusions. In this paper we introduced iDAD—the first policy-based adaptive BOED method that364

can be applied to implicit models. By training a design network without likelihoods upfront, iDAD is365

also the first method that allows real-time adaptive experiments for simulator-based models. In our366

experiments iDAD performed significantly better than all likelihood-free baselines. Further, in models367

where the likelihood is available, it was able to almost match likelihood-based adaptive approaches,368

which act as an upper bound on what can be achieved by an implicit method. In conclusion, we369

believe iDAD marks a step change in Bayesian experimental design for implicit models, allowing370

designs to be proposed quickly, adaptively, and non-myopically during the live experiment.371
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