
Under review as a conference paper at ICLR 2023

BACKPROPAGATION THROUGH COMBINATORIAL
ALGORITHMS: IDENTITY WITH PROJECTION WORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Embedding discrete solvers as differentiable layers has given modern deep learning
architectures combinatorial expressivity and discrete reasoning capabilities. The
derivative of these solvers is zero or undefined, therefore a meaningful replacement
is crucial for effective gradient-based learning. Prior works rely on smoothing
the solver with input perturbations, relaxing the solver to continuous problems, or
interpolating the loss landscape with techniques that typically require additional
solver calls, introduce extra hyper-parameters, or compromise performance. We
propose a principled approach to exploit the geometry of the discrete solution space
to treat the solver as a negative identity on the backward pass and further provide a
theoretical justification. Our experiments demonstrate that such a straightforward
hyper-parameter-free approach is able to compete with previous more complex
methods on numerous experiments such as backpropagation through discrete sam-
plers, deep graph matching, and image retrieval. Furthermore, we substitute the
previously proposed problem-specific and label-dependent margin with a generic
regularization procedure that prevents cost collapse and increases robustness.

1 INTRODUCTION

Deep neural networks have achieved astonishing results in solving problems on raw inputs. However,
in key domains such as planning or reasoning, deep networks need to make discrete decisions, which
can be naturally formulated via constrained combinatorial optimization problems. In many settings—
including shortest path finding (Vlastelica et al., 2020; Berthet et al., 2020), optimizing rank-based
objective functions (Rolínek et al., 2020a), keypoint MATCHING (Rolínek et al., 2020b; Paulus et al.,
2021), Sudoku solving (Amos and Kolter, 2017; Wang et al., 2019), solving the knapsack problem
from sentence descriptions (Paulus et al., 2021)—neural models that embed optimization modules as
part of their layers achieve improved performance, data-efficiency, and generalization (Vlastelica
et al., 2020; Amos and Kolter, 2017; Ferber et al., 2020; P. et al., 2021).

This paper explores the end-to-end training of deep neural network models with embedded discrete
combinatorial algorithms (solvers, for short) and derives simple and efficient gradient estimators
for these architectures. Deriving an informative gradient through the solver constitutes the main
challenge, since the true gradient is, due to the discreteness, zero almost everywhere. Most notably,
Blackbox Backpropagation (BB) by Vlastelica et al. (2020) introduces a simple method that yields an
informative gradient by applying an informed perturbation to the solver input and calling the solver
one additional time. This results in a gradient of an implicit piecewise-linear loss interpolation, whose
locality is controlled by a hyperparameter.

We propose a fundamentally different strategy by dropping the constraints on the solver solutions and
simply propagating the incoming gradient through the solver, effectively treating the discrete block
as a negative identity on the backward pass. While our gradient replacement is simple and cheap
to compute, it comes with important considerations, as its naïve application can result in unstable
learning behavior, as described in the following.

Our considerations are focused on invariances of typical combinatorial problems under specific
transformations of the cost vector. These transformations usually manifest as projections or nor-
malizations, e.g. as an immediate consequence of the linearity of the objective, the combinatorial
solver is agnostic to normalization of the cost vector. Such invariances, if unattended, can hinder fast
convergence when used in combination with adaptive optimizers, or can result in divergence and

1

Under review as a conference paper at ICLR 2023

Input

neural net layers Blackbox combinatorial solver

learned

representation
Loss

solver

output

neural net layers
(optional)

negative identity

p
ro

je
ct

io
n

Figure 1: Hybrid architecture with blackbox combinatorial solver and Identity module (green dotted
line) with the projection of a cost ω and negative identity on the backward pass.

cost collapse (Rolínek et al., 2020a). We propose to exploit the knowledge of such invariances by
including the respective transformations in the computation graph. On the forward pass this leaves
the solution unchanged, but on the backward pass removes the malicious part of the update. We
also provide an intuitive view on this as differentiating through a relaxation of the solver. In our
experiments, we show that this technique is crucial to the success of our proposed method.

In addition, we improve the robustness of our method by adding noise to the cost vector, which
induces a margin on the learned solutions and thereby subsumes previously proposed ground-truth-
informed margins (Rolínek et al., 2020a). With these considerations taken into account, our simple
method achieves strong empirical performance. Moreover, it avoids a costly call to the solver on the
backward pass and does not introduce additional hyperparameters in contrast to previous methods.

Our contributions can be summarized as follows:

(i) A hyperparameter-free method for linear-cost solver differentiation that does not require any
additional calls to the solver on the backward pass.

(ii) Exploiting invariances via cost projections tailored to the combinatorial problem.
(iii) Increasing robustness and preventing cost collapse by replacing the previously proposed in-

formed margin with a noise perturbation.
(iv) Analysis of the robustness of differentiation methods to perturbations during training.

2 RELATED WORK

Optimizers as Model Building Blocks. It has been shown in various application domains that
optimization on prediction is beneficial for model performance and generalization. One such area is
meta-learning, where methods backpropagate through multiple steps of gradient descent for few-shot
adaptation in a multi-task setting (Finn et al., 2017; Raghu et al., 2020). Along these lines, algorithms
that effectively embed more general optimizers into differentiable architectures have been proposed
such as convex optimization (Agrawal et al., 2019a; Lee et al., 2019), quadratic programs (Amos and
Kolter, 2017), conic optimization layers (Agrawal et al., 2019b), and more.

Combinatorial Solver Differentiation. Many important problems require discrete decisions and
hence, using combinatorial solvers as layers have sparked research interest (Domke, 2012; Elmach-
toub and Grigas, 2022). Methods, such as SPO (Elmachtoub and Grigas, 2022) and MIPaaL Ferber
et al. (2020), assume access to true target costs, a scenario we are not considering. Berthet et al.
(2020) differentiate through discrete solvers by sample-based smoothing. Blackbox Backpropagation
(BB) by Vlastelica et al. (2020) returns the gradient of an implicitly constructed piecewise-linear in-
terpolation. Modified instances of this approach have been applied in various settings such as ranking
(Rolínek et al., 2020a), keypoint matching (Rolínek et al., 2020b), and imitation learning (Vlastelica
et al., 2020). I-MLE by Niepert et al. (2021) adds noise to the solver to model a discrete probability
distribution and uses the BB update to compute informative gradients. Previous works have also
considered adding a regularization to the linear program, including differentiable top-k-selection
(Amos et al., 2019) and differentiable ranking and sorting (Blondel et al., 2020). Another common
approach is to differentiate a softened solver, for instance in (Wilder et al., 2019) or (Wang et al.,
2019) for MAXSAT. Finally, Paulus et al. (2021) extend approaches for learning the cost coefficients
to learning also the constraints of integer linear programs.

2

Under review as a conference paper at ICLR 2023

Learning to Solve Combinatorial Problems. An orthogonal line of work to ours is differentiable
learning of combinatorial algorithms or their improvement by data-driven methods. Examples of
such algorithms include learning branching strategies for MIPs (Balcan et al., 2018; Khalil et al.,
2016; Alvarez et al., 2017), learning to solve SMT formulas (Balunovic et al., 2018), and learning to
solve linear programs (Mandi and Guns, 2020; Tan et al., 2020). A natural way of dealing with the
lack of gradient information in combinatorial problems is reinforcement learning which is prevalent
among these methods (Khalil et al., 2016; Bello et al., 2017; Nazari et al., 2018; Zhang and Dietterich,
2000). Further progress has been made in applying graph neural networks for learning classical
programming algorithms (Velickovic et al., 2018; 2020) and latent value iteration (Deac et al., 2020).
Further work in this direction can be found in the review Li et al. (2021). Another interesting related
area of work is program synthesis, or “learning to program” (Ellis et al., 2018; Inala et al., 2020).

3 METHOD

We consider architectures that contain differentiable blocks, such as neural network layers, and
combinatorial blocks, as sketched in Fig. 1. In this work, a combinatorial block uses an algorithm
(called solver) to solve an optimization problem of the form

y(ω) = arg min
y∈Y

〈ω, y〉, (1)

where ω ∈ W ⊆ Rn is the cost vector produced by a previous block, Y ⊂ Rn is any finite set of
possible solutions and y(ω) ∈ Y is the solver’s output. Without loss of generality, Y consists only
of extremal points of its convex hull, as no other point can be a solution of optimization (1). This
formulation covers linear programs as well as integer linear programs.

3.1 DIFFERENTIATING THROUGH COMBINATORIAL SOLVERS

We consider the case in which the solver is embedded inside the neural network, meaning that the
costs ω are predicted by a backbone, the solver is called, and the solution y(ω) is post-processed
before the final loss ` is computed. For instance, this is the case when a specific choice of loss is
crucial, or the solver is followed by additional learnable components.

We aim to train the entire architecture end-to-end, which requires computing gradients in a layer-wise
manner during backpropagation. However, the true derivative of the solver y(ω) is either zero or
undefined, as the relation between the optimal solution y(ω) and the cost vector ω is piecewise
constant. Thus, it is crucial to contrive a meaningful replacement for the true zero jacobian of the
combinatorial block. See Fig. 1 for an illustration.

3.2 IDENTITY UPDATE: INTUITION IN SIMPLE CASE

On the backward pass, the negated incoming gradient −d`/dy gives us the local information of
where we expect solver solutions with a lower loss. We first consider the simple scenario in which
−d`/dy points directly toward another solution y∗, referred to as the “target”. This means that there
is some η > 0 such that −η d`

dy = y∗ − y(ω). This happens, for instance, if the final layer coincides
with the `2 loss (then η = 1/2), or for `1 loss with Y being a subset of {0, 1}n (then η = 1).

Our aim is to update ω in a manner which decreases the objective value associated with y∗, i.e.
〈ω, y∗〉, and increases the objective value associated with the current solution y(ω), i.e. 〈ω, y(ω)〉.
Therefore, y∗ will be favoured over y(ω) as the solution in the updated optimization problem. This
motivates us to set the replacement for the true zero gradient d`/dω to

d
dω 〈ω, y

∗ − y(ω)〉 = y∗ − y(ω) = −η d`
dy . (2)

The scaling factor η is subsumed into the learning rate, therefore we propose the update

∆Iω = − d`
dy . (3)

This corresponds to simply treating the solver as a negated identity on the backward pass, hence we
call our method “Identity”. An illustration of how the repeated application of this update leads to the
correct solution is provided in Figures 2a and 2b.

3

Under review as a conference paper at ICLR 2023

(a) Id update to neighboring solution (b) Id update to final solution (c) BB update (identical for some λ)

Figure 2: Intuitive illustration of the Identity (Id) gradient and its equivalence to Blackbox Backprop-
agation (BB) when −d`/dy points directly to a target y∗. The cost and solution spaces are overlayed;
the cost space partitions resulting in the same solution are drawn in blue.

Comparison to Blackbox Backpropagation. To strengthen the intuition of why update (3) results
in a sensible update, we offer a comparison to BB by Vlastelica et al. (2020) that proposes an update

∆BBω =
1

λ

(
yλ(ω)− y(ω)

)
, (4)

where y(ω) is the solution from the forward pass and, on the backward pass, the solver is called again
on a perturbed cost to get yλ(ω) = y(ω + λd`/dy). Here, λ > 0 is a hyperparameter that controls
the locality of the implicit linear interpolation of the loss landscape.

Observe that yλ(ω) serves as a target for our current y(ω), similar to the role of y∗ in computation (2).
If λ in BB coincides with a steps size that Identity needs to reach the target y∗ with update ∆Iω, then

∆BBω =
1

λ

(
y
(
ω + λ d`

dy

)
− y(ω)

)
=

1

λ

(
y∗ − y(ω)

)
= −η

λ

d`

dy
=
η

λ
∆Iω. (5)

Therefore, if −d`/dy points directly toward a neighboring solution, the Identity update is equivalent
to the BB update with the smallest λ that results in a non-zero gradient in (4). This situation is
illustrated in Fig. 2c (cf. Fig. 2a). However, Identity does not require an additional call to the solver
on the backward pass, nor does it have an additional hyperparameter that needs to be tuned.

3.3 IDENTITY UPDATE: GENERAL CASE

We will now consider the general case, in which we do not expect the solver to find a better solution in
the direction ∆Iω = −d`/dy due to the constraints on Y . We show that if we ignore the constraints
on Y and simply apply the Identity method, we still achieve a sensible update.

Let ω = ω0 be a fixed initial cost. For a fixed step size α > 0, we iteratively update the cost using
Identity, i.e. we set ωk+1 = ωk − α∆Iωk for k ∈ N. We aim to show that performing these updates
leads to a solution with a lower loss. As gradient-based methods cannot distinguish between a
nonlinear loss ` and its linearization f(y) = `(y(ω)) + 〈y − y(ω),d`/dy〉 at the point y(ω), we can
safely work with f in our considerations. We desire to find solutions with lower linearized loss than
our current solution y(ω), i.e. points in the set

Y ∗
(
y(ω)

)
=
{
y ∈ Y : f(y) < f

(
y(ω)

)}
. (6)

Our result guarantees that a solution with a lower linearized loss is always found if one exists. The
proof is in Suppl. C.
Theorem 1. For sufficiently small α > 0, either Y ∗

(
y(ω)

)
is empty and y(ωk) = y(ω) for every

k ∈ N, or there is n ∈ N such that y(ωn) ∈ Y ∗
(
y(ω)

)
and y(ωk) = y(ω) for all k < n.

3.4 EXPLOITING SOLVER INVARIANTS

In practice, Identity can lead to problematic cost updates when the optimization problem is invariant
to a certain transformation of the cost vector ω. For instance, adding the same constant to every
component of ω will not affect its rank or top-k indices. Formally, this means that there exists a
mapping P : Rn → Rn of the cost vector ω that does not change the optimal solver solution, i.e.

arg miny∈Y 〈ω, y〉 = arg miny∈Y 〈P (ω), y〉 for every ω ∈W. (7)

4

Under review as a conference paper at ICLR 2023

Linear Transforms. Let us demonstrate why invariants can be problematic in a simplified case
assuming that P is linear. Consider an incoming gradient d`/dy, for which the Identity method
suggests the cost update ∆Iω = −d`/dy. We can uniquely decompose ∆Iω into ∆Iω = ∆Iω1 + ∆Iω0

where ∆Iω1 = P (∆Iω) ∈ ImP and ∆Iω0 = (I − P)∆Iω ∈ kerP . Now observe that only the
parallel update ∆Iω1 affects the updated optimization problem, as

arg min
y∈Y

〈ω − α∆Iω, y〉 = arg min
y∈Y

〈P (ω − α∆Iω), y〉

= arg min
y∈Y

〈P (ω − α∆Iω1), y〉 = arg min
y∈Y

〈ω − α∆Iω1, y〉
(8)

for every ω ∈W and for any step size α > 0. In the second equality, we used

P (ω − α∆Iω) = P (ω − α∆Iω1)− αP (∆Iω0) = P (ω − α∆Iω1), (9)

exploiting linearity and idempotency of P .

In the case when a user has no control about the incoming gradient ∆Iω = −d`/dy, the update ∆Iω0

in kerP can be much larger in magnitude than ∆Iω1 in ImP . In theory, this is not very problematic,
as updates in kerP do not affect the optimization problem. However, in practice, these irrelevant
updates can lead to explosion of the cost vector as well as problems with adaptive optimizers, which
will take into account the irrelevant updates to adjust the learning rate and hence slow down the
convergence.

Therefore, it is desirable to discard the irrelevant part of the update. Consequently, for a given
incoming gradient d`/dy, we remove the irrelevant part (kerP) and return only its projected part

∆Iω1 = −P d`
dy . (10)

Nonlinear Transforms. For a nonlinear P , we replace P (ω − α∆Iω) in the above-mentioned
considerations by its affine approximation P (ω)− αP ′(ω)∆Iω. Now, the term P ′(ω) plays the role
of the linear projection. Equalities in (8) then hold as well for all α sufficiently small instead of
globally. Consistently with the linear case, we return a projected gradient

− P ′(ω) d`
dy (11)

for a given ω and an incoming gradient d`/dy. Note that for linear P , we have P ′(ω) = P and hence
gradient (11) generalizes update (10).

Another view on invariant transforms is the following. Consider our combinatorial layer as a
composition of two sublayers. First, given ω, we simply perform the map P (ω) and then pass it to
the arg min solver. Clearly, on the forward pass the transform P does not affect the solution y(ω).
However, the derivative of the combinatorial layer is the composition of the derivatives of its sublayers,
i.e. P ′(ω) for the transform and negative identity for the arg min. Consequently, we get the very
same gradient (11) on the backward pass. In conclusion, enforcing guarantees on the forward pass by
a mapping P is in this sense dual to projecting gradients onto ImP ′.

Examples. In our experiments, we encounter two types of invariant mappings. The first one is
the standard projection onto a hyperplane. It is always applicable when all the solutions in Y are
contained in a hyperplane, i.e. there exists a unit vector a ∈ Rn and a scalar b ∈ R such that
〈a, y〉 = b for all y ∈ Y . Consider the projection of ω onto the subspace orthogonal to a given by
Pplane(ω|a) = ω − 〈a, ω〉a. This results in

arg min
y∈Y

〈Pplane(ω|a), y〉 = arg min
y∈Y

〈ω, y〉 − 〈a, ω〉b = arg min
y∈Y

〈ω, y〉 for every ω ∈W, (12)

thereby fulfilling assumption (7). This projection is relevant for the ranking and top-k experiment, in
which the solutions live on a hyperplane with the normal vector a = 1/

√
n. Therefore, the projection

Pmean(ω) = Pplane(ω|1) = ω − 〈1, ω〉
n

1 (13)

is applied on the forward pass which simply amounts to subtracting the mean from the cost vector.

The other invariant mapping arises from the stability of the arg min solution to the magnitude of
the cost vector. Due to this invariance, the projection onto the unit sphere Pnorm(ω) = ω/‖ω‖ also

5

Under review as a conference paper at ICLR 2023

fulfills assumption (7). As the invariance to the cost magnitude is independent of the solutions Y ,
normalization Pnorm is always applicable and we, therefore, test it in every experiment. Observe that

P ′norm(ω) =
(I

‖ω‖
− ω ⊗ ω
‖ω‖3

)
(14)

and the first order approximation of Pnorm corresponds to the projection onto the tangent hyperplane
given by a = ω and b = 1. When both Pnorm and Pmean are applicable, we speak about standardization
Pstd = Pnorm ◦ Pmean.

3.5 PROJECTION AS SOLVER RELAXATION

Very often the solution set Y is a subset of a sphere S = a+ bSn−1, for some a ∈ Rn, b > 0. This is
the case in all of our experiments, as both the binary hypercube and the permutahedron are subsets of
certain spheres. One possible approach to differentiating through combinatorial solvers is to use the
unmodified discrete solver on the forward pass but differentiate through a continuous relaxation on
the backward pass. If we choose the particular relaxation of replacing the constraints of the solver
with the spherical constraint, we can compute the solution in closed form as

y(ω) = arg min
y∈Y⊂S

〈ω, y〉 → y(ω) = arg min
y∈S

〈ω, y〉 = a− b ω

‖ω‖
. (15)

The jacobian of this relaxed solution matches that of the Identity with normalization up to a constant,
which can be incorporated into the learning rate. Therefore, we can interpret Identity with Pnorm as a
spherical relaxation of the solver on the backward pass. We can also make the relaxation tighter by
further restricting the spherical constraint, e.g. if the solutions additionally lie on a hyperplane H , we
relax the constraint set Y to S ∩H . This is the case of applying Pstd, providing further intuition on
the role of projections.

This view of Identity also opens potential theoretical comparisons to existing work on structured pre-
diction with projection oracles (Blondel, 2019), which uses relaxation of Y also on the forward pass.

3.6 PREVENTING COST COLLAPSE AND INDUCING MARGIN

Any arg min solver (1) is a piecewise constant mapping that induces a partitioning of the cost space
W into convex cones Wy = {ω ∈ W : y(ω) = y}, y ∈ Y , on which the solution does not change.
The backbone network attempts to suggest a cost ω ∈Wy that leads to a correct solution y. However,
if the predicted cost ω ∈ Wy lies close to the boundary of Wy, it is potentially sensitive to small
perturbations. The more partition sets {Wy1 , . . . ,Wyk} meet at a given boundary point ω, the more
brittle such a prediction ω is, since all the solutions {y1, . . . , yk} are attainable in any neighbourhood
of ω. For example, the zero cost ω = 0 is one of the most prominent points, as it belongs to the
boundary of all partition sets. However, the origin is not the only problematic point, for example in
the ranking problem, every point ω = λ1, λ > 0, is equally bad as the origin.

The goal is to achieve predictions that are far from the boundaries of these partition sets. For Y =
{0, 1}n, Rolínek et al. (2020a) propose modifying the cost to ω′ = ω + α

2 y
∗ − α

2 (1− y∗) before the
solver to induce an informed margin α. However, this requires access to the ground-truth solution y∗.

We propose to instead add a symmetric noise ξ ∼ p(ξ) to the predicted cost before feeding it to the
solver. Since all the partition sets’ boundaries have zero measure (as they are of a lower dimension),
this almost surely induces a margin from the boundary of the size E[|ξ|]. Indeed, if the cost is closer
to the boundary, the expected outcome will be influenced by the injected noise and incorrect solutions
will increase the expected loss giving an incentive to push the cost further away from the boundary.
In experiments, the noise is sampled uniformly from {−α2 ,

α
2 }

n, where α > 0 is a hyperparameter.

In principle, careful design of the projection map P from Sec. 3.4 can also prevent instabilities. This
would require that ImP avoids the boundaries of the partition sets, which is difficult to fully achieve
in practice. However, even reducing the size of the problematic set by a projection is beneficial. For
example, the normalization Pnorm avoids brittleness around the origin, and Pplane avoids instabilities
around every ω = λ1 for ranking. For the other—less significant, but still problematic—boundaries,
the noise injection still works in general without any knowledge about the structure of the solution set.

6

Under review as a conference paper at ICLR 2023

4 EXPERIMENTS

We present multiple experiments that show under which circumstances Identity achieves performance
that is on par with or better than competing methods. The experiments include backpropagating
through discrete sampling processes, differentiating through a quadratic assignment solver in deep
graph matching, optimizing for rank-based metrics in image retrieval, and a synthetic problem
including a traveling salesman solver.

4.1 BACKPROPAGATING THROUGH DISCRETE SAMPLERS

0 20 40 60 80 100

75

80

85
Identity

I-MLE

Figure 3: N-ELBO training progress on
the MNIST train-set (k = 10), compar-
ing I-MLE with Identity.

The sampling process of distributions of discrete random
variables can often be reparameterized approximately as
the solution to a noisy arg max optimization problem, see
e.g. Paulus et al. (2020). Sampling from the discrete prob-
ability distribution y ∼ p(y;ω) can then be formulated as

y = arg maxy∈Y 〈ω + ε, y〉 (16)

with appropriate noise distribution ε. Typically a Gumbel
distribution is used for ε, but in certain situations, other dis-
tributions may be more suitable, e.g. Niepert et al. (2021)
use a sum-of-gamma noise distribution to model a top-k
distribution on the solutions. Therefore, sampling fits our
general hybrid architecture as illustrated in Fig. 1.

Discrete Variational Auto-Encoder. In a discrete variational autoencoder (DVAE) (Rolfe, 2016),
the network layers before the sampling solver represent the encoder and the layers after the sampling
solver the decoder. We consider the task of training a DVAE on the MNIST dataset where the encoder
maps the input image to a discrete distribution of k-hot binary vector of length 20 in the latent space
and the decoder reconstructs the image.

The loss is the Negative Evidence Lower Bound (N-ELBO), which is computed as the sum of the
reconstruction losses (binary cross-entropy loss on output pixels) and the KL divergence between the
marginals of the discrete latent variables and the uniform distribution. We use the same setup and
hyperparameters as Jang et al. (2017) and Niepert et al. (2021), details can be found in Suppl. B.1.
Figure 3 shows a comparison of Identity to I-MLE (Niepert et al., 2021), which uses the BB update.
We observe that Identity (with standardization Pstd) achieves a significantly lower N-ELBO.

Table 1: Results for BeerAdvocate (Aroma). Pro-
jection is indispensable for Identity. Statistics over
10 restarts. Numbers of the baselines† are taken
from Niepert et al. (2021).

Test MSE ×100 ↓
Method k = 5 k = 10 k = 15

Id. (Pstd) 2.58± 0.13 2.62± 0.21 2.68± 0.23
Id. (no P) 4.75± 0.06 4.43± 0.09 4.20± 0.11
I-MLE† 2.62± 0.05 2.71± 0.10 2.91± 0.18
L2X† 5.75± 0.30 6.68± 1.08 7.71± 0.64
Softsub† 2.57± 0.12 2.67± 0.14 2.52± 0.07

Learning to Explain. We consider the Beer-
Advocate dataset (McAuley et al., 2012) that
consists of reviews of different aspects of beer:
appearance, aroma, taste, and palate and their
rating scores. The goal is to identify a subset
k of the words in the text that best explains a
given aspect rating (Chen et al., 2018; Sahoo
et al., 2021). We follow the experimental setup
of Niepert et al. (2021), details can be found in
Suppl. B.1. As in the DVAE experiment, the
problem is modeled as a k-hot binary latent rep-
resentation with k = 5, 10, 15. Identity also
uses the Pstd. We compare Identity against I-
MLE, L2X (Chen et al., 2018), and Softsub (Xie
and Ermon, 2019) in Tab. 1. Softsub is a relaxation-based method designed specifically for subset
sampling, in contrast to Identity and I-MLE which are generic. We observe that Identity outperforms
I-MLE and L2X, and is on par with Softsub for all k. Evaluating Identity without projection shows
that projection is indispensable in this experiment.

Straight-through vs. Identity. The Straight-through estimator (STE) (Bengio et al., 2013) can
be used to differentiate through samples drawn from a stochastic Bernoulli process. Although the

7

Under review as a conference paper at ICLR 2023

attentive reader may notice superficial similarities between STE and Identity, there are some important
differences, which we explain in detail in Suppl. A.

4.2 DEEP GRAPH MATCHING

Table 2: Matching accuracy for Deep
Graph Matching on Pascal VOC. Statistics
over 5 restarts. BB Identity

P margin α Matching accuracy ↑

–

– –

noise

0.01
0.1
1.0
10.0

informed

0.01
0.1
1.0
10.0

Pnorm

– –

noise

0.01
0.1
1.0
10.0

informed

0.01
0.1
1.0
10.0

65 70 75 80

Given a source and a target image showing an object
of the same class (eg. cat), each annotated with a set
of keypoints (e.g. right ear), the task is to match the
sets of keypoints from visual information without any
access to the true keypoint annotation. We follow the
standard experimental setup from Rolínek et al. (2020b),
in which the cost matrices are predicted by a neural net-
work from the visual information around the keypoints,
for details see Suppl. B.2. We report results for the two
benchmark datasets Pascal VOC (with Berkeley anno-
tations) (Everingham et al., 2010) and SPair-71k (Min
et al., 2019).

Table 2 lists the average matching accuracy across
classes. We see that the use of a margin is important
for the success of both evaluated methods, which is in
line with the results reported by Rolínek et al. (2020b).
We observe that the noise-induced margin achieves a
similar effect as the informed margin from Rolínek et al.
(2020b). Analogous results for SPair-71k are in the
Suppl. B.2.

Our results show that Identity without the projection
step yields performance that is on par with BB, while
Identity with the normalization step performs worse.
Such behaviour is not surprising. Since the Hamming
loss between the true and predicted matching is used for
training, the incoming gradient for the solver directly
points toward the desired solution, as discussed in 3.2.
Consequently, any projection step is rendered unnecessary, and possibly even harmful.

Interestingly, the evaluation of BB with normalization, a combination of methods that we only
evaluated for completeness, appears to produce results that slightly outperform the standard BB.

4.3 OPTIMIZING RANK BASED METRICS – IMAGE RETRIEVAL

Table 3: Recall r@1 for CUB-
200-2011 with noise-induced margin.

BB Identity

P α Recall r@1 ↑

–

0

· · ·0.01
0.1
1.0

Pstd

0

· · ·0.01
0.1
1.0

12 16 // 60 64

In image retrieval, the task is to return images from a
database that are relevant to a given query. The performance
is typically measured with the recall metric, which involves
computing the ranking of predicted scores that measure the
similarity of image pairs. However, directly optimizing for
the recall is challenging, as the ranking operation is non-
differentiable.

We follow Rolínek et al. (2020a) in formulating ranking
as an arg min optimization problem with linear cost, i.e.
rk(ω) = arg miny∈Πn

〈ω, y〉, where Πn is the set of all
rank permutations and ω ∈ Rn the vector of scores. This
allows us to use Identity to directly optimize an architecture
for recall. We perform experiments on the image retrieval
benchmark CUB-200-2011 (Welinder et al., 2010), and fol-
low the experimental setup used by Rolínek et al. (2020a). Details are provided in Suppl. B.3.

The results are shown in Tab. 3. We report only the noise-induced margin here as the informed one
performed similarly, see Suppl. B.3. Note that without the standardization Pstd, Identity exhibits
extremely low performance, demonstrating that the projection step is a crucial element of the pipeline.

8

Under review as a conference paper at ICLR 2023

BB Identity

0.0 0.1 0.25 0.5 0.75
Gradient noise level

0
25
50
75

100

ac
cu

ra
cy

 (%
)

(a) Gradient noise σ

0.0 0.1 0.25 0.5 0.75
Corrupt ratio

0
25
50
75

100

ac
cu

ra
cy

 (\
%

)

(b) Label corruption ρ

0 25 50 75 100
epochs

0

1

no
rm

 o
f

(c) Cost norm ‖ω‖

Figure 4: Susceptibility to perturbations and cost collapse in TSP(20). (a) Adding noise to the gradient
d`/dy with std σ affects Identity much less than BB. (b) Corrupting labels with probability ρ/k in
y∗. (c) Average cost norm ‖w‖ over training epochs in the presence of gradient noise σ = 0.25. The
markers indicate the best validation performance.

The explanation is that, for ranking-based loss, the incoming gradient does not point toward achievable
solutions, as discussed in Sec. 3.2. For more details see Suppl. B.3. We conclude that for the retrieval
experiment, Identity does not match the performance of BB. Presumably, this is because the crude
approximation of the permutahedron by a sphere ignores too much structural information.

4.4 GLOBE TRAVELING SALESMAN PROBLEM

Finally, we consider the Traveling salesman Problem (TSP) experiment from Vlastelica et al. (2020).
Given a set of k country flags, the goal for TSP(k) is to predict the optimal tour on the globe through
the corresponding country capitals, without access to the ground-truth location of the capitals. A
neural network predicts the location of a set of capitals on the globe, and after computing the pairwise
distances of the countries, a TSP solver is used to compute the predicted optimal TSP tour, which is
then compared to the ground-truth optimal tour. Setup details can be found in Suppl. B.4.

Corrupting Gradients. We study the robustness of Identity and BB to potential perturbations
during training in two scenarios: noisy gradients and corrupted labels. We inflict the gradient with
noise to simulate additional layers after the solver. In this setting we add ξ ∼ N (0, σ2) to d`/dy. In
real-world scenarios, incorrect labels are inevitably occurring. We study random fixed corruptions of
labels in the training data, by flipping entries in y∗ with probability ρ/k.

In Fig. 4a and Fig. 4b we observe that Identity performs on par with BB for the standard non-corrupted
setting, and outperforms it in the presence of gradient perturbations and label corruptions. Figure 4c
shows the average norm of the cost vector w in the course of training under gradient noise with
σ = 0.25. After epoch 50, as soon as α is set to 0, cost collapse occurs quickly for BB, but not for
Identity. In all the TSP experiments Identity uses standardization Pstd.

5 CONCLUSION

We present a simple approach for gradient backpropagation through discrete combinatorial solvers
with a linear cost function, by treating the solver as a negative identity mapping during the backward
pass. This approach, in conjunction with the exploitation of invariances of the solver via projec-
tions, makes up the Identity method. It is hyperparameter-free and does not require any additional
computationally expensive call to the solver on the backward pass. We demonstrate in numerous
experiments from various application areas that Identity achieves performance that is competitive with
more complicated methods and is thereby a viable alternative. We also propose and experimentally
verify the use of noise to induce a margin on the solutions and find that noise in conjunction with
the projection step effectively increases robustness and prevents cost collapse. Finally, we analyze
the robustness of methods to perturbations during training that can come from subsequent layers
or incorrect labels and find that Identity is more robust than competing methods. Promising areas
of future work include the investigation of more complex post-processing steps after the solver, as
well as a more detailed theoretical investigation of the effect of specific cost projections and their
relationship to relaxations of the solver.

9

Under review as a conference paper at ICLR 2023

REPRODUCIBILITY STATEMENT

We provide extensive experimental details and all used hyperparameters for Discrete Samplers in
Suppl. B.1, Deep Graph Matching in Suppl. B.2, Rank Based Metrics in Suppl. B.3, Globe TSP
in Suppl. B.4, and Warcraft Shortest Path in Suppl. B.5. The datasets used in the experiments, i.e.
BeerAdvocate (McAuley et al., 2012), MNIST (LeCun et al., 2010), SPair-71k (Min et al., 2019),
Globe TSP and Warcraft Shortest Path (Vlastelica et al., 2020), CUB-200-2011 (Welinder et al., 2010)
are publicly available. We further include Jupyter notebooks to reproduce Fig. 3 in the source code.
A curated Github repository for reproducing all other results will be published upon acceptance.

REFERENCES

Marin Vlastelica, Anselm Paulus, Vít Musil, Georg Martius, and Michal Rolínek. Differentiation of
blackbox combinatorial solvers. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https:
//openreview.net/forum?id=BkevoJSYPB.

Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco Cuturi, Jean-Philippe Vert, and Francis R.
Bach. Learning with differentiable perturbed optimizers. CoRR, abs/2002.08676, 2020. URL
https://arxiv.org/abs/2002.08676.

Michal Rolínek, Vít Musil, Anselm Paulus, Marin Vlastelica P., Claudio Michaelis, and
Georg Martius. Optimizing rank-based metrics with blackbox differentiation. In 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle,
WA, USA, June 13-19, 2020, pages 7617–7627. Computer Vision Foundation / IEEE, 2020a.
doi: 10.1109/CVPR42600.2020.00764. URL https://openaccess.thecvf.com/
content_CVPR_2020/html/Rolinek_Optimizing_Rank-Based_Metrics_
With_Blackbox_Differentiation_CVPR_2020_paper.html.

Michal Rolínek, Paul Swoboda, Dominik Zietlow, Anselm Paulus, Vít Musil, and Georg Martius.
Deep graph matching via blackbox differentiation of combinatorial solvers. In Andrea Vedaldi,
Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Computer Vision - ECCV 2020 -
16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XXVIII, volume
12373 of Lecture Notes in Computer Science, pages 407–424. Springer, 2020b. doi: 10.1007/
978-3-030-58604-1_25. URL https://doi.org/10.1007/978-3-030-58604-1_
25.

Anselm Paulus, Michal Rolínek, Vít Musil, Brandon Amos, and Georg Martius. Comboptnet: Fit
the right np-hard problem by learning integer programming constraints. In Marina Meila and
Tong Zhang, editors, Proceedings of the 38th International Conference on Machine Learning,
ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Re-
search, pages 8443–8453. PMLR, 2021. URL http://proceedings.mlr.press/v139/
paulus21a.html.

Brandon Amos and J. Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International Conference
on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of
Proceedings of Machine Learning Research, pages 136–145. PMLR, 2017. URL http://
proceedings.mlr.press/v70/amos17a.html.

Po-Wei Wang, Priya L. Donti, Bryan Wilder, and J. Zico Kolter. Satnet: Bridging deep learning
and logical reasoning using a differentiable satisfiability solver. In Kamalika Chaudhuri and
Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pages 6545–6554. PMLR, 2019. URL http://proceedings.
mlr.press/v97/wang19e.html.

Aaron M. Ferber, Bryan Wilder, Bistra Dilkina, and Milind Tambe. Mipaal: Mixed integer program
as a layer. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth
AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY,

10

https://openreview.net/forum?id=BkevoJSYPB
https://openreview.net/forum?id=BkevoJSYPB
https://arxiv.org/abs/2002.08676
https://openaccess.thecvf.com/content_CVPR_2020/html/Rolinek_Optimizing_Rank-Based_Metrics_With_Blackbox_Differentiation_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Rolinek_Optimizing_Rank-Based_Metrics_With_Blackbox_Differentiation_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Rolinek_Optimizing_Rank-Based_Metrics_With_Blackbox_Differentiation_CVPR_2020_paper.html
https://doi.org/10.1007/978-3-030-58604-1_25
https://doi.org/10.1007/978-3-030-58604-1_25
http://proceedings.mlr.press/v139/paulus21a.html
http://proceedings.mlr.press/v139/paulus21a.html
http://proceedings.mlr.press/v70/amos17a.html
http://proceedings.mlr.press/v70/amos17a.html
http://proceedings.mlr.press/v97/wang19e.html
http://proceedings.mlr.press/v97/wang19e.html

Under review as a conference paper at ICLR 2023

USA, February 7-12, 2020, pages 1504–1511. AAAI Press, 2020. URL https://ojs.aaai.
org/index.php/AAAI/article/view/5509.

Marin Vlastelica P., Michal Rolínek, and Georg Martius. Neuro-algorithmic policies enable fast
combinatorial generalization. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th
International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event,
volume 139 of Proceedings of Machine Learning Research, pages 10575–10585. PMLR, 2021.
URL http://proceedings.mlr.press/v139/vlastelica21a.html.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th Interna-
tional Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017,
volume 70 of Proceedings of Machine Learning Research, pages 1126–1135. PMLR, 2017. URL
http://proceedings.mlr.press/v70/finn17a.html.

Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid learning or feature reuse?
towards understanding the effectiveness of MAML. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.
URL https://openreview.net/forum?id=rkgMkCEtPB.

Akshay Agrawal, Brandon Amos, Shane T. Barratt, Stephen P. Boyd, Steven Diamond, and J. Zico
Kolter. Differentiable convex optimization layers. In Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages
9558–9570, 2019a. URL https://proceedings.neurips.cc/paper/2019/hash/
9ce3c52fc54362e22053399d3181c638-Abstract.html.

Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. Meta-learning
with differentiable convex optimization. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pages 10657–10665.
Computer Vision Foundation / IEEE, 2019. doi: 10.1109/CVPR.2019.01091. URL http://
openaccess.thecvf.com/content_CVPR_2019/html/Lee_Meta-Learning_
With_Differentiable_Convex_Optimization_CVPR_2019_paper.html.

Akshay Agrawal, Shane Barratt, Stephen Boyd, Enzo Busseti, and Walaa M Moursi. Differentiating
through a cone program. J. Appl. Numer. Optim, 1(2):107–115, 2019b. URL https://doi.
org/10.23952/jano.1.2019.2.02.

Justin Domke. Generic methods for optimization-based modeling. In Neil D. Lawrence and Mark A.
Girolami, editors, Proceedings of the Fifteenth International Conference on Artificial Intelligence
and Statistics, AISTATS 2012, La Palma, Canary Islands, Spain, April 21-23, 2012, volume 22
of JMLR Proceedings, pages 318–326. JMLR.org, 2012. URL http://proceedings.mlr.
press/v22/domke12.html.

Adam N. Elmachtoub and Paul Grigas. Smart “predict, then optimize”. Manag. Sci., 68(1):9–26, 2022.
doi: 10.1287/mnsc.2020.3922. URL https://doi.org/10.1287/mnsc.2020.3922.

Mathias Niepert, Pasquale Minervini, and Luca Franceschi. Implicit MLE: backpropagat-
ing through discrete exponential family distributions. In Marc’Aurelio Ranzato, Alina
Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan, editors, Ad-
vances in Neural Information Processing Systems 34: Annual Conference on Neural In-
formation Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages
14567–14579, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
7a430339c10c642c4b2251756fd1b484-Abstract.html.

Brandon Amos, Vladlen Koltun, and J. Zico Kolter. The limited multi-label projection layer. CoRR,
abs/1906.08707, 2019. URL http://arxiv.org/abs/1906.08707.

Mathieu Blondel, Olivier Teboul, Quentin Berthet, and Josip Djolonga. Fast differentiable sorting and
ranking. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020,
13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pages

11

https://ojs.aaai.org/index.php/AAAI/article/view/5509
https://ojs.aaai.org/index.php/AAAI/article/view/5509
http://proceedings.mlr.press/v139/vlastelica21a.html
http://proceedings.mlr.press/v70/finn17a.html
https://openreview.net/forum?id=rkgMkCEtPB
https://proceedings.neurips.cc/paper/2019/hash/9ce3c52fc54362e22053399d3181c638-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/9ce3c52fc54362e22053399d3181c638-Abstract.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Lee_Meta-Learning_With_Differentiable_Convex_Optimization_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Lee_Meta-Learning_With_Differentiable_Convex_Optimization_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Lee_Meta-Learning_With_Differentiable_Convex_Optimization_CVPR_2019_paper.html
https://doi.org/10.23952/jano.1.2019.2.02
https://doi.org/10.23952/jano.1.2019.2.02
http://proceedings.mlr.press/v22/domke12.html
http://proceedings.mlr.press/v22/domke12.html
https://doi.org/10.1287/mnsc.2020.3922
https://proceedings.neurips.cc/paper/2021/hash/7a430339c10c642c4b2251756fd1b484-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/7a430339c10c642c4b2251756fd1b484-Abstract.html
http://arxiv.org/abs/1906.08707

Under review as a conference paper at ICLR 2023

950–959. PMLR, 2020. URL http://proceedings.mlr.press/v119/blondel20a.
html.

Bryan Wilder, Bistra Dilkina, and Milind Tambe. Melding the data-decisions pipeline: Decision-
focused learning for combinatorial optimization. In The Thirty-Third AAAI Conference on
Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial In-
telligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019,
pages 1658–1665. AAAI Press, 2019. doi: 10.1609/aaai.v33i01.33011658. URL https:
//doi.org/10.1609/aaai.v33i01.33011658.

Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. Learning to branch. In
Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
volume 80 of Proceedings of Machine Learning Research, pages 353–362. PMLR, 2018. URL
http://proceedings.mlr.press/v80/balcan18a.html.

Elias Boutros Khalil, Pierre Le Bodic, Le Song, George L. Nemhauser, and Bistra Dilkina. Learning
to branch in mixed integer programming. In Dale Schuurmans and Michael P. Wellman, editors,
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, February 12-17, 2016,
Phoenix, Arizona, USA, pages 724–731. AAAI Press, 2016. URL http://www.aaai.org/
ocs/index.php/AAAI/AAAI16/paper/view/12514.

Alejandro Marcos Alvarez, Quentin Louveaux, and Louis Wehenkel. A machine learning-based
approximation of strong branching. INFORMS J. Comput., 29(1):185–195, 2017. URL https:
//doi.org/10.1287/ijoc.2016.0723.

Mislav Balunovic, Pavol Bielik, and Martin T. Vechev. Learning to solve SMT formulas. In Samy
Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, pages 10338–10349, 2018. URL https://proceedings.neurips.cc/paper/
2018/hash/68331ff0427b551b68e911eebe35233b-Abstract.html.

Jayanta Mandi and Tias Guns. Interior point solving for lp-based prediction+optimisation.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, volume 33, pages 7272–7282. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
51311013e51adebc3c34d2cc591fefee-Paper.pdf.

Yingcong Tan, Daria Terekhov, and Andrew Delong. Learning linear programs from opti-
mal decisions. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, ed-
itors, Advances in Neural Information Processing Systems (NeurIPS), volume 33, pages
19738–19749, 2020. URL https://proceedings.neurips.cc/paper/2020/file/
e44e875c12109e4fa3716c05008048b2-Paper.pdf.

Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural combina-
torial optimization with reinforcement learning. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Workshop Track Proceedings.
OpenReview.net, 2017. URL https://openreview.net/forum?id=Bk9mxlSFx.

MohammadReza Nazari, Afshin Oroojlooy, Lawrence V. Snyder, and Martin Takác. Reinforce-
ment learning for solving the vehicle routing problem. In Samy Bengio, Hanna M. Wallach,
Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Ad-
vances in Neural Information Processing Systems 31: Annual Conference on Neural Informa-
tion Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages
9861–9871, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
9fb4651c05b2ed70fba5afe0b039a550-Abstract.html.

Wei Zhang and Thomas G Dietterich. Solving combinatorial optimization tasks by reinforcement
learning: A general methodology applied to resource-constrained scheduling. Journal of Artificial
Intelligence Research, 1(1):1–38, 2000.

12

http://proceedings.mlr.press/v119/blondel20a.html
http://proceedings.mlr.press/v119/blondel20a.html
https://doi.org/10.1609/aaai.v33i01.33011658
https://doi.org/10.1609/aaai.v33i01.33011658
http://proceedings.mlr.press/v80/balcan18a.html
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12514
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12514
https://doi.org/10.1287/ijoc.2016.0723
https://doi.org/10.1287/ijoc.2016.0723
https://proceedings.neurips.cc/paper/2018/hash/68331ff0427b551b68e911eebe35233b-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/68331ff0427b551b68e911eebe35233b-Abstract.html
https://proceedings.neurips.cc/paper/2020/file/51311013e51adebc3c34d2cc591fefee-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/51311013e51adebc3c34d2cc591fefee-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e44e875c12109e4fa3716c05008048b2-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e44e875c12109e4fa3716c05008048b2-Paper.pdf
https://openreview.net/forum?id=Bk9mxlSFx
https://proceedings.neurips.cc/paper/2018/hash/9fb4651c05b2ed70fba5afe0b039a550-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/9fb4651c05b2ed70fba5afe0b039a550-Abstract.html

Under review as a conference paper at ICLR 2023

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018. URL https://openreview.net/forum?id=rJXMpikCZ.

Petar Velickovic, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell. Neural
execution of graph algorithms. In 8th International Conference on Learning Representa-
tions, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL
https://openreview.net/forum?id=SkgKO0EtvS.

Andreea Deac, Petar Velickovic, Ognjen Milinkovic, Pierre-Luc Bacon, Jian Tang, and Mladen
Nikolic. XLVIN: executed latent value iteration nets. CoRR, abs/2010.13146, 2020. URL
https://arxiv.org/abs/2010.13146.

Bingjie Li, Guohua Wu, Yongming He, Mingfeng Fan, and Witold Pedrycz. An overview and
experimental study of learning-based optimization algorithms for vehicle routing problem. CoRR,
abs/2107.07076, 2021. URL https://arxiv.org/abs/2107.07076.

Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Josh Tenenbaum. Learning to infer
graphics programs from hand-drawn images. In Samy Bengio, Hanna M. Wallach, Hugo
Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages
6062–6071, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
6788076842014c83cedadbe6b0ba0314-Abstract.html.

Jeevana Priya Inala, Osbert Bastani, Zenna Tavares, and Armando Solar-Lezama. Synthesizing
programmatic policies that inductively generalize. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.
URL https://openreview.net/forum?id=S1l8oANFDH.

Mathieu Blondel. Structured prediction with projection oracles. In Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors,
Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages
12145–12156, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
7990ec44fcf3d7a0e5a2add28362213c-Abstract.html.

Max B. Paulus, Dami Choi, Daniel Tarlow, Andreas Krause, and Chris J. Maddison. Gradient
estimation with stochastic softmax tricks. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/
2020/hash/3df80af53dce8435cf9ad6c3e7a403fd-Abstract.html.

Jason Tyler Rolfe. Discrete variational autoencoders. arXiv preprint arXiv:1609.02200, 2016.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.
net/forum?id=rkE3y85ee.

Julian McAuley, Jure Leskovec, and Dan Jurafsky. Learning attitudes and attributes from multi-aspect
reviews. In 2012 IEEE 12th International Conference on Data Mining, pages 1020–1025. IEEE,
2012.

Jianbo Chen, Le Song, Martin J. Wainwright, and Michael I. Jordan. Learning to explain: An
information-theoretic perspective on model interpretation. In Jennifer G. Dy and Andreas Krause,
editors, Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Ma-
chine Learning Research, pages 882–891. PMLR, 2018. URL http://proceedings.mlr.
press/v80/chen18j.html.

13

https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=SkgKO0EtvS
https://arxiv.org/abs/2010.13146
https://arxiv.org/abs/2107.07076
https://proceedings.neurips.cc/paper/2018/hash/6788076842014c83cedadbe6b0ba0314-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/6788076842014c83cedadbe6b0ba0314-Abstract.html
https://openreview.net/forum?id=S1l8oANFDH
https://proceedings.neurips.cc/paper/2019/hash/7990ec44fcf3d7a0e5a2add28362213c-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/7990ec44fcf3d7a0e5a2add28362213c-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/3df80af53dce8435cf9ad6c3e7a403fd-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/3df80af53dce8435cf9ad6c3e7a403fd-Abstract.html
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
http://proceedings.mlr.press/v80/chen18j.html
http://proceedings.mlr.press/v80/chen18j.html

Under review as a conference paper at ICLR 2023

Subham Sekhar Sahoo, Subhashini Venugopalan, Li Li, Rishabh Singh, and Patrick Riley. Scaling
symbolic methods using gradients for neural model explanation. In 9th International Conference
on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net,
2021. URL https://openreview.net/forum?id=V5j-jdoDDP.

Sang Michael Xie and Stefano Ermon. Reparameterizable subset sampling via continuous relaxations.
In Sarit Kraus, editor, Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, pages 3919–3925. ijcai.org, 2019.
doi: 10.24963/ijcai.2019/544. URL https://doi.org/10.24963/ijcai.2019/544.

Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. CoRR, abs/1308.3432, 2013. URL
http://arxiv.org/abs/1308.3432.

Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John M. Winn, and Andrew
Zisserman. The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis., 88(2):
303–338, 2010. doi: 10.1007/s11263-009-0275-4. URL https://doi.org/10.1007/
s11263-009-0275-4.

Juhong Min, Jongmin Lee, Jean Ponce, and Minsu Cho. Spair-71k: A large-scale benchmark for
semantic correspondence. CoRR, abs/1908.10543, 2019. URL http://arxiv.org/abs/
1908.10543.

Peter Welinder, Steve Branson, Takeshi Mita, Catherine Wah, Florian Schroff, Serge Belongie, and
Pietro Perona. Caltech-UCSD Birds 200. Technical Report CNS-TR-2010-001, California Institute
of Technology, 2010.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. att labs, 2010.

Paul Swoboda, Carsten Rother, Hassan Abu Alhaija, Dagmar Kainmüller, and Bogdan Savchynskyy.
A study of lagrangean decompositions and dual ascent solvers for graph matching. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July
21-26, 2017, pages 7062–7071. IEEE Computer Society, 2017. doi: 10.1109/CVPR.2017.747.
URL https://doi.org/10.1109/CVPR.2017.747.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016,
Las Vegas, NV, USA, June 27-30, 2016, pages 770–778. IEEE Computer Society, 2016. doi:
10.1109/CVPR.2016.90. URL https://doi.org/10.1109/CVPR.2016.90.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022. URL https://www.
gurobi.com.

14

https://openreview.net/forum?id=V5j-jdoDDP
https://doi.org/10.24963/ijcai.2019/544
http://arxiv.org/abs/1308.3432
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/s11263-009-0275-4
http://arxiv.org/abs/1908.10543
http://arxiv.org/abs/1908.10543
https://doi.org/10.1109/CVPR.2017.747
https://doi.org/10.1109/CVPR.2016.90
https://www.gurobi.com
https://www.gurobi.com

Under review as a conference paper at ICLR 2023

A STRAIGHT THROUGH VS. IDENTITY

Straight-through estimator (STE) was introduced by Bengio et al. (2013) to differentiate through
samples drawn from a stochastic Bernoulli process. For y ∼ p(y; θ), it ignores the sampling process
and sets the derivative dy/dθ = I . Superficially, it looks like Identity is the same as the Straight-
through estimator. However, in order to use Identity, the sampling process needs to be formulated
as an arg min/arg max problem. Identity sets the gradient for arg max operator to I , but before
the arg max, we project log p(y; θ) + ε where log p(y; θ) represents the logits of the density p(y; θ).
Projection P consists of Pmean, Pnorm, and Pstd. Figure 5 illustrates the computation graphs for STE
and Identity that results in different backward passes.

pθ Sampler y

−I

(a) Straight-through estimator

pθ log +

ε

Noise

P

Projection

arg max y

1/pθ P ′ −I

(b) Identity

Figure 5: Computation graph for Straight-through estimator and Identity. The green arrow denotes
the derivative in the backward pass. Observe that the resulting derivatives of y w.r.t. pθ are different.

B EXPERIMENTAL DETAILS

B.1 BACKPROPAGATING THROUGH DISCRETE SAMPLERS

DVAE on MNIST Consider the models described by the equations θ = fe(x), y ∼ p(y; θ),
z = fd(y) where x ∈ X is the input, o ∈ O is the output, and fe : X → θ is the encoder neural
network that maps the input x to the logits θ and fd : Y → Z is the decoder neural network, and
where Y is the set of all k-hot vectors. Following Niepert et al. (2021), we set ε in sampling (16) as
the Sum-of-Gamma distribution given by

SoG(k, τ, s) =
τ

k

(s∑
i=1

Gamma
(1

k
,
k

i

)
− log s

)
, (17)

where s is a positive integer and Gamma(α, β) is the Gamma distribution with (α, β) as the shape
and scale parameters.

We follow the same training procedure as Niepert et al. (2021). The encoder and the decoder were
feedforward neural networks with the architectures: 512-256-20× 20 and 256-512-784 respectively.
We used MNIST (LeCun et al., 2010) dataset for the problem which consisted of 50, 000 training
examples and 10, 000 validation and test examples each. We train the model for 100 epochs and
record the loss on the test data. In this experiment, we use k = 10 i.e. sample 10-hot binary vectors
from the latent space. We sample the noise from SoG with s = 10 and τ = 10.

Learning to Explain The entire dataset consists of 80k reviews for the aspect Appearance and 70k
reviews for all the remaining aspects. Following the experimental setup of Niepert et al. (2021), the
dataset was divided into 10 different evenly sized validation/test splits of the 10k held out set. For
this experiment, the neural network from Chen et al. (2018) was used which had 4 convolutional and
1 dense layer. The neural network outputs the parameters θ of the pdf p(y; θ) over k-hot binary latent
masks with k = 5, 10, 15. The same hyperparameter configuration was the same as that of Niepert
et al. (2021). We compute mean and standard deviation over 10 models, each trained on one split.

B.2 DEEP GRAPH MATCHING

We closely follow the experimental setup in Rolínek et al. (2020b), including the architecture of the
neural network and the hyperparameter configuration to train the network.

15

Under review as a conference paper at ICLR 2023

Table 4: Matching accuracy for Deep
Graph Matching on SPair-71k. Statistics
over 5 restarts. BB Identity

P margin α Matching accuracy ↑

–

– –

noise

0.01
0.1
1.0
10.0

informed

0.01
0.1
1.0
10.0

Pnorm

– –

noise

0.01
0.1
1.0
10.0

informed

0.01
0.1
1.0
10.0

65 70 75 80

The architecture consists of a pre-trained backbone that,
based on the visual information, predicts feature vec-
tors for each of the keypoints in an image. The key-
points are then treated as nodes of a graph, which is
computed via Delauney triangulation. A graph neural
network then refines the keypoint features by employ-
ing a geometry-aware message passing scheme on the
graph. A matching instance is established by computing
similarity scores between the edges and nodes of the key-
point graphs of two images via a learnable affinity layer.
The negated similarity scores are then used as inputs
to the graph matching solver, which produces a binary
vector denoting the predicted matching. This matching
is finally compared to the ground-truth matching via the
Hamming loss. For a more detailed description of the
architecture, see Rolínek et al. (2020b).

We run experiments on SPair-71k (Min et al., 2019) and
Pascal VOC (with Berkeley annotations) (Everingham
et al., 2010). The Pascal VOC dataset consists of images
from 20 classes with up to 23 annotated keypoints. To
prepare the matching instances we use intersection filter-
ing of keypoints, i.e. we only consider keypoints that are
visible in both images of a pair. For more details on this,
we refer the reader to Rolínek et al. (2020b). The SPair-
71k dataset consists of 70, 958 annotated image pairs,
with images from the Pascal VOC 2012 and Pascal 3D+
datasets. It comes with a pre-defined train–validation–
test split of 53, 340–5, 384–12, 234.

We train all models for 10 epochs of 2000 training iterations each, with image pairs processed in
batches of 8. As reported in Rolínek et al. (2020b), we set the BB hyperparameter λ = 80. We use
the Adam optimizer with an initial learning rate of 2× 10−3 which is halved every 2 epochs. The
learning rate for finetuning the VGG weights is multiplied by 10−2. As in Rolínek et al. (2020b) we
use a state-of-the-art dual block coordinate ascent solver (Swoboda et al., 2017) based on Lagrange
decomposition to solve the combinatorial graph matching problem.

B.3 RANK-BASED METRICS – IMAGE RETRIEVAL EXPERIMENTS

Table 5: Recall r@1 for CUB-
200-2011 with informed margin.

BB Identity

P α Recall r@1 ↑

–

0
0.01
0.1
1.0

Pstd

0
0.01
0.1
1.0

20 30 40 50 60

Ranking as a Solver. Ranking can be cast as a combina-
torial arg min optimization problem with linear cost by a
simple application of the permutation inequality as described
in Rolínek et al. (2020a). It holds that

rk(ω) = arg min
y∈Πn

〈ω, y〉, (18)

where Πn is the set of all rank permutations and ω ∈ Rn is
the vector of individual scores.

A popular metric in the retrieval literature is recall at K,
denoted by r@K , which can be formulated using ranking as

r@K (ω, y∗) =

1 if there is i ∈ rel(y∗)

with rk(ω)i ≤ K
0 otherwise,

(19)

where K ∈ N, ω ∈ Rn are the scores, y∗ ∈ {0, 1}n are the
ground-truth labels and rel(y∗) = {i : y∗i = 1} is the set of relevant label indices (positive labels).
Consequently, r@K is going to be 1 if a positively labeled element is among the predicted top K
ranked elements. Due to computational restrictions, at training time, instead of computing r@K over
the whole dataset a sample-based version is used.

16

Under review as a conference paper at ICLR 2023

(a) Visualization of the different ranking gradients.

BB Identity

0 20 40 60 80 100
epochs

0

2

4

6

8

10

tra
in

 lo
ss

(b) Training for TSP(5) for gradient noise level 0.5.

Figure 6: (a) Left: the scores ω, with rel(y∗) in green and their shifted counterparts below. The grey
arrows correspond to the Identity-gradient. Right: BB performs another ranking yλ with the shifted
ω which yields a denser gradient. (b) To check for the robustness of the methods, we apply gradient
noise during the entire training time (100 epochs). The shaded grey region highlights the epochs for
which margin-inducing noise (ξ) was applied to the inputs to prevent cost collapse. The dots on the
training curve represent early stopping epochs.

Recall Loss. Since r@K depends only on the top-ranked element from y∗, the supervision for
r@K is very sparse. To circumvent this, Rolínek et al. (2020a) propose a loss

`recall(ω, y
∗) =

1

| rel(y∗)|
∑

i∈rel(y∗)

log
(
1 + log

(
1 + rk(ω)i − rk(ω+)i

))
, (20)

where rk(ω+)i denotes the rank of the i-th element only within the relevant ones. This loss is called
loglog in the paper that proposed it. We follow their approach and use this loss in all image retrieval
experiments.

Experimental Configuration. We closely follow the training setup and procedure reported in
Rolínek et al. (2020a). The model consists of a pre-trained ResNet50 (He et al., 2016) backbone
in which the final softmax is replaced with a fully connected embedding layer, producing a 512-
dimensional embedding vector for each batch element. These vectors are then used to compute
pairwise similarities between batch elements. The ranking of these similarities is then used to compute
the recall loss (20), for additional details we refer the reader to Rolínek et al. (2020a).

We train all models for 80 epochs using the Adam optimizer, using a learning rate of 5× 10−7, which
was the best performing learning rate for both Identity and BB out of a grid search over 5 learning
rates. In all experiments a weight decay of 4× 10−4 is used, as well as a drop of the learning rate by
70% after 35 epochs. The learning rate of the embedding layer is multiplied by 3, following previous
work. The BB parameter λ was set to 0.2 for all retrieval experiments. Images are processed in
batches of 128, and three previous batches are always kept in memory to compute the recall to better
approximate the recall over the whole dataset, see Rolínek et al. (2020a) for more details.

Sparse Gradient & Difference between Identity and BB. As described in Sec. 4.3, Identity
performs worse than BB in the retrieval experiments. The reason is the sparsity of the gradient
generated from the loss (20): it only yields a nonzero gradient for the relevant images (positive labels),
and provides no information for the images irrelevant to the query. This sparseness makes training
very inefficient.

The BB update circumvents this by producing a new ranking yλ for a perturbed input. The difference
between the two rankings is then returned as the gradient, which contains information for both
positive and negative examples. This process is illustrated in Figure 6a.

B.4 GLOBE TSP

Dataset. The training dataset for TSP(k) consists of 10 000 examples where each datapoint has a
k element subset sampled from 100 country flags as input and the output is the optimal TSP tour
represented by an adjacency matrix. We consider datasets for k = 5, 10, 20. For additional details,
see Vlastelica et al. (2020).

17

Under review as a conference paper at ICLR 2023

ξ = 0 ξ = 0.1 ξ = 0.2 ξ = 0.5

TSP(k = 5) 91.09± 0.07 99.67± 0.10 99.67± 0.10 99.68± 0.09
TSP(k = 10) 85.31± 0.15 99.72± 0.04 99.76± 0.07 99.76± 0.04
TSP(k = 20) 88.45± 0.88 99.78± 0.04 94.50± 10.53 99.80± 0.06

Table 6: Adding noise ξ during the initial 50 epochs of training prevents cost collapse and therefore
improves the test accuracy.

Architecture. A set of k flags is presented to a convolutional neural network that outputs k 3-
dimensional coordinates. These points are then projected onto a 3D unit sphere and then used to
construct the k×k distance matrix which is fed to a TSP solver. Then the solver outputs the adjacency
matrix indicating the edges present in the TSP tour. The loss function is an L1 loss between the
predicted tour and the true tour. The neural network is expected to learn the correct coordinates of the
countries’ capitals on Earth, up to rotations of the sphere. We use the gurobi (Gurobi Optimization,
LLC, 2022) solver for the MIP formulation of TSP.

For the Globe TSP experiment we use a convolutional neural network with 2 conv. layers ((channels,
kernel_size, stride) = [[20, 4, 2], [50, 4, 2]]) and 1 fully connected layer of size 500 that predicts
vector of dimension 3k containing the k 3-dimensional representations of the respective countries’
capital cities. These representations are projected onto the unit sphere and the matrix of pairwise
distances is fed to the TSP solver. The network was trained using Adam optimizer with a learning
rate 10−4 for 100 epochs and a batch size of 50. For BB, the hyper-parameter λ was set to 20.

As described in Sec. 3.6 adding noise to the cost vector can avoid cost collapse and act as a margin-
inducing procedure. We apply noise, ξ = 0.1, 0.2, 0.5, for the first 50 epochs (of 100 in total) to
prevent cost collapse. For this dataset, it was observed that finetuning the weights after applying
noise helped improve the accuracy. Margin is only important initially as it allows not getting stuck in
a local optimum around zero cost. Once avoided, margin does not play a useful role anymore because
there are no large distribution shifts between the train and test set. Hence, noise was not applied for
the entirety of the training phase. We verified the benefits of adding noise experimentally in Tab. 6.

A difference between BB and Identity can be observed when applying gradient noise, simulating
larger architectures where the combinatorial layer is followed by further learnable layers. In Fig. 6b,
we present the training loss curves in this case. As we see, BB starts to diverge right after the
margin-inducing noise is not added anymore i.e. after epoch 50. However, Identity converges as the
training progresses.

B.5 WARCRAFT SHORTEST PATH

Table 7: Cost ratio (suggested vs. true path costs)
for Warcraft Shortest Path 32×32. BB and Identity
work similarly well. Normalization Pnorm or noise
does not affect the performance significantly.

Cost ratio ×100 ↓
P α BB Identity

– 0 100.9± 0.1 101.0± 0.1
Psphere 0 100.9± 0.1 101.2± 0.1

– 0.2 101.1± 0.1 101.0± 0.1

We additionally present an evaluation of the War-
craft Shortest Path experiment from Vlastelica
et al. (2020). Here the aim is to predict the short-
est path between the top-left and bottom-right
vertex in a k× k Warcraft terrain map. The path
is represented by an indicator matrix of vertices
that appear along the path.

The non-negative vertex costs of the k × k grid
are computed by a modified Resnet18 (He et al.,
2016) architecture using softplus on the output.
The network receives supervision in form of L1
loss between predicted and target paths. We
consider only the hardest case from the dataset with map sizes 32× 32.

Due to the non-uniqueness of solutions, we use the ratio between true and predicted path costs as an
evaluation metric: 〈ω∗, y(ω)〉/〈ω∗, y∗〉, with ω∗ being the ground truth cost vector. Note that lower
scores are better and 1.0 is the perfect score. Table 7 shows that Identity performs comparatively
to BB.

18

Under review as a conference paper at ICLR 2023

We follow the same experimental design as Vlastelica et al. (2020) and do the same modification
to the ResNet18 architecture, except that we use softplus to make the network output positive. The
model is trained with Adam for 50 epochs with learning rate 5× 10−3. The learning rate is divided
by 10 after 30 epochs. For the BB method we use λ = 20. The noise, when used, is applied for the
whole duration of training.

C METHOD

C.1 PROOF OF THEOREM 1

For an initial cost ω and a step size α > 0, we set
ω0 = ω and ωk+1 = ωk − α∆Iωk for k ∈ N, (21)

in which ∆Iωk denotes the Identity update at the solution point y(ωk), i.e.

∆Iωk = − d`

dy

(
y(ωk)

)
. (22)

We shall simply write d`/dy when no confusion is likely to happen. Recall that the set of better
solutions is defined as

Y ∗(y) =
{
y′ ∈ Y : f(y′) < f

(
y
)}
, (23)

where f is the linearization of the loss ` at the point y defined by

f(y′) = `(y) +
〈
y′ − y, d`

dy

〉
. (24)

In principle, ties in the solver may occur and hence the mapping ω 7→ y(ω) is not well-defined for
all cost ω unless we specify, how the ties are resolved. Typically, this is not an issue in most of the
considerations. However, in our exposition, we need to avoid certain rare discrepancies. Therefore,
we assume that the solver will always favour the solution from the previous iteration if possible, i.e.
from 〈y(ωk), ωk〉 =

〈
y(ωk−1), ωk

〉
it follows that y(ωk) = y(ωk−1).

Theorem 2. Assume that (ωk)∞k=0 is the sequence as in (21) for some initial cost ω and step
size α > 0. Then the following holds:

(i) Either Y ∗
(
y(ω)

)
is non-empty and there is some αmax > 0 such that for every α < αmax there

is n ∈ N such that y(ωn) ∈ Y ∗
(
y(ω)

)
and y(ωk) = y(ω) for all k < n,

(ii) or Y ∗
(
y(ω)

)
is empty and for every α it is y(ωk) = y(ω) for all k ∈ N.

We prove this statement in multiple parts.
Proposition 1. Let α > 0 and (ωk)∞k=0 be as in (21). If Y ∗

(
y(ω)

)
is non-empty, then there exists

n ∈ N such that y(ωn) 6= y(ω).

Proof. We proceed by contradiction. Assume that Y ∗
(
y(ω)

)
is non-empty and y(ωk) = y(ω) for all

k ∈ N.

Take any y∗ ∈ Y ∗
(
y(ω)

)
. By definition of Y ∗

(
y(ω)

)
, we have that

ξ =
〈
y∗ − y(ω),

d`

dy

〉
< 0. (25)

As y(ωk) = y(ω) for all k ∈ N, it is

ωk = ω − kα∆Iω = ω + kα
d`

dy
(26)

and therefore

〈y∗ − y(ω), ωk〉 = 〈y∗ − y(ω), ω〉+ kα
〈
y∗ − y(ω),

d`

dy

〉
= 〈y∗ − y(ω), ω〉+ kαξ. (27)

Since ξ < 0, the latter term tends to minus infinity. Consequently, there exists some n ∈ N for which
〈y∗, ωn〉 < 〈y(ω), ωn〉 (28)

contradicting the fact that y(ω) is the minimizer for ωn.

19

Under review as a conference paper at ICLR 2023

Let us now make a simple auxiliary observation about arg min solvers. The mapping

ω 7→ y(ω) = arg min
y∈Y

〈ω, y〉 (29)

is a piecewise constant function and hence induces a partitioning of its domain W into non-
overlapping sets on which the solver is constant. Let us denote the pieces by

Wy = {ω ∈W : y(ω) = y} for y ∈ Y . (30)

We claim that Wy is a convex cone. Indeed, if ω ∈ Wy, clearly λω ∈ Wy for any λ > 0. Next,
if ω1, ω2 ∈ Wy and λ ∈ (0, 1), then y(λω1) = y and y

(
(1 − λ)ω2

)
= y and hence y is also a

minimizer for λω1 + (1− λ)ω2.
Proposition 2. Assume that (ωk)∞k=0 is the sequence as in (21) for some initial cost ω and step size α.
Then either for every α it is y(ωk) = y(ω) for all k ∈ N, or there is some αmax > 0 such that for
every α < αmax there is n ∈ N such that y(ωk) = y(ω) for all k < n and y(ωn) 6= y(ω).

Proof. Let us define w : [0,∞)→W and γ : [0,∞)→ Y as

w(α) = ω − α∆Iω and γ(α) = y
(
w(α)

)
for ω ∈W, (31)

respectively. As γ is a composition of an affine function w and a piecewise constant solver, it is itself
a piecewise constant function. Therefore, γ induces a partitioning of its domain [0,∞) into disjoint
sets on which γ is constant. In fact, these sets are intervals, say I1, . . . , Im, as intersections of the
line segment {w(α) : α > 0} and convex cones Wy . Consequently, m ≤ |Y |.
Now, If m = 1, then I1 = [0,∞) and y(ωk) is constant y(ω) for all k ∈ N whatever α > 0 is. In
the rest of the proof, we assume that m ≥ 2. Assume that the intervals I1, . . . , Im are labeled along
increasing α, i.e. if α1 ∈ Ii and α2 ∈ Ij then α1 < α2 if and only if i < j.

We define the upper bound on the step size to αmax = |I2|. Assume that α < αmax and (ωk)∞k=1 is
given. Let n = min{k ∈ N : w(αk) ∈ I2}, i.e. the first index when the sequence y(ωk) switches.
Clearly y(ωk) = γ(αk) = y(ω) for k = 0, . . . , n− 1 and y(ωn) = γ(αn) 6= y(ω).

Proposition 3. Let α > 0 and (ωk)∞k=0 be as in (21). Assume that y(ωk) = y(ω) for all k < n
and y(ωn) 6= y(ω). Also assume that from 〈y(wk), ωk〉 =

〈
y(ωk−1), ωk

〉
it follows that y(wk) =

y(ωk−1). Then
f
(
y(ωn)

)
< f

(
y(ω)

)
, (32)

where f is the linerarized loss at y(ω).

Proof. As y(ωk) = y(ω) for all k < n, it is

ωk = ω − nα∆Iω = ω + nα
d`

dy
. (33)

Therefore, as y(ωn) is the minimizer for the cost ωk, we have

0 ≤
〈
y(ω)− y(ωn), ωn

〉
=
〈
y(ω)− y(ωn), ω

〉
+ nα

〈
y(ω)− y(ωn),

d`

dy

〉
. (34)

Now, since y(ω) is the minimizer for ω, it is
〈
y(ω)− y(ωn), ω

〉
≤ 0 and therefore

0 ≤
〈
y(ω)− y(ωn),

d`

dy

〉
. (35)

Consequently,

f
(
y(ωn)

)
= `
(
y(ω)

)
+
〈
y(ωn)− y(ω),

d`

dy

〉
≤ `
(
y(ω)

)
= f

(
y(ω)

)
. (36)

Equality is attained only if 〈
y(ωn)− y(ωn−1), ωn

〉
= 0. (37)

This together with y(ωn) 6= y(ω) = y(ωn−1) violates the assumption that the solver ties are broken
in favour of the previously attained solution, therefore the inequality in (36) is strict.

20

Under review as a conference paper at ICLR 2023

Proof of Theorem 2. Assume Y ∗
(
y(ω)

)
is non-empty. It follows from Proposition 1 that there exists

m ∈ N such that y(ωm) 6= y(ω). It follows from Proposition 2 that there is some αmax > 0 such
that for every α < αmax there is n ∈ N such that y(ωk) = y(ω) for all k < n and y(ωn) 6= y(ω).
From Proposition 3 it also follows that f

(
y(ωn)

)
< f

(
y(ω)

)
. Combining these results we have

y(ωn) ∈ Y ∗
(
y(ω)

)
by definition. This proves the first part of the theorem.

We prove the second part of the theorem by contradiction. Assume that Y ∗
(
y(ω)

)
is empty and

there exists some α such that y(ωk) = y(ω) for all k ∈ N and y(ωn) 6= y(ω). From Proposition 3
we know that f

(
y(ωn)

)
< f

(
y(ω)

)
and therefore y(ωn) ∈ Y ∗

(
y(ω)

)
. This is in contradiction to

Y ∗
(
y(ω)

)
being empty.

21

	Introduction
	Related Work
	Method
	Differentiating through Combinatorial Solvers
	Identity Update: Intuition in Simple Case
	Identity Update: General Case
	Exploiting Solver Invariants
	Projection as Solver Relaxation
	Preventing Cost Collapse and Inducing Margin

	Experiments
	Backpropagating through Discrete Samplers
	Deep Graph Matching
	Optimizing Rank Based Metrics – Image Retrieval
	Globe Traveling Salesman Problem

	Conclusion
	Straight Through vs. Identity
	Experimental Details
	Backpropagating Through Discrete Samplers
	Deep Graph Matching
	Rank-based Metrics – Image Retrieval Experiments
	Globe TSP
	Warcraft Shortest Path

	Method
	Proof of Theorem 1

