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Abstract

Adversarial vulnerability of neural nets, and subsequent techniques to create robust1

models have attracted significant attention; yet we still lack a full understand-2

ing of this phenomenon. Here, we study adversarial examples of trained neural3

networks through analytical tools afforded by recent theory advances connecting4

neural networks and kernel methods, namely the Neural Tangent Kernel (NTK),5

following a growing body of work that leverages the NTK approximation to suc-6

cessfully analyze important deep learning phenomena and design algorithms for7

new applications. We show how NTKs allow to generate adversarial examples in8

a “training-free” (black-box) fashion, and demonstrate that they transfer to fool9

their finite-width neural net counterparts. We leverage this connection to provide10

an alternative view on robust and non-robust features, which have been suggested11

to underlie the adversarial brittleness of neural nets. Specifically, we define and12

study features induced by the eigendecomposition of the associated kernel to better13

understand the role of robust and non-robust features, the reliance on both for14

standard classification and the robustness-accuracy trade-off. We find that such15

features are surprisingly consistent across architectures, and that robust features16

tend to correspond to the largest eigenvalues of the model, and thus are learned17

early during training. Our framework allows us to identify and visualize non-robust18

yet useful features. Finally, we shed light on the robustness mechanism underlying19

adversarial training of neural nets used in practice: quantifying the evolution of20

the associated empirical NTK, we demonstrate that its dynamics falls much earlier21

into the “lazy” kernel regime and manifests a much stronger form of the well22

known bias to prioritize learning features within the top eigenspaces of the kernel,23

compared to standard training.24

1 Introduction25

Despite the tremendous success of deep neural networks in many computer vision and language26

modeling tasks, as well as in scientific discoveries, their properties and the reasons for their success27

are still poorly understood. Focusing on computer vision, a particularly surprising phenomenon28

evidencing that those machines drift away from how humans perform image recognition is the29

presence of adversarial examples, images that are almost identical to the original ones, yet are30

misclassified by otherwise accurate models.31

Since their discovery [41], a vast amount of work has been devoted to understanding the sources of32

adversarial examples and explanations include, but are not limited to, the close to linear operating33

mode of neural nets [21], the curse of dimensionality carried by the input space [21, 39], insufficient34

model capacity [31, 43] or spurious correlations found in common datasets [23]. In particular,35

one widespread viewpoint is that adversarial vulnerability is the result of a model’s sensitivity to36
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Figure 1: Left. Standard setup of an adversarial attack, where a barely perceivable perturbation is
added to an image to confuse an accurate classifier. Right. The correspondence between neural
networks and kernel machines allows to visualize a decomposition of this perturbation, each part
attributed to a different feature of the model. The first few features tend to be robust.

imperceptible yet well-generalizing features in the data, so called useful non-robust features, giving37

rise to a trade-off between accuracy and robustness [43, 45]. This gradual understanding has enabled38

the design of training algorithms, that provide convincing, yet partial, remedies to the problem; the39

most prominent of them being adversarial training and its many variants [16, 21, 30]. Yet we are far40

from a mature, unified theory of robustness that is powerful enough to universally guide engineering41

choices or defense mechanisms.42

In this work, we aim to get a deeper understanding of adversarial robustness (or lack thereof) by43

focusing on the recently established connection of neural networks with kernel machines. Infinitely44

wide neural networks, trained via gradient descent with infinitesimal learning rate, provably become45

kernel machines with a data-independent, but architecture dependent kernel - its Neural Tangent46

Kernel (NTK) - that remains constant during training [4, 24, 27, 28]. The analytical tools afforded by47

the rich theory of kernels have resulted in progress in understanding the optimization landscape and48

generalization capabilities of neural networks [3, 17], together with the discovery of interesting deep49

learning phenomena [18, 34], while also inspiring practical advances in diverse areas of applications50

such as the design of better classifiers [38], efficient neural architecture search [14], low-dimensional51

tasks in graphics [42] and dataset distillation [32]. While the NTK approximation is increasingly52

utlilized, even for finite width neural nets, little is known about the adversarial robustness properties53

of these infinitely wide models.54

Our contribution: Our work inscribes itself into the quest to leverage analytical tools afforded by55

kernel methods, in particular spectral analysis, to track properties of interest in the associated neural56

nets, in this case as they pertain to robustness. We study adversarial perturbations and robustness of57

kernels so as to enrich our understanding of adversarial robustness in general machine learning models.58

To this end, we first demonstrate that adversarial perturbations generated analytically with the NTK59

can successfully lead the associated trained wide neural networks to misclassify, thus allowing kernels60

to faithfully predict the lack of robustness of trained neural networks. In other words, adversarial61

(non-) robustness transfers from kernels to networks; and adversarial perturbations generated via62

kernels resemble those generated by the corresponding trained networks. One implication of this63

transferability is that we can analytically devise adversarial examples that do not require access to the64

trained model, and in particular its weights; instead these “blind spots” may be calculated a-priori,65

before training starts. Although similar transferability has already been known and exploited in prior66

work that trains substitute models, we demonstrate that this notion holds from first principles that67

only require the a-priori description of the model architecture. The analytical expressions afforded by68

the kernel might provide a better understanding of the elusive concept of transferability also across69

architectures, as the corresponding expressions for the associated kernels can be compared directly.70

A perhaps even more crucial implication of the NTK approach to robustness relates to the understand-71

ing of adversarial examples. Indeed, we show how the spectrum of the NTK provides an alternative72

way to define features of the model, to classify them according to their robustness and usefulness73

and visually inspect them via their contribution to the adversarial perturbation (see Fig. 1). This74

in turn allows us to verify previously conjectured properties of standard classifiers; dependence on75

both robust and non-robust features in the data [43], and tradeoff of accuracy and robustness during76

training. In particular we observe that features tend to be rather invariable across architectures, and77

that robust features tend to correspond to the top of the eigenspectrum (see Fig. 2), and as such are78

learned first by the corresponding wide nets [3, 24]. Moreover, we are able to visualize useful non-79

robust features of standard models (Fig. 5). While this conceptual feature distinction has been highly80

influential in recent works that study the robustness of deep neural networks [1, 25, 40], to the best of81

our knowledge, none of them has explicitly demonstrated the dependence of networks on such feature82

functions (except for simple linear models [20]). Rather, these works either reveal such features in83

some indirect fashion, or accept their existence as an assumption. Here, we show that Neural Tangent84
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Figure 2: Left: Top 5 features for 7 different kernel architectures for a car image extracted from the
CIFAR10 dataset when trained on car and plain images. Right: Features according to their robustness
(x-axis) and usefulness (y-axis). Larger/darker bullets correspond to larger eigenvalues.
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Figure 3: Left: Kernel rotation during standard, and adversarial training. Left to right: MNIST,
standard, MNIST adversarial, CIFAR standard, CIFAR adversarial. Right: Kernel trajectories in
polar space for MNIST (left) and CIFAR10 (right). Darker colors indicate earlier epochs.

Kernel theory endows us with a natural definition of features through its eigen-decomposition and85

provides a way to visualise and inspect robust and non-robust features directly on the function space86

of trained neural networks.87

Interestingly, this connection also enables us to empirically demonstrate that robust features of88

standard models alone are not enough for robust classification. Aiming to understand, then, what89

makes robust models robust, we track the evolution of the data-dependent empirical NTK during90

adversarial training of neural networks used in practice. Prior experimental work has found that91

networks with non-trivial width to depth ratio which are trained with large learning rates, depart from92

the NTK regime and fall in the so-called “rich feature” regime, where the NTK changes substantially93

during training [7, 18, 19, 34]. In our work, which to the best of our knowledge is the first to94

provide insights on how the kernel behaves during adversarial training, we find that the NTK evolves95

much faster compared to standard training, simultaneously both changing its features and assigning96

more importance to the more robust ones, giving direct insight into the mechanism at play during97

adversarial training (see Fig. 3). In summary, the contributions of our work are the following:98

• We discuss how to generate adversarial examples for infinitely-wide neural networks via the99

NTK, and then show that they transfer to confuse their associated (finite width) networks. In100

particular this constitutes a new “black-box” way to generate adversarial examples without101

access to a model’s weights (Sec. 3).102

• We then turn to the kernel machines corresponding to infinitely-wide networks trained103

with small learning rate to deepen our understanding of adversarial robustness. Using the104

spectrum of the NTK, we give an alternative definition of features, providing a natural105

decomposition or perturbations into robust and non-robust parts [23, 43] (Fig. 1). We106

confirm that robust features overwhelmingly correspond to the top part of the eigenspectrum;107

hence they are learned early on in training. We bolster previously conjectured hypotheses108

that prediction relies on both robust and non-robust features and that robustness is traded for109

accuracy during standard training. Further, we show that only utilizing the robust features of110

standard models is not sufficient for robust classification (Sec. 4).111
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• We turn to finite-width neural nets with standard parameters to study the dynamics of their112

empirical NTK during adversarial training. We show that the kernel rotates in a way that113

enables both new (robust) feature learning and that drastically increases of the importance114

(relative weight) of the robust features over the non-robust ones. We further highlight115

the structural differences of the kernel change during adversarial training versus standard116

training and observe that the kernel seems to enter the “lazy” regime much faster (Sec. 5).117

Collectively, our findings may help explain many phenomena present in the adversarial ML literature118

and further elucidate both the vulnerability of standard models and the robustness of adversarially119

trained ones. We provide code to visualize features induced by kernels, giving a unique and principled120

way to inspect features induced by standardly trained nets.121

Related work: To the best of our knowledge the only prior work that leverages NTK theory to derive122

perturbations in some adversarial setting is due to [44], yet with entirely different focus. It deals123

with what is coined generalization attacks: the process of altering the training data distribution to124

prevent models to generalise on clean data. [6] study aspects of robust models through their linearized125

sub-networks, but do not leverage NTKs. Our work is the first to provide a kernel-induced notion of126

features and to study robustness in adversarial training in the NTk regime.127

2 Preliminaries128

We introduce background material and definitions important to our analysis. Here, we restrict129

ourselves to binary classification and scalar kernels, to keep notation light. We defer the multiclass130

case, complete definitions and a more detailed discussion of prior work to the Appendix.131

2.1 Adversarial Examples132

Let f be a classifier, x be an input (e.g. a natural image) and y its label (e.g. the image class). Then,133

given that f is an accurate classifier on x, x̃ is an adversarial example [41] for f if 1) their distance134

d(x, x̃) is small. Common choices in computer vision are the ℓp norms, especially the ℓ∞ norm on135

which we focus henceforth, and 2) f(x̃) ̸= y. That is, the perturbed input is being misclassified.136

Given a loss function L, such as cross-entropy, one can construct an adversarial example x̃ = x+ η137

by finding the perturbation η that produces the maximal increase of the loss, solving138

η = arg max
∥η∥∞≤ϵ

L(f(x+ η), y), (1)

for some ϵ > 0 that quantifies the dissimilarity between the two examples. In general, this is a139

non-convex problem and one can resort to first order methods [21]140

x̃ = x+ ϵ · sign (∇xL(f(x), y)) , (2)
or iterative versions for solving it [26, 30]. The former method is usually called Fast Gradient Sign141

Method (FGSM) and the latter Projected Gradient Descent (PGD). These methods are able to produce142

examples that are being misclassified by common neural networks with a probability that approaches143

1 [12]. Even more surprisingly, it has been observed that adversarial examples crafted to “fool” one144

machine learning model are consistently capable of “fooling” others [35, 36], a phenomenon that145

is known as the transferability of adversarial examples. Finally, adversarial training refers to the146

alteration of the training procedure to include adversarial samples for teaching the model to be robust147

[21, 30] and empirically holds as the strongest defense against adversarial examples [30, 45].148

2.2 Robust and Non-Robust features149

Despite a vast amount of research, the reasons behind the existence of adversarial examples are150

not perfectly clear. A line of work has argued that a central reason is the presence of robust and151

non-robust features in the data that standard models learn to rely upon [23, 43]. In particular it152

is conjectured that reliance on useful but non-robust features during training is responsible for the153

brittleness of neural nets. Here, we reproduce the feature definitions of [23], and extend them for154

multi-class problems (see Appendix).155

We define features as functions that map the input space to the output space. Let D be the data156

generating distribution with x ∈ X and y ∈ {±1}. We denote a feature by a function ϕ : X → R.157

Fix ρ, γ > 0. We distinguish features based on the following definitions:158
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1. Useful feature: A feature ϕ is called ρ-useful if it is correlated with the true label in159

expectation, that is if160

Ex,y∼Dϕ(x)y ≥ ρ (3)

2. Robust feature: A feature ϕ is called γ-robust if it correlated with the true label under any161

perturbation inside a bounded “ball” B, that is if162

Ex,y∼D inf
δ∈B

ϕ(x+ δ)y ≥ γ (4)

A feature is called useful, non-robust if ∃ρ > 0 such that is useful, but no γ > 0 to be robust.163

The vast majority of works imagines features as being induced by the activations of neurons in164

the net, most commonly those of the penultimate layer (representation-layer features), but this165

formal definition is in no way restricted to activations, and we will show how to exploit it using166

the eigenspectrum of the NTK. In particular, in Sec. 4, we demonstrate that the above framework167

agrees perfectly with features induced by the eigenspectrum of the NTK of a network, providing a168

natural way to decompose the predictions of the NTK into such feature functions. In particular we169

can identify robust, useful, and, indeed, useful non-robust features.170

2.3 Neural Tangent Kernel171

Let f : Rd → R be a (scalar) neural network with a linear final layer parameterized by a set of172

weights w and {X ,Y} be a dataset of size n, with X ∈ Rn×d and Y ∈ {±1}n. Linearized training173

methods study the first order approximation174

f(x;wt+1) = f(x;wt) +∇wf(x;wt)
⊤(wt+1 −wt). (5)

The network gradient ∇wf(x;wt) induces a kernel function Θt : Rd ×Rd → R, usually referred as175

the Neural Tangent Kernel (NTK) of the model176

Θt(x,x
′) = ∇wf(x;wt)

⊤∇wf(x′;wt). (6)

This kernel describes the dynamics with infinitesimal learning rate (gradient flow). In general, the177

tangent space spanned by the ∇wf(x;wt) twists substantially during training, and learning with the178

Gram matrix of Eq. (6) (empirical NTK) corresponds to training along an intermediate tangent plane.179

Remarkably, however, in the infinite width limit with appropriate initialization and low learning rate,180

it has been shown that f becomes a linear function of the parameters [24, 28], and the NTK remains181

constant (Θt = Θ0 =: Θ). Then, for learning with ℓ2 loss the training dynamics of infinitely wide182

networks admits a closed form solution corresponding to kernel regression [4, 24, 27]183

ft(x) = Θ(x,X )⊤Θ−1(X ,X )(I − e−λΘ(X ,X )t)Y, (7)

where x ∈ Rd is any input (training or testing), t denotes the time evolution of gradient descent,184

λ is the (small) learning rate and, slightly abusing notation, Θ(X ,X ) ∈ Rn×n denotes the matrix185

containing the pairwise training values of the NTK, Θ(X ,X )ij = Θ(xi,xj), and similarly for186

Θ(x,X ) ∈ Rn. To be precise, Eq. (7) gives the mean output of the network using a weight-187

independent kernel with variance depending on the initialization1.188

3 White box = Black box in the kernel regime189

In this section, we show how to generate adversarial examples from NTKs and discuss their similarity190

to the ones generated by the actual networks.191

3.1 Generation of Adversarial Examples for Infinitely Wide Neural Networks192

Adversarial examples arise in the context of classification, while the NTK learning process is193

described by a regression as in Eq. (7). The arguably simplest way to align with the framework194

presented in Eq. (1) is to treat the outputs of the kernel similar to logits of a neural net, mapping them195

to a probability distribution via the sigmoid/softmax function and apply cross-entropy loss.196

1For that reason, in the experiments, we often compare this with the centered prediction of the actual neural
network, f − f0, as is commonly done in similar studies [15].
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A simple calculation (see Appendix, together with the generalization to the multi-class case) gives:197

The optimal one step adversarial example of a scalar, infinitely wide, neural network is given by198

x̃ = x− yϵ · sign (∇xft(x)) , (8)

for ∥x̃− x∥∞ ≤ ε, where ∇xft(x) = ∇xΘ(x,X )⊤Θ−1(X ,X )(I − e−λΘ(X ,X )t)Y .199

One can conceive other ways to generate adversarial perturbations for the kernel, either by changing200

the loss function (as previously done in neural networks (e.g. [12])) or through a Taylor expansion201

around the test input, and we present such alternative derivations in the Appendix. However, in202

practice we observe little difference between that approach and the one presented here.203

3.2 Transfer results and black box attacks204

Predictions from NTK theory for infinitely wide neural networks have been used successfully for their205

large finite width counterparts, so it seems reasonable to conjecture that adversarial perturbations206

generated via the kernel as in Eq. (8) strongly resemble those directly computed for the corresponding207

neural net as per Eq. (2). In particular, this would imply that adversarial perturbations derived from208

the NTK should not only fool the kernel machine itself, but also lead wide neural nets to misclassify.209

While similar transfer results in different contexts have been observed indirectly, via the effects of210

the perturbation on metrics like accuracy [32, 44], we aim to look deeper to compare perturbations211

directly. High similarity would imply that any gradient based white-box attack on the neural net can212

be successfully mimicked by a “black-box” kernel derived attack.213
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Setting. To this end, we train multiple two-layer neural networks on214

image classifications tasks extracted from MNIST and CIFAR-10215

and compare adversarial examples generated by Eqs. (2) (attacking216

the neural network) and (8) (attacking the kernel). The networks217

are trained with small learning rate and are sufficiently large, so lie218

close to the NTK regime. We track cosine similarity between the219

gradients of the loss from the NTK predictions and the gradients220

from the actual neural net as training evolves. Then, we generate221

adversarial perturbations from both the neural net and the kernel222

machine, and test whether those produced by the latter can fool the223

former. Full experimental details can be found in the Appendix.224

Results. Our experiments confirm a very strong alignment of loss225

gradients from the neural nets and the NTK across the whole dura-226

tion of training, as can be seen in Fig. 4 (top). Then, as expected,227

kernel-generated attacks produce a similar drop in accuracy through-228

out training as the networks “own” white-box attacks, eventually229

driving robust accuracy to 0%, as seen in Fig. 4 (bottom). We re-230

produce these plots for MNIST in the Appendix, leading to similar231

conclusions.232

When concerned with security aspects of neural nets, adversarial233

attacks are mainly characterised as either white-box or black-box234

attacks [36]. White box attacks assume full access to the neural235

network and in particular its weights; prominent examples include FGSM/PGD attacks. Black box236

attacks, on the other hand, can only query the model to try to infer the gradient of the loss, either237

through training separate surrogate models [35] or through carefully crafted input-output pairs fed to238

the target model [2, 13, 22]. However, NTK theory and the experiments of this section suggest that239

these two scenarios are not so distinct for very wide neural networks.240

Indeed, devising adversarial attacks using Eq. (8) does not require access to the model or its weights,241

nor training of a substitute model. For fixed architecture and training data, all the information required242

for the computation of (8) is readily available at initialization and in many cases described by an243

analytical expression. In a sense, we can think of this “NTK-attack” as the most faithful (to the target244

model) black-box attack among all those that leverage a substitute model to infer loss gradients.245
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4 NTK eigenvectors induce robust and non-robust features246

This close connection between adversarial perturbations from the kernel and the corresponding neural247

net gives us the opportunity to bring to bear kernel tools on the study of adversarial robustness and its248

relation to features in a more direct fashion. Several recent works leverage properties of the NTK,249

and specifically its spectrum, to study aspects of approximation and generalization in neural networks250

[3, 8, 9, 10]. Here we show how the spectrum relates to robustness and helps to clarify the notion of251

robust/non-robust features.252

We define features induced by the eigendecomposition of the Gram matrix Θ(X ,X ) =
∑n

i=1 λiviv
⊤
i .253

We will be most interested in the end of training, when the model has access to all the features it can254

extract from the training data X . As t → ∞, Eq. (7) becomes f∞(x) = Θ(x,X )⊤Θ(X ,X )−1Y255

and can be decomposed as f∞(x) = Θ(x,X )⊤
∑n

i=1 λ
−1
i viv

⊤
i Y =

∑n
i=1 f

(i)(x), where256

f (i) : Rd → Rk, f (i)(x) := λ−1
i Θ(x,X )⊤viv

⊤
i Y. (9)

Each f (i) can be seen as a unique feature captured from the (training) data. Note that these functions257

map the input to the output space, thus matching the definitions of Sec. 2.2. Also observe that258

all f (i)’s jointly recover the original prediction of the model, while each one, intuitively, should259

contribute something different to it.260

Importantly, these features induce a decomposition of the gradient of the loss into parts, each261

representing gradients of a unique feature as already advertised in Fig. 1. The binary case is262

particularly elegant as it gives rise to a linear decomposition of the gradient as263

∇xL(f∞(x), y) =

n∑
i=1

αi∇xL(f (i)(x), y), (10)

for some αi depending on x and y (see Appendix). But if f (i)’s are features, how do they look like?264

index: 1018, class acc: 67.9

Car features

index: 1081, class acc: 68.1

Plane features

index: 8018, class acc: 67.9 index: 8085, class acc: 72.3

Figure 5: Non-robust, useful fea-
tures earlier and later in the spec-
trum, for CIFAR10 car and plane.

Feature properties of common architectures: With these265

definitions in place, we can now analyze the characteristics266

of features for commonly used architectures, leveraging their267

associated NTK. To be consistent with the previous section, we268

consider classification problems from MNIST (10 classes) and269

CIFAR-10 (car vs airplane). We compose the Gram matrices270

from the whole training dataset (50000 and 10000, respectively),271

and compute the different feature functions f (i) using the eigen-272

decomposition of the matrix. We estimate the usefulness of a273

feature f (i) by measuring its accuracy on a hold-out validation274

set, and its robustness by perturbing each input of this set,275

using an FGSM attack on feature f (i). We consider several276

different Fully Connected and Convolutional Kernels, whose277

expressions are available through the Neural Tangents library278

[33], built on top of JAX [11]. We summarize our findings on279

how these features behave:280

Functions f (i) represent visually distinct features. We visualise each feature f (i) by plotting its281

gradient with respect to x. Fig. 2 shows the gradient of the first 5 features for various architectures282

for a specific image from the CIFAR-10 dataset. We observe that features are fairly consistent across283

models, and they are interpretable: for example the 4th feature seems to represent the dominant color284

of an image, while the 5th one seems to be capturing horizontal edges.285

Networks use both robust and non-robust features for prediction. It has been speculated that neural286

networks trained in a standard (non adversarial) fashion rely on both robust and non-robust features.287

Our feature definition in Eq. (9) shows that this is indeed the case. The NTK of common neural288

networks consists of both robust features that match human expectations, such as the ones depicted in289

Fig. 2, but also on features that are predictive of the true label, while not being robust to adversarial290

perturbations of the input (Fig. 5). Fig. 2 depicts the first 100 features of a fully connected and a291

convolutional tangent kernel in Usefulness-Robustness space. The upper left region of the plots shows292

a large amount of useful, yet non-robust features. These features seem random to human observers.293
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grows significantly more than the adversarial one. Right: (a) Kernel Frobenius norm evolution,
and (b) concentration on the top 20 eigenvalues during standard and adversarial training. Setting:
CIFAR10, ℓ∞ = 8/255.

Robustness lies at the top. We observe in Fig. 2 that features corresponding to the top eigenvectors294

tend to be robust. This is consistent among different models and between the two datasets (see295

Appendix). Since these eigenvectors are the ones fitted first during training [3, 24], it is no wonder296

that the loss gradient evolves from coherence to noise, as observed in Fig. A1. This also explains the297

apparent trade-off between robustness and accuracy of neural networks as training progresses: useful,298

robust features are fitted first, followed by useful, but non-robust ones. This ties in well with both299

empirical findings [37] and theoretical case studies [8, 9, 10] that demonstrate that low frequency300

functions are fitted first during training and provide favorable generalization properties and we would301

associate robust features with these low-frequency parts.302

Robust features alone are not enough. In light of these findings, it might be reasonable to conjecture303

that we could obtain robust models by retaining the robust features of the prediction, while discarding304

the non-robust ones. The spectral approach gives a principled way to disentangle features and create305

kernel machines keeping only the robust ones. Our results show that in general it is not possible to306

obtain non-trivial performance without compromising robustness in this fashion, strengthening the307

case for the necessity of data augmentation in the form of adversarial training (see the Appendix for308

an in-depth study).309

5 Kernel dynamics during adversarial training310

Given the apparent necessity for adversarial training to produce robust models, how does it achieve311

this goal? To shed some light on this fundamental question, we depart from the “lazy” NTK regime312

and study the evolution of the NTK of adversarially trained models. For a neural network trained313

with gradient descent, as the learning rate η → 0, the continuous time dynamics can be written as314

∂w

∂t
= −η∇wL = −η∇wf

⊤ ∂L
∂f

and
∂f

∂t
= −η∇wf∇wf

⊤︸ ︷︷ ︸
Θt

∂L
∂f

. (11)

In the NTK regime, this kernel Θt remains fixed at its initial value. However, outside this regime, it315

has been demonstrated, both empirically [7, 18, 19, 34] and theoretically [5], that Θt is not constant316

during training, and is changing as the weights move. In adversarial training, moreover, there is the317

additional effect that at each weight update, the data changes as well. For that reason, understanding318

the dynamics of adversarial training requires tracking the evolution of a kernel Θt(Xt,Xt), where319

Xt denotes the current (mini) batch of training data. Notice that the tangent vector ∇wf(Xt) is still320

describing the instantaneous change of f on the current batch of data, thus Θt(Xt,Xt) is informative321

of the local geometry of the function space, justifying its value as a quantity to be measured during322

adversarial training.323

We train a deep convolutional architecture on CIFAR-10 (multiclass) with standard (sgd) and adver-324

sarial training using PGD with an ℓ∞ constraint. Full implementations details and accuracy curves325

can be found in the Appendix, together with the reproduction of the same experiment on MNIST,326

where the observations are similar. We track the following quantities during training:327

Kernel distance. We compare two kernels using a scale invariant distance, which quantifies the
relative rotation between them, as used in other works studying NTK dynamics (e.g. [18]):

d(Θi,Θj) = 1−
Tr(ΘiΘ

⊤
j )√

Tr(ΘiΘ⊤
i )

√
Tr(ΘjΘ⊤

j )
.
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Polar dynamics. Zooming in on the change that the initial kernel undergoes, we define a polar space328

on which we measure the movement of the kernel:329

rt =
∥Θt −Θ0∥F
∥Θf −Θ0∥F

, θt = arccos (1− d(Θt,Θ0)) , (12)

where Θ0,Θf are the initial and final kernel, respectively. Fig. 3 presents a heatmap of kernel330

distances at different time steps for both standard and adversarial training, as well as both training331

trajectories in polar space.332

Concentration on subspaces. To quantify weight concentration on the top region of the spectrum,333

we track the (normalized) Frobenius norm of subspaces as
∑p

i=1 λ
2
i /

∑n
i=1 λ

2
i , for various cut-offs p,334

where we have indexed the eigenvalues from largest to smallest. Fig. 6 depicts concentration on the335

top 20 eigenvalues during training.336

Our findings show that similar to what has been reported in prior work [18], the kernel rotates337

significantly in the beginning of training and then slows down for both standard and adversarial338

training. However, in the latter case, this second phase begins a lot earlier. As Fig. 3 illuminates,339

the kernel moves a greater distance than when performing standard training, but after a few epochs340

it stops both rotating and expanding; note that this is not the case for standard training where the341

kernel increases its magnitude substantially later in training, and in fact grows to have a norm orders342

of magnitude larger than during adversarial training (see Fig. 6). In hindsight, this behavior is343

perhaps not surprising, as each element of the kernel measures similarity between data points, and344

a robust machine should be more conservative when estimating similarity. The observation that345

during adversarial training the kernel becomes relatively static relatively fast might indicate that346

linear dynamics govern the later phase of adversarial training. It has been observed in previous347

works [18, 19, 34] that linearization after a few initial epochs of rapid rotation often closely matches348

performance of full network training. Our results indicate that a similar phenomenon occurs even349

under the data shift of adversarial training, opening avenues to design robust machines more efficiently.350

Moreover, endowed with the knowledge that at least for kernels trained with static data robust features351

lie at the top, we study polar dynamics of the top space only (additional plots in the Appendix) to352

observe that there is substantial rotation in this space, suggesting that robust features are learned early353

on not only during standard, but in particular during adversarial training. Even more interestingly,354

Fig. 6 demonstrates that not only the robust features change, but their relative weight as measured355

by the concentration on the top-20 space is increasing simultaneously relative to standard training,356

and remains large; in fact, significantly larger than during standard training. As each eigenvalue357

weights the importance of the corresponding feature on the final prediction, this implies that the358

kernel “learns” to depend more on the most robust features.359

Put together, these findings reveal different kernel dynamics during standard and adversarial training:360

the kernel rotates much faster, expands much less and becomes “lazy” much earlier than during361

standard training. Fully understanding the properties of converged adversarial kernels remains an362

important avenue for future work, that might allow to design faster algorithms for robust classification.363

6 Final Remarks364

We have studied adversarial robustness through the lens of the NTK across multiple architectures365

and data sets both in the idealized NTK regime and the “rich feature” regime. When connecting the366

spectrum of the kernel with fundamental properties characterizing robustness our phenomenological367

study reveals a universal picture of the emergence of robust and non-robust features and their role368

during training. There are certain limitations and unexplored themes in our work; Sec. 3 argues that369

transferable attacks from the NTK may be as effective as white-box attacks, but this warrants an370

in-depth study across architectures, kernels and data sets (which has not been the main focus of this371

work). Sec. 4 visualises features for fairly simple models, since the computation of kernel derivatives372

is a costly procedure. It would be interesting to use our framework to visualise features from more373

complicated architectures. Finally, our work in Sec. 5 invites more research on the kernel at the end374

of adversarial training, similar to what has been done for standard models [29].375

We hope that our viewpoint can motivate further theoretical understanding of adversarial phenomena376

(such as transferability) and the design of better and/or faster adversarial learning algorithms, by377

further analyzing the kernels from robust deep neural networks.378
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