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Abstract

Adversarial vulnerability of neural nets, and subsequent techniques to create robust
models have attracted significant attention; yet we still lack a full understand-
ing of this phenomenon. Here, we study adversarial examples of trained neural
networks through analytical tools afforded by recent theory advances connecting
neural networks and kernel methods, namely the Neural Tangent Kernel (NTK),
following a growing body of work that leverages the NTK approximation to suc-
cessfully analyze important deep learning phenomena and design algorithms for
new applications. We show how NTKs allow to generate adversarial examples in
a “training-free” (black-box) fashion, and demonstrate that they transfer to fool
their finite-width neural net counterparts. We leverage this connection to provide
an alternative view on robust and non-robust features, which have been suggested
to underlie the adversarial brittleness of neural nets. Specifically, we define and
study features induced by the eigendecomposition of the associated kernel to better
understand the role of robust and non-robust features, the reliance on both for
standard classification and the robustness-accuracy trade-off. We find that such
features are surprisingly consistent across architectures, and that robust features
tend to correspond to the largest eigenvalues of the model, and thus are learned
early during training. Our framework allows us to identify and visualize non-robust
yet useful features. Finally, we shed light on the robustness mechanism underlying
adversarial training of neural nets used in practice: quantifying the evolution of
the associated empirical NTK, we demonstrate that its dynamics falls much earlier
into the “lazy” kernel regime and manifests a much stronger form of the well
known bias to prioritize learning features within the top eigenspaces of the kernel,
compared to standard training.

1 Introduction

Despite the tremendous success of deep neural networks in many computer vision and language
modeling tasks, as well as in scientific discoveries, their properties and the reasons for their success
are still poorly understood. Focusing on computer vision, a particularly surprising phenomenon
evidencing that those machines drift away from how humans perform image recognition is the
presence of adversarial examples, images that are almost identical to the original ones, yet are
misclassified by otherwise accurate models.

Since their discovery [41], a vast amount of work has been devoted to understanding the sources of
adversarial examples and explanations include, but are not limited to, the close to linear operating
mode of neural nets [21], the curse of dimensionality carried by the input space [21, 39], insufficient
model capacity [31, 43] or spurious correlations found in common datasets [23]. In particular,
one widespread viewpoint is that adversarial vulnerability is the result of a model’s sensitivity to
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Figure 1: Left. Standard setup of an adversarlal attack, where a barely percelvable perturbation is
added to an image to confuse an accurate classifier. Right. The correspondence between neural
networks and kernel machines allows to visualize a decomposition of this perturbation, each part
attributed to a different feature of the model. The first few features tend to be robust.

imperceptible yet well-generalizing features in the data, so called useful non-robust features, giving
rise to a trade-off between accuracy and robustness [43, 45]. This gradual understanding has enabled
the design of training algorithms, that provide convincing, yet partial, remedies to the problem; the
most prominent of them being adversarial training and its many variants [16, 21, 30]. Yet we are far
from a mature, unified theory of robustness that is powerful enough to universally guide engineering
choices or defense mechanisms.

In this work, we aim to get a deeper understanding of adversarial robustness (or lack thereof) by
focusing on the recently established connection of neural networks with kernel machines. Infinitely
wide neural networks, trained via gradient descent with infinitesimal learning rate, provably become
kernel machines with a data-independent, but architecture dependent kernel - its Neural Tangent
Kernel (NTK) - that remains constant during training [4, 24, 27, 28]. The analytical tools afforded by
the rich theory of kernels have resulted in progress in understanding the optimization landscape and
generalization capabilities of neural networks [3, 17], together with the discovery of interesting deep
learning phenomena [18, 34], while also inspiring practical advances in diverse areas of applications
such as the design of better classifiers [38], efficient neural architecture search [14], low-dimensional
tasks in graphics [42] and dataset distillation [32]. While the NTK approximation is increasingly
utlilized, even for finite width neural nets, little is known about the adversarial robustness properties
of these infinitely wide models.

Our contribution: Our work inscribes itself into the quest to leverage analytical tools afforded by
kernel methods, in particular spectral analysis, to track properties of interest in the associated neural
nets, in this case as they pertain to robustness. We study adversarial perturbations and robustness of
kernels so as to enrich our understanding of adversarial robustness in general machine learning models.
To this end, we first demonstrate that adversarial perturbations generated analytically with the NTK
can successfully lead the associated trained wide neural networks to misclassify, thus allowing kernels
to faithfully predict the lack of robustness of trained neural networks. In other words, adversarial
(non-) robustness transfers from kernels to networks; and adversarial perturbations generated via
kernels resemble those generated by the corresponding trained networks. One implication of this
transferability is that we can analytically devise adversarial examples that do not require access to the
trained model, and in particular its weights; instead these “blind spots” may be calculated a-priori,
before training starts. Although similar transferability has already been known and exploited in prior
work that trains substitute models, we demonstrate that this notion holds from first principles that
only require the a-priori description of the model architecture. The analytical expressions afforded by
the kernel might provide a better understanding of the elusive concept of transferability also across
architectures, as the corresponding expressions for the associated kernels can be compared directly.

A perhaps even more crucial implication of the NTK approach to robustness relates to the understand-
ing of adversarial examples. Indeed, we show how the spectrum of the NTK provides an alternative
way to define features of the model, to classify them according to their robustness and usefulness
and visually inspect them via their contribution to the adversarial perturbation (see Fig. 1). This
in turn allows us to verify previously conjectured properties of standard classifiers; dependence on
both robust and non-robust features in the data [43], and tradeoff of accuracy and robustness during
training. In particular we observe that features tend to be rather invariable across architectures, and
that robust features tend to correspond to the fop of the eigenspectrum (see Fig. 2), and as such are
learned first by the corresponding wide nets [3, 24]. Moreover, we are able to visualize useful non-
robust features of standard models (Fig. 5). While this conceptual feature distinction has been highly
influential in recent works that study the robustness of deep neural networks [1, 25, 40], to the best of
our knowledge, none of them has explicitly demonstrated the dependence of networks on such feature
functions (except for simple linear models [20]). Rather, these works either reveal such features in
some indirect fashion, or accept their existence as an assumption. Here, we show that Neural Tangent
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Figure 2: Left: Top 5 features for 7 different kernel architectures for a car image extracted from the
CIFAR10 dataset when trained on car and plain images. Right: Features according to their robustness
(x-axis) and usefulness (y-axis). Larger/darker bullets correspond to larger eigenvalues.
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Figure 3: Left: Kernel rotation during standard, and adversarial training. Left to right: MNIST,
standard, MNIST adversarial, CIFAR standard, CIFAR adversarial. Right: Kernel trajectories in
polar space for MNIST (left) and CIFAR10 (right). Darker colors indicate earlier epochs.

Kernel theory endows us with a natural definition of features through its eigen-decomposition and
provides a way to visualise and inspect robust and non-robust features directly on the function space
of trained neural networks.

Interestingly, this connection also enables us to empirically demonstrate that robust features of
standard models alone are not enough for robust classification. Aiming to understand, then, what
makes robust models robust, we track the evolution of the data-dependent empirical NTK during
adversarial training of neural networks used in practice. Prior experimental work has found that
networks with non-trivial width to depth ratio which are trained with large learning rates, depart from
the NTK regime and fall in the so-called “rich feature” regime, where the NTK changes substantially
during training [7, 18, 19, 34]. In our work, which to the best of our knowledge is the first to
provide insights on how the kernel behaves during adversarial training, we find that the NTK evolves
much faster compared to standard training, simultaneously both changing its features and assigning
more importance to the more robust ones, giving direct insight into the mechanism at play during
adversarial training (see Fig. 3). In summary, the contributions of our work are the following:

* We discuss how to generate adversarial examples for infinitely-wide neural networks via the
NTK, and then show that they transfer to confuse their associated (finite width) networks. In
particular this constitutes a new “black-box” way to generate adversarial examples without
access to a model’s weights (Sec. 3).

* We then turn to the kernel machines corresponding to infinitely-wide networks trained
with small learning rate to deepen our understanding of adversarial robustness. Using the
spectrum of the NTK, we give an alternative definition of features, providing a natural
decomposition or perturbations into robust and non-robust parts [23, 43] (Fig. 1). We
confirm that robust features overwhelmingly correspond to the top part of the eigenspectrum;
hence they are learned early on in training. We bolster previously conjectured hypotheses
that prediction relies on both robust and non-robust features and that robustness is traded for
accuracy during standard training. Further, we show that only utilizing the robust features of
standard models is not sufficient for robust classification (Sec. 4).
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* We turn to finite-width neural nets with standard parameters to study the dynamics of their
empirical NTK during adversarial training. We show that the kernel rotates in a way that
enables both new (robust) feature learning and that drastically increases of the importance
(relative weight) of the robust features over the non-robust ones. We further highlight
the structural differences of the kernel change during adversarial training versus standard
training and observe that the kernel seems to enter the “lazy” regime much faster (Sec. 5).

Collectively, our findings may help explain many phenomena present in the adversarial ML literature
and further elucidate both the vulnerability of standard models and the robustness of adversarially
trained ones. We provide code to visualize features induced by kernels, giving a unique and principled
way to inspect features induced by standardly trained nets.

Related work: To the best of our knowledge the only prior work that leverages NTK theory to derive
perturbations in some adversarial setting is due to [44], yet with entirely different focus. It deals
with what is coined generalization attacks: the process of altering the training data distribution to
prevent models to generalise on clean data. [6] study aspects of robust models through their linearized
sub-networks, but do not leverage NTKs. Our work is the first to provide a kernel-induced notion of
features and to study robustness in adversarial training in the NTk regime.

2 Preliminaries

We introduce background material and definitions important to our analysis. Here, we restrict
ourselves to binary classification and scalar kernels, to keep notation light. We defer the multiclass
case, complete definitions and a more detailed discussion of prior work to the Appendix.

2.1 Adversarial Examples

Let f be a classifier, x be an input (e.g. a natural image) and v its label (e.g. the image class). Then,
given that f is an accurate classifier on x, X is an adversarial example [41] for f if 1) their distance
d(x,%) is small. Common choices in computer vision are the ¢, norms, especially the ¢, norm on
which we focus henceforth, and 2) f(X) # y. That is, the perturbed input is being misclassified.

Given a loss function £, such as cross-entropy, one can construct an adversarial example X = x + 7
by finding the perturbation 7 that produces the maximal increase of the loss, solving
n = arg, max L(fx+m)y), (D
Nl <e
for some € > 0 that quantifies the dissimilarity between the two examples. In general, this is a
non-convex problem and one can resort to first order methods [21]

X =x+€-sign (VL L(f(x),y)), 2)
or iterative versions for solving it [26, 30]. The former method is usually called Fast Gradient Sign
Method (FGSM) and the latter Projected Gradient Descent (PGD). These methods are able to produce
examples that are being misclassified by common neural networks with a probability that approaches
1 [12]. Even more surprisingly, it has been observed that adversarial examples crafted to “fool” one
machine learning model are consistently capable of “fooling” others [35, 36], a phenomenon that
is known as the transferability of adversarial examples. Finally, adversarial training refers to the
alteration of the training procedure to include adversarial samples for teaching the model to be robust
[21, 30] and empirically holds as the strongest defense against adversarial examples [30, 45].

2.2 Robust and Non-Robust features

Despite a vast amount of research, the reasons behind the existence of adversarial examples are
not perfectly clear. A line of work has argued that a central reason is the presence of robust and
non-robust features in the data that standard models learn to rely upon [23, 43]. In particular it
is conjectured that reliance on useful but non-robust features during training is responsible for the
brittleness of neural nets. Here, we reproduce the feature definitions of [23], and extend them for
multi-class problems (see Appendix).

We define features as functions that map the input space to the output space. Let D be the data
generating distribution with z € X and y € {£1}. We denote a feature by a function ¢ : X — R.
Fix p, v > 0. We distinguish features based on the following definitions:
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1. Useful feature: A feature ¢ is called p-useful if it is correlated with the true label in
expectation, that is if

Ex,y~D¢(m)y Z P (3)

2. Robust feature: A feature ¢ is called «y-robust if it correlated with the true label under any
perturbation inside a bounded “ball” B, that is if

Ezy~p §21fs d(x+0d)y >~ 4)

A feature is called useful, non-robust if 3p > 0 such that is useful, but no v > 0 to be robust.

The vast majority of works imagines features as being induced by the activations of neurons in
the net, most commonly those of the penultimate layer (representation-layer features), but this
formal definition is in no way restricted to activations, and we will show how to exploit it using
the eigenspectrum of the NTK. In particular, in Sec. 4, we demonstrate that the above framework
agrees perfectly with features induced by the eigenspectrum of the NTK of a network, providing a
natural way to decompose the predictions of the NTK into such feature functions. In particular we
can identify robust, useful, and, indeed, useful non-robust features.

2.3 Neural Tangent Kernel

Let f : R? — R be a (scalar) neural network with a linear final layer parameterized by a set of
weights w and {X’, '} be a dataset of size n, with X € R"*? and J € {41}". Linearized training
methods study the first order approximation

O wipn) = F(x3we) + Ve fwe) T (Wi — wy). &)

The network gradient V., f (x; w;) induces a kernel function ©, : R x RY - R, usually referred as
the Neural Tangent Kernel (NTK) of the model

Gt(xyxl) = vwf(x; Wt)vaf(X/;Wt)~ (6)

This kernel describes the dynamics with infinitesimal learning rate (gradient flow). In general, the
tangent space spanned by the V., f(x; wy) twists substantially during training, and learning with the
Gram matrix of Eq. (6) (empirical NTK) corresponds to training along an intermediate tangent plane.
Remarkably, however, in the infinite width limit with appropriate initialization and low learning rate,
it has been shown that f becomes a linear function of the parameters [24, 28], and the NTK remains
constant (©; = Oy =: ©). Then, for learning with /5 loss the training dynamics of infinitely wide
networks admits a closed form solution corresponding to kernel regression [4, 24, 27]

fi(x) = 0(x, X)TO (X, X)(I — e AOTNy, (7)

where x € R? is any input (training or testing), ¢ denotes the time evolution of gradient descent,
A is the (small) learning rate and, slightly abusing notation, © (X, X') € R™*™ denotes the matrix
containing the pairwise training values of the NTK, O(X, X);; = O(x;,x;), and similarly for
O(x,X) € R™. To be precise, Eq. (7) gives the mean output of the network using a weight-
independent kernel with variance depending on the initialization'.

3 White box = Black box in the kernel regime

In this section, we show how to generate adversarial examples from NTKSs and discuss their similarity
to the ones generated by the actual networks.

3.1 Generation of Adversarial Examples for Infinitely Wide Neural Networks

Adversarial examples arise in the context of classification, while the NTK learning process is
described by a regression as in Eq. (7). The arguably simplest way to align with the framework
presented in Eq. (1) is to treat the outputs of the kernel similar to logits of a neural net, mapping them
to a probability distribution via the sigmoid/softmax function and apply cross-entropy loss.

"For that reason, in the experiments, we often compare this with the centered prediction of the actual neural
network, f — fo, as is commonly done in similar studies [15].
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A simple calculation (see Appendix, together with the generalization to the multi-class case) gives:

The optimal one step adversarial example of a scalar, infinitely wide, neural network is given by

X=Xx- ye - sign (vxft(x)) ) (8)

for ||X — x||oo < &, Where Vi fi(X) = V<O (x, X) TO™H (X, X) (I — e XXXy,

One can conceive other ways to generate adversarial perturbations for the kernel, either by changing
the loss function (as previously done in neural networks (e.g. [12])) or through a Taylor expansion
around the test input, and we present such alternative derivations in the Appendix. However, in
practice we observe little difference between that approach and the one presented here.

3.2 Transfer results and black box attacks

Predictions from NTK theory for infinitely wide neural networks have been used successfully for their
large finite width counterparts, so it seems reasonable to conjecture that adversarial perturbations
generated via the kernel as in Eq. (8) strongly resemble those directly computed for the corresponding
neural net as per Eq. (2). In particular, this would imply that adversarial perturbations derived from
the NTK should not only fool the kernel machine itself, but also lead wide neural nets to misclassify.
While similar transfer results in different contexts have been observed indirectly, via the effects of
the perturbation on metrics like accuracy [32, 44], we aim to look deeper to compare perturbations
directly. High similarity would imply that any gradient based white-box attack on the neural net can
be successfully mimicked by a “black-box” kernel derived attack.

Cosine similarity of loss gradients

Setting. To this end, we train multiple two-layer neural networks on -
image classifications tasks extracted from MNIST and CIFAR-10
and compare adversarial examples generated by Eqgs. (2) (attacking
the neural network) and (8) (attacking the kernel). The networks
are trained with small learning rate and are sufficiently large, so lie
close to the NTK regime. We track cosine similarity between the
gradients of the loss from the NTK predictions and the gradients
from the actual neural net as training evolves. Then, we generate
adversarial perturbations from both the neural net and the kernel
machine, and test whether those produced by the latter can fool the <
former. Full experimental details can be found in the Appendix. "

Robust accuracy

=== NTK width 10°
—— FGSM width 10°
-a- NTK width 10*
—— FGSM width 10°

Results. Our experiments confirm a very strong alignment of loss

gradients from the neural nets and the NTK across the whole dura-

tion of training, as can be seen in Fig. 4 (top). Then, as expected,
kernel-generated attacks produce a similar drop in accuracy through-
out training as the networks “own” white-box attacks, eventually
driving robust accuracy to 0%, as seen in Fig. 4 (bottom). We re-
produce these plots for MNIST in the Appendix, leading to similar

Figure 4: Top. Cosine simi-
larity between the loss gradi-
ent of the neural net and of
the NTK prediction for the
same time point. Bottom. Ro-
bust accuracy of neural net

conclusions. against its own adversarial ex-

When concerned with security aspects of neural nets, adversarial amples (solid) and correspond-

attacks are mainly characterised as either white-box or black-box ing NTK examples (dashed).
attacks [36]. White box attacks assume full access to the neural CIFARIO, car vs plane.
network and in particular its weights; prominent examples include FGSM/PGD attacks. Black box
attacks, on the other hand, can only query the model to try to infer the gradient of the loss, either
through training separate surrogate models [35] or through carefully crafted input-output pairs fed to
the target model [2, 13, 22]. However, NTK theory and the experiments of this section suggest that
these two scenarios are not so distinct for very wide neural networks.

Indeed, devising adversarial attacks using Eq. (8) does not require access to the model or its weights,
nor training of a substitute model. For fixed architecture and training data, all the information required
for the computation of (8) is readily available at initialization and in many cases described by an
analytical expression. In a sense, we can think of this “NTK-attack” as the most faithful (to the target
model) black-box attack among all those that leverage a substitute model to infer loss gradients.
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4 NTK eigenvectors induce robust and non-robust features

This close connection between adversarial perturbations from the kernel and the corresponding neural
net gives us the opportunity to bring to bear kernel tools on the study of adversarial robustness and its
relation to features in a more direct fashion. Several recent works leverage properties of the NTK,
and specifically its spectrum, to study aspects of approximation and generalization in neural networks
[3. 8,9, 10]. Here we show how the spectrum relates to robustness and helps to clarify the notion of
robust/non-robust features.

We define features induced by the eigendecomposition of the Gram matrix O(X, X) = Y"1 | \iv;v] .
We will be most interested in the end of training, when the model has access to all the features it can
extract from the training data X. As ¢t — oo, Eq. (7) becomes f..(x) = O(x, X)TO(X, x)"1Y
and can be decomposed as foo(x) = O(x, X) T 30 A viv Y =30 | £ (x), where

FORY 5 R FO(x) = A1, X) Tviv, V. )

Each f() can be seen as a unique feature captured from the (training) data. Note that these functions
map the input to the output space, thus matching the definitions of Sec. 2.2. Also observe that
all £(s jointly recover the original prediction of the model, while each one, intuitively, should
contribute something different to it.

Importantly, these features induce a decomposition of the gradient of the loss into parts, each
representing gradients of a unique feature as already advertised in Fig. 1. The binary case is
particularly elegant as it gives rise to a linear decomposition of the gradient as

Vil (foo(%),5) = Y iV L(fD (%), 1), (10)
1=1

for some «; depending on x and y (see Appendix). But if f()’s are features, how do they look like?

Feature properties of common architectures: With these Car features
definitions in place, we can now analyze the characteristics L
of features for commonly used architectures, leveraging their
associated NTK. To be consistent with the previous section, we
consider classification problems from MNIST (10 classes) and
CIFAR-10 (car vs airplane). We compose the Gram matrices
from the whole training dataset (50000 and 10000, respectively),
and compute the different feature functions f(*) using the eigen-
decomposition of the matrix. We estimate the usefulness of a
feature f(*) by measuring its accuracy on a hold-out validation ve e
set, and its robustness by perturbing each input of this set, oy i - B Mol TR
using an FGSM attack on feature f(*). We consider several index: 8018, ciass acc: 67.9 index: 8085, class acc: 72.3
different Fully Connected and Convolutional Kernels, whose Figure 5: Non-robust, useful fea-
expressions are available through the Neural Tangents library tures earlier and later in the spec-
[33], built on top of JAX [11]. We summarize our findings on trum, for CIFAR10 car and plane.
how these features behave:

Plane features
Csi]

Functions %) represent visually distinct features. We visualise each feature f(*) by plotting its
gradient with respect to x. Fig. 2 shows the gradient of the first 5 features for various architectures
for a specific image from the CIFAR-10 dataset. We observe that features are fairly consistent across
models, and they are interpretable: for example the 4th feature seems to represent the dominant color
of an image, while the 5th one seems to be capturing horizontal edges.

Networks use both robust and non-robust features for prediction. It has been speculated that neural
networks trained in a standard (non adversarial) fashion rely on both robust and non-robust features.
Our feature definition in Eq. (9) shows that this is indeed the case. The NTK of common neural
networks consists of both robust features that match human expectations, such as the ones depicted in
Fig. 2, but also on features that are predictive of the true label, while not being robust to adversarial
perturbations of the input (Fig. 5). Fig. 2 depicts the first 100 features of a fully connected and a
convolutional tangent kernel in Usefulness-Robustness space. The upper left region of the plots shows
a large amount of useful, yet non-robust features. These features seem random to human observers.
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Figure 6: Left: Kernel Matrices for a mini batch of size 256. Left to Right: Kernel at initialization,
Kernel after standard training, Kernel after adversarial training (20 pgd steps). The standard kernel
grows significantly more than the adversarial one. Right: (a) Kernel Frobenius norm evolution,
and (b) concentration on the top 20 eigenvalues during standard and adversarial training. Setting:
CIFARI1O0, {o, = 8/255.

Robustness lies at the top. We observe in Fig. 2 that features corresponding to the top eigenvectors
tend to be robust. This is consistent among different models and between the two datasets (see
Appendix). Since these eigenvectors are the ones fitted first during training [3, 24], it is no wonder
that the loss gradient evolves from coherence to noise, as observed in Fig. Al. This also explains the
apparent trade-off between robustness and accuracy of neural networks as training progresses: useful,
robust features are fitted first, followed by useful, but non-robust ones. This ties in well with both
empirical findings [37] and theoretical case studies [8, 9, 10] that demonstrate that low frequency
functions are fitted first during training and provide favorable generalization properties and we would
associate robust features with these low-frequency parts.

Robust features alone are not enough. In light of these findings, it might be reasonable to conjecture
that we could obtain robust models by retaining the robust features of the prediction, while discarding
the non-robust ones. The spectral approach gives a principled way to disentangle features and create
kernel machines keeping only the robust ones. Our results show that in general it is not possible to
obtain non-trivial performance without compromising robustness in this fashion, strengthening the
case for the necessity of data augmentation in the form of adversarial training (see the Appendix for
an in-depth study).

S Kernel dynamics during adversarial training

Given the apparent necessity for adversarial training to produce robust models, how does it achieve
this goal? To shed some light on this fundamental question, we depart from the “lazy” NTK regime
and study the evolution of the NTK of adversarially trained models. For a neural network trained
with gradient descent, as the learning rate  — 0, the continuous time dynamics can be written as

ow +0L of + 0L
T NVl = =1V f af and Eri Vi [V f aF 1D
O

In the NTK regime, this kernel ©; remains fixed at its initial value. However, outside this regime, it
has been demonstrated, both empirically [7, 18, 19, 34] and theoretically [5], that ©; is not constant
during training, and is changing as the weights move. In adversarial training, moreover, there is the
additional effect that at each weight update, the data changes as well. For that reason, understanding
the dynamics of adversarial training requires tracking the evolution of a kernel O, (X}, X;), where
X denotes the current (mini) batch of training data. Notice that the tangent vector V,, f (X} ) is still
describing the instantaneous change of f on the current batch of data, thus ©,(X}, X;) is informative
of the local geometry of the function space, justifying its value as a quantity to be measured during
adversarial training.

We train a deep convolutional architecture on CIFAR-10 (multiclass) with standard (sgd) and adver-
sarial training using PGD with an /., constraint. Full implementations details and accuracy curves
can be found in the Appendix, together with the reproduction of the same experiment on MNIST,
where the observations are similar. We track the following quantities during training:

Kernel distance. We compare two kernels using a scale invariant distance, which quantifies the
relative rotation between them, as used in other works studying NTK dynamics (e.g. [18]):
d(©;,0;)=1- .

V(6,677 /Tx(0,0])
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Polar dynamics. Zooming in on the change that the initial kernel undergoes, we define a polar space
on which we measure the movement of the kernel:

_ 1ot —6o|lr
TE= S

107 = Gollr
where O, Oy are the initial and final kernel, respectively. Fig. 3 presents a heatmap of kernel

distances at different time steps for both standard and adversarial training, as well as both training
trajectories in polar space.

0y = arccos (1 — d(©¢,0y)), (12)

Concentration on subspaces. To quantify weight concentration on the top region of the spectrum,
we track the (normalized) Frobenius norm of subspaces as y &, AZ/>""" | A?, for various cut-offs p,
where we have indexed the eigenvalues from largest to smallest. Fig. 6 depicts concentration on the
top 20 eigenvalues during training.

Our findings show that similar to what has been reported in prior work [18], the kernel rotates
significantly in the beginning of training and then slows down for both standard and adversarial
training. However, in the latter case, this second phase begins a lot earlier. As Fig. 3 illuminates,
the kernel moves a greater distance than when performing standard training, but after a few epochs
it stops both rotating and expanding; note that this is not the case for standard training where the
kernel increases its magnitude substantially later in training, and in fact grows to have a norm orders
of magnitude larger than during adversarial training (see Fig. 6). In hindsight, this behavior is
perhaps not surprising, as each element of the kernel measures similarity between data points, and
a robust machine should be more conservative when estimating similarity. The observation that
during adversarial training the kernel becomes relatively static relatively fast might indicate that
linear dynamics govern the later phase of adversarial training. It has been observed in previous
works [18, 19, 34] that linearization after a few initial epochs of rapid rotation often closely matches
performance of full network training. Our results indicate that a similar phenomenon occurs even
under the data shift of adversarial training, opening avenues to design robust machines more efficiently.

Moreover, endowed with the knowledge that at least for kernels trained with static data robust features
lie at the top, we study polar dynamics of the top space only (additional plots in the Appendix) to
observe that there is substantial rotation in this space, suggesting that robust features are learned early
on not only during standard, but in particular during adversarial training. Even more interestingly,
Fig. 6 demonstrates that not only the robust features change, but their relative weight as measured
by the concentration on the top-20 space is increasing simultaneously relative to standard training,
and remains large; in fact, significantly larger than during standard training. As each eigenvalue
weights the importance of the corresponding feature on the final prediction, this implies that the
kernel “learns” to depend more on the most robust features.

Put together, these findings reveal different kernel dynamics during standard and adversarial training:
the kernel rotates much faster, expands much less and becomes “lazy” much earlier than during
standard training. Fully understanding the properties of converged adversarial kernels remains an
important avenue for future work, that might allow to design faster algorithms for robust classification.

6 Final Remarks

We have studied adversarial robustness through the lens of the NTK across multiple architectures
and data sets both in the idealized NTK regime and the “rich feature” regime. When connecting the
spectrum of the kernel with fundamental properties characterizing robustness our phenomenological
study reveals a universal picture of the emergence of robust and non-robust features and their role
during training. There are certain limitations and unexplored themes in our work; Sec. 3 argues that
transferable attacks from the NTK may be as effective as white-box attacks, but this warrants an
in-depth study across architectures, kernels and data sets (which has not been the main focus of this
work). Sec. 4 visualises features for fairly simple models, since the computation of kernel derivatives
is a costly procedure. It would be interesting to use our framework to visualise features from more
complicated architectures. Finally, our work in Sec. 5 invites more research on the kernel at the end
of adversarial training, similar to what has been done for standard models [29].

We hope that our viewpoint can motivate further theoretical understanding of adversarial phenomena
(such as transferability) and the design of better and/or faster adversarial learning algorithms, by
further analyzing the kernels from robust deep neural networks.
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