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Abstract

Despite the success of Knowledge Distillation (KD) on image classification, it is
still challenging to apply KD on object detection due to the difficulty in locating
knowledge. In this paper, we propose an instance-conditional distillation framework
to find desired knowledge. To locate knowledge of each instance, we use observed
instances as condition information and formulate the retrieval process as an instance-
conditional decoding process. Specifically, information of each instance that
specifies a condition is encoded as query, and teacher’s information is presented
as key, we use the attention between query and key to measure the correlation,
formulated by the transformer decoder. To guide this module, we further introduce
an auxiliary task that directs to instance localization and identification, which are
fundamental for detection. Extensive experiments demonstrate the efficacy of our
method: we observe impressive improvements under various settings. Notably,
we boost RetinaNet with ResNet-50 backbone from 37.4 to 40.7 mAP (+3.3)
under 1× schedule, that even surpasses the teacher (40.4 mAP) with ResNet-101
backbone under 3× schedule.

1 Introduction

Deep learning applications blossom with the breakthrough of Deep Neural Networks (DNNs) [17,
24, 21] in recent years. In pursuit of high performance, advanced DNNs usually stack tons of
blocks with millions of parameters, which are computation and memory consuming. The heavy
design hinders the deployment of many practical downstream applications like object detection in
resource-limited devices. Plenty of techniques have been proposed to address this issue, like network
pruning [15, 27, 18], quantization [22, 23, 35], mobile architecture design [38, 39] and knowledge
distillation [19, 37, 43] (KD). Among them, KD is one of the most popular choices, since it can boost
a target network without introducing extra inference-time burden or modifications.

KD is popularized by Hinton et al. [19], where knowledge from a strong pretrained teacher network
is transferred to a small target student network. Many good works emerge to further improve the
classification results following Hinton [50, 37, 32]. However, these methods for image classification
are sub-optimal in the detection scenario and obtain degraded performance [28, 51]. We attribute the
reason to two differences: (1) Other than category classification, another challenging goal to localize
the object is hardly taken into the consideration. (2) Multiple target objects are presented in an image
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Figure 1: Compare with different methods for knowledge distillation. (a) KD [19] for classification
transfers logits. (b) Recent methods for detection KD distill intermediate features, different region-
based sampling methods are proposed. (c) Our method explicitly distill the desired knowledge.

for detection, which makes features of objects distribute in different locations. Due to these reasons,
the knowledge becomes rather ambiguous in detection, which makes distillation challenging.

To implement KD for detection, previous methods normally distill the intermediate feature repre-
sentations to cover the whole picture. The challenge above is therefore usually addressed as where
to transfer between student and teacher detector. Existent works could be divided into three types
according to the feature sampling paradigm: prediction-based, heuristic-based and attention-based.
In prediction-based methods [28, 11, 6], proposal regions predicted by the RPN [36] or detector
are sampled for distillation. In heuristics-based methods [14, 45], manually selected regions like
foreground or label-assigned regions are sampled. Despite the success of these methods, limitations
still exist, e.g., many methods neglect the informative context regions or involve meticulous decisions.
Recently, Zhang et al. [51] propose the attention-based method that use activation to guide the
distillation. Although attention provides inherent hints for discriminative areas, the relation between
these regions and knowledgeable regions is still unclear. To further improve KD quality, we hope to
provide an explicit solution to connect the desired knowledge with feature selection.

Towards this goal, we present Instance-Conditional knowledge Distillation (ICD), which introduces
a new KD framework based-on conditional Knowledge retrieval. In ICD, we propose a decoding
network to find and distill knowledge that contributed to different instances, we deem such knowledge
as instance-conditional knowledge. Fig. 1 shows the framework and compares it with former
ones, ICD learns to find desired knowledge, other than using designed rules. In detail, we design
a conditional decoding module to locate knowledge, the correlation between knowledge and each
instance is computed by the instance-aware attention via the transformer decoder [5, 43]. In which
each human observed instance is projected to query and the correlation is measured by scaled-product
attention between query and teacher’s representations. Next, we introduce an auxiliary task to
optimize the decoding module, it teaches the decoder to find useful information for identification and
localization, which is fundamental for detection. The task only facilitates the decoder, instead of the
student. Lastly, we perform distillation over features decomposed by the decoder and weighted by
the instance-aware attention. Our contribution is summarized in three-fold:

• We introduce a novel framework to locate useful knowledge in detection KD, we formulate the
knowledge retrieval explicitly as a decoding network and optimize it via an auxiliary task. To our
knowledge, it is the first trial to explore instance-oriented knowledge for detection.

• We adopt the conditional modeling paradigm to facilitate instance-wise knowledge transferring.
We encode human observed instances as query and decompose teacher’s representations to key and
value to locate fine-grained knowledge.

• We perform comprehensive experiments on challenging benchmarks. Results demonstrate impres-
sive improvements over various detectors with up to 4 AP gain in MS-COCO, including recent
detectors for instance segmentation [41, 46, 16]. Under some cases, students with 1× schedule are
able to outperform their teachers with larger backbones trained 3× longer.
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2 Related Works

2.1 Knowledge Distillation

Knowledge distillation aims to transfer knowledge from a strong teacher to a weaker student network
to facilitate supervised learning. The teacher is usually a large pretrained network, who provides
smoother supervision and more hints on visual concepts, that improves the training quality and
convergence speed [49, 9]. KD for image classification has been studied for years, they are usually
categorized into three types [13]: response-based [19], feature-based [37, 43] and relation-based [32].

Among them, feature-based distillation over multi-scale features is adopted from most of detection
KD works, to deal with knowledge among multiple instances in different regions. Most of these works
can be formulated as region selection for distillation, where foreground-background unbalancing is
considered as a key problem in some studies [45, 51, 14]. Under this paradigm, we divide them into
three kinds: (1) prediction-based, (2) heuristics-based and (3) attention-based.

(1) Prediction-based methods rely on the prediction of the RPN or detection network to find foreground
regions, e.g., Chen et al. [6] and Li et al. [28] propose to distilling regions predicted by RPN [36],
Dai et al. [11] proposes GI scores to locate controversial predictions for distillation.

(2) Heuristics-based methods rely on designed rules that can be inflexible and hyper-parameters
inefficient, e.g., Wang et al. [45] distill assigned regions where anchor and ground-truth have a large
IoU, Guo et al. [14] distill foreground and background regions separately with different factors.

(3) Attention-based methods rely on activations to locate discriminative areas, yet they do not direct
to knowledge that the student needs. Only a recent work from Zhang et al. [51] considers attention,
they build the spatial-channel-wise attention to weigh the distillation.

To overcome the above limitations, we explore the instance-conditional knowledge retrieval formu-
lated by a decoder to explicitly search for useful knowledge. Like other methods, ICD does not have
extra cost during inference or use extra data (besides existing labels and a pretrained teacher).

2.2 Conditional Computation

Conditional computation is widely adopted to infer contents on a given condition. Our study mostly
focuses on how to identify visual contents given an instance as a condition. This is usually formulated
as query an instance on the image, e.g., visual question answer [1, 2] and image-text matching [26]
queries information and regions by natural language that specifies a condition. Besides query by
language, other types of query are proposed in recent years. For example, DETR [5] queries on
fixed proposal embeddings, Chen et al. [8] encodes points as queries to facilitate weakly-supervised
learning. These works adopt transformer decoder to infer upon global receptive fields that cover all
visual contents, yet they usually rely on cascaded decoders that are costly for training. From another
perspective, CondInst [41] and SOLOv2 [46] generate queries based on network predictions and
achieves great performance on instance segmentation. Different from them, this work adopts the
query-based approach to retrieve knowledge and build query based on annotated instances.

2.3 Object Detection

Object detection has been developed rapidly. Modern detectors are roughly divided into two-stage or
one-stage detectors. Two-stage detectors usually adopt Region Proposal Network (RPN) to generate
initial rough predictions and refine them with detection heads, the typical example is Faster R-CNN
[36]. On the contrary, one-stage detectors directly predict on the feature map, which are usually
faster, they include RetinaNet [30], FCOS [42]. Besides of this rough division, many extensions are
introduced in recent years, e.g., extension to instance segmentation [41, 46, 16], anchor-free models
[42, 25] and end-to-end detection [5, 44, 20]. Among these works, multi-scale features are usually
adopted to enhance performance, e.g., FPN [29]. To generalize to various methods, the proposed
method distills the intermediate features and does not rely on detector-specific designs.
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3 Method

3.1 Overview

As discussed in former studies [14, 51], useful knowledge for detection distributes unevenly in
intermediate features. To facilitate KD, we propose to transfer instance-conditional knowledge
between student and teacher network, termed κSi and κTi corresponding to the ith instance:

Ldistill =

N∑
i=1

Ld(κSi , κ
T
i ) (1)

The knowledge towards teacher representation T and condition yi is formulated as κTi = G(T , yi)
(κSi similarly), where G is the instance-conditional decoding module, optimized by an auxiliary loss
illustrated in Sec. 3.3. The overall framework is shown in Fig. 2.

In the following sections, we will introduce the instance-conditional knowledge (Sec. 3.2), describe
the auxiliary task design (Sec. 3.3), and discuss the knowledge transferring (Sec. 3.4).

3.2 Instance-conditional Knowledge
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Figure 2: We propose a decoding module to re-
trieve knowledge via query-based attention, where
instance annotations are encoded as a query. An
auxiliary task is proposed to optimize the decod-
ing module and the feature-based distillation loss
weighted by the attention is used to update student.

In this section, we elaborate the instance-
conditional decoding module G, which com-
putes instance-conditional knowledge κTi from
(1) unconditional knowledge given (2) instance
conditions.

(1) The unconditional knowledge T , symbolizes
all available information from the teacher detec-
tor. Since modern detectors commonly involve
a feature pyramid network (FPN) [29] to ex-
tract rich multi-scale representations, we present
multi-scale representations as T = {Xp ∈
RD×Hp×Wp}p∈P , where P signifies the spatial
resolutions while D is the channel dimension.
By concatenating representations at different
scales along the spatial dimension, we obtain
AT ∈ RL×D, where L =

∑
p∈P HpWp is the

sum of total pixels number across scales.

(2) The instance condition, originally describing
a human-observed object, is denoted by Y =
{yi}Ni=1, where N is the object number and yi = (ci,bi) is the annotation for the i-th instance,
including category ci and box location bi = (xi, yi, wi, hi) which specifies the localization and size
information.

To produce learnable embeddings for each instance, the annotation is mapped to a query feature
vector qi in the hidden space, which specifies a condition to collect desired knowledge:

qi = Fq(E(yi)), qi ∈ RD (2)

where E(·) is a instance encoding function (detailed in in Sec. 3) and Fq is a Multi-Layer Perception
network (MLP).

We retrieve knowledge from T given qi by measuring responses of correlation. This is formulated by
dot-product attention [43] with M concurrent heads in a query-key attention manner. In which each
head j corresponds to three linear layers (Fk

j , Fq
j , Fv

j ) w.r.t. the key, query and value construction.

The key feature KTj is computed by projecting teacher’s representations AT with the positional
embeddings [43, 5] P ∈ RL×d as in Eq. 3, where Fpe denotes a linear projection over position
embeddings. The value feature VTj and query qij is projected by linear mappings to a sub-space
with d = D/M channels, Fv

j on AT and Fq
j over qi respectively, as shown in Eq. 4. At last, an
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instance-aware attention mask mij of the i-th instance by the j-th head is obtained by normalized
dot-product between KTj and qij :

KTj = Fk
j (AT + Fpe(P)), KTj ∈ RL×d (3)

VTj = Fv
j (AT ), VTj ∈ RL×d (4)

qij = Fq
j (qi), qij ∈ Rd (5)

mij = softmax(
KTj qij√

d
), mij ∈ RL (6)

Intuitively, the querying along the key features and value features describes the correlation be-
tween representations and instances. We collect κTi = {(mij ,V

T
j )}Mj=1 as the instance-conditional

knowledge from T , which encodes knowledge corresponds to the ith instance.

3.3 Auxiliary Task

In this section, we introduce the auxiliary task to optimize the decoding module G. First, we aggregate
instance-level information to identify and localize objects. This could be obtained by aggregating
the instance-conditional knowledge by the function Fagg, which includes sum-product aggregation
over attention mij and VTj , concatenate features from each head, add residuals and project with a
feed-forward network as proposed in [43, 5]:

gTi = Fagg(κTi ,qi), gTi ∈ RD (7)

To let the instance-level aggregated information gTi retain sufficient instance cues, one could design
an instance-sensitive task to optimize it as below:

Laux = Lins(g
T
i ,H(yi)) (8)

where H encodes the instance information as targets. However, directly adopt Eq. 8 might lead to
trivial solution, since yi is accessible from both gTi (through qi, see Eq. 2) andH(yi). It is possible
that parameters will learn a shortcut, that ignore the teacher representations T . To resolve this issue,
we propose to drop information on encoding function E(·), to force the aggregation function Fagg to
excavate hints from T .

The information dropping is adopted by replacing the accurate annotation for instance conditions
to uncertain ones. For bounding box annotations, we relieve them to rough box centers with rough
scales indicators. The rough box center (x′i, y

′
i) is obtained by random jittering as shown below:{

x′i = xi + φxwi,
y′i = yi + φyhi,

(9)

where (wi, hi) is the width and height of the bounding box and φx, φy are sampled from a uniform
distribution Φ ∼ U [−a, a], where we set a=0.3 empirically. The scales indicators are obtained by

5



rounding the box sizes in the logarithmic space, i.e., blog2(wi)c, blog2(hi)c. In addition, to let the
decoder learn to identify instances and be aware of the uncertainty, we generate fake instances for the
identification task according to dataset distributions, this is detailed in Appendix A. As a result, it
collect coarse information and obtain instance encoding through E(·) as depicted in Fig. 3a. where ci
is the category, Foh is the one hot vectorization, concat is the concatenation operator and Fpe is the
position embedding function.

Finally, the aggregated representation gTi are optimized by the auxiliary task. We introduces two
predictors denoted by Fobj and Freg respectively to predict identification and localization results. We
adopt binary cross entropy loss (BCE) to optimize the real-fake identification and L1 loss to optimize
the regression.

Laux = LBCE(Fobj(g
T
i ), δobj(yi)) + L1(Freg(gTi ), δreg(yi)) (10)

where δobj(·) is an indicator, it yields 1 if yi is real and 0 otherwise. Following common practice, the
localization loss for fake examples is ignored. δreg is the preparing function for regression targets,
following [42]. Appendix A provides more implementation details.

3.4 Instance-Conditional Distillation

Lastly, we present the formulation for conditional knowledge distillation. We obtain the projected
value features VSj ∈ RL×d of the student representations analogous to Eq. 4 in Sec. 3.2. By adopting
the instance-aware attention mask as a measurement of correlations between feature and each instance,
we formulate the distillation loss as value features mimicking guided by the attention:

Ldistill =
1

MNr

M∑
j=1

N∑
i=1

δobj(yi)· <mij ,LMSE(VSj ,V
T
j ) > (11)

where Nr =
∑N

i=1 δobj(yi), (Nr ≤ N) is the real instances number, LMSE(VSj ,V
T
j ) ∈ RL is the

pixel-wise mean-square error along the hidden dimension2 and < ·, · > is the Dirac notation for inner
product. For stability, the learnable variable mij and VTj are detached during distillation. Combine
with the supervised learning loss Ldet, the overall loss with a coefficient λ is summarized below:

Ltotal = Ldet + Laux + λLdistill (12)

It is worth noticing, only the gradients w.r.t. Ldistill and Ldet back-propagate to the student network
(from representations S). The gradients of Laux only update the instance-conditional decoding
function G and auxiliary task related modules.

4 Experiments

4.1 Experiment Settings

We conduct experiments on Pytorch [34] with the widely used Detectron2 library [47] and AdelaiDet
library 3 [40]. All experiments are running on eight 2080ti GPUs with 2 images in each. We adopt the
1× scheduler, which denotes 9k iterations of training, following the standard protocols in Detectron2
unless otherwise specified. Scale jittering with random flip is adopted as data augmentation.

For distillation, the hyper-parameter λ is set to 8 for one-stage detectors and 3 for two-stage detectors
respectively. To optimize the transformer decoder, we adopt AdamW optimizer [33] for the decoder
and MLPs following common settings for transformer [43, 5]. Corresponding hyper-parameters
follows [5], where the initial learning rate and weight decay are set to 1e-4. We adopt the 256 hidden
dimension for our decoder and all MLPs, the decoder has 8 heads in parallel. The projection layer Fq

is a 3 layer MLP, and Freg and Fobj share another 3 layer MLP. In addition, we notice some newly
initialized modules of the student share the same size of the teacher, e.g., the detection head, FPN.

2LMSE(.) is conducted over normalized features with parameter-free LayerNorm [3] for stabilization.
3All libraries are open-sourced and public available, please refer to citations for more details.
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Table 1: Comparison with previous methods on challenging benchmark MS-COCO. The method
proposed by Li et al. [28] does not apply to RetinaNet. † denotes the inheriting strategy.

Method Faster R-CNN [36] RetinaNet [30]
AP APS APM APL AP APS APM APL

Teacher w. ResNet-101 (3×) 42.0 25.2 45.6 54.6 40.4 24.0 44.3 52.2
Student w. ResNet-50 (1×) 37.9 22.4 41.1 49.1 37.4 23.1 41.6 48.3
+ FitNet [37] 39.3 (+1.4) 22.7 42.3 51.7 38.2 (+0.8) 21.8 42.6 48.8
+ Li et al. [28] 39.5 (+1.5) 23.3 43.0 51.4 - - - -
+ Wang et al. [45] 39.2 (+1.3) 23.2 42.8 50.4 38.4 (+1.0) 23.3 42.6 49.1
+ Zhang et al. [51] 40.0 (+2.1) 23.2 43.3 52.5 39.3 (+1.9) 23.4 43.6 50.6
+ Ours 40.4 (+2.5) 23.4 44.0 52.0 39.9 (+2.5) 25.0 43.9 51.0
+ Ours † 40.9 (+3.0) 24.5 44.2 53.5 40.7 (+3.3) 24.2 45.0 52.7

Table 2: Experiments on more detectors with ICD. Type denotes the AP score is evaluated on
bounding box (BBox) or instance mask (Mask). † denotes using the inheriting strategy.

Detector Setting Type AP AP50 AP75 APS APM APL

FCOS [42]
Teacher: 18.8 FPS / 51.2M

Student: 25.0 FPS / 32.2M

Teacher (3×)

BBox

42.6 61.6 45.8 26.2 46.3 53.8
Student (1×) 39.4 58.2 42.4 24.2 43.4 49.4
+ Ours 41.7(+2.3) 60.3 45.4 26.9 45.9 52.6
+ Ours † 42.9(+3.5) 61.6 46.6 27.8 46.8 54.6

Mask R-CNN [16]
Teacher: 17.5 FPS / 63.3M

Student: 22.9 FPS / 44.3M

Teacher (3×)

BBox

42.9 63.3 46.8 26.4 46.6 56.1
Student (1×) 38.6 59.5 42.1 22.5 42.0 49.9
+ Ours 40.4 (+1.8) 60.9 44.2 24.4 43.7 52.0
+ Ours † 41.2 (+2.6) 62.0 45.0 25.1 44.5 53.6
Teacher (3×)

Mask

38.6 60.4 41.3 19.5 41.3 55.3
Student (1×) 35.2 56.3 37.5 17.2 37.7 50.3
+ Ours 36.7 (+1.5) 58.0 39.2 18.4 38.9 52.5
+ Ours † 37.4 (+2.2) 58.7 40.1 19.1 39.8 53.7

SOLOv2 [46]
Teacher: 16.6 FPS / 65.5M

Student: 21.4 FPS / 46.5M

Teacher (3×)

Mask

39.0 59.4 41.9 16.2 43.1 58.2
Student 34.6 54.7 36.9 13.2 37.9 53.3
+ Ours 37.2 (+2.6) 57.6 39.8 14.8 40.7 57.0
+ Ours † 38.5 (+3.9) 59.0 41.2 15.9 42.3 58.9

CondInst [41]
Teacher: 16.8 FPS / 53.5M

Student: 21.3 FPS / 34.1M

Teacher (3×)

BBox

44.6 63.7 48.4 27.5 47.8 58.4
Student (1×) 39.7 58.8 43.1 23.9 43.3 50.1
+ Ours 42.4 (+2.7) 61.5 46.1 25.3 46.0 54.3
+ Ours † 43.7 (+4.0) 62.9 47.2 27.1 47.3 56.6
Teacher (3×)

Mask

39.8 61.4 42.6 19.4 43.5 58.3
Student (1×) 35.7 56.7 37.7 16.8 39.1 50.3
+ Ours 37.8 (+2.1) 59.1 40.4 17.5 41.4 54.7
+ Ours † 39.1 (+3.4) 60.5 42.0 19.1 42.6 57.0

We find initialize these modules with teacher’s parameters will lead to faster convergence, we call it
the inheriting strategy in experiments.

Most experiments are conducted on a large scale object detection benchmark MS-COCO 4[31] with
80 classes. We train models on MS-COCO 2017 trainval115k subset and validate on minival
subset. Following common protocols, we report mean Average Precision (AP) as an evaluation metric,
together with AP under different thresholds and scales, i.e., AP50, AP75, APS, APM, APL. Other
experiments are listed in Appendix B, e.g., on VOC [12] and Cityscapes [10], more ablations.

4.2 Main Results

Compare with state-of-the-art methods. We compare our method (ICD) with previous state-
of-the-arts (SOTAs), including a classic distillation method FitNet [37], two typical detection KD
methods [28, 45], and a very recent work with strong performance from Zhang et al. [51]. The
comparison is conducted on two classic detectors: Faster R-CNN [36] and RetinaNet [30]. We adopt

4MS-COCO is publicly available, the annotations are licensed under a Creative Commons Attribution
4.0 License and the use of the images follows Flickr Terms of Use. Refer to [31] for more details.
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Table 3: Experiments on mobile backbones. † denotes using the inheriting strategy.

Detector Setting Backbone AP AP50 AP75 APS APM APL

RetinaNet [30]

Teacher (3×) ResNet-101 [17] 40.4 60.3 43.2 24.0 44.3 52.2
Student (1×)

MBV2 [38]
26.4 42.0 27.8 13.8 28.8 34.1

+ Ours 29.5 (+3.1) 45.5 31.2 16.2 32.2 38.3
+ Ours † 31.6 (+5.2) 48.5 33.4 17.6 34.7 41.3

RetinaNet [30]

Teacher (3×) ResNet-101 [17] 40.4 60.3 43.2 24.0 44.3 52.2
Student (1×)

Eff-B0 [39]
34.9 54.8 37.0 20.9 38.9 44.8

+ Ours 36.7 (+1.8) 56.0 38.7 21.1 40.6 48.1
+ Ours † 38.0 (+3.1) 57.5 40.2 22.4 41.6 50.3

FRCNN [36]

Teacher (3×) ResNet-101 [17] 42.0 62.5 45.9 25.2 45.6 54.6
Student (1×)

MBV2 [38]
27.2 44.7 28.8 14.6 29.6 35.6

+ Ours 30.2 (+3.0) 48.0 32.5 17.0 32.2 39.1
+ Ours † 31.4 (+4.2) 49.4 33.6 17.6 33.5 41.3

FRCNN [36]

Teacher (3×) ResNet-101 [17] 42.0 62.5 45.9 25.2 45.6 54.6
Student (1×)

Eff-B0 [39]
35.3 56.8 37.8 20.8 38.2 45.1

+ Ours 37.0 (+1.7) 58.0 39.6 21.1 40.0 48.3
+ Ours † 37.9 (+2.6) 58.7 40.8 21.4 40.9 49.5

detectron2 official released models with ResNet-101 backbone trained on 3× scheduler as teacher
networks, the student is trained on 1× with ResNet-50 backbone following the above settings.

As shown in Table 1, ICD brings about 2.5 AP and 3.0 AP improvement for plain training and training
with the inheriting strategy respectively. Especially for RetinaNet, the student with distillation even
outperforms a strong teacher trained on 3× scheduler. Compare with previous SOTAs, the proposed
method leads to a considerable margin for about 0.5 AP without the inheriting strategy.

Results on other settings. We further evaluate ICD under various detectors, e.g., a commonly used
anchor-free detector FCOS [42], and three detectors that have been extended to instance segmentation:
Mask R-CNN [16], SOLOv2 [46] and CondInst [41]. We adopt networks with ResNet-101 on 3×
scheduler as teachers and networks with ResNet-50 on 1× scheduler as students following the above
settings. As shown in Table 2, we observe consistent improvements for both detection and instance
segmentation. There are at most around 4 AP improvement on CondInst [41] on object detection and
SOLOv2 [46] on instance segmentation. Moreover, students with weaker backbone (ResNet-50 v.s.
ResNet-101) and less training images (1/3) even outperform (FCOS) or perform on par (SOLOv2,
CondInst) with teachers. Note that ICD does not introduce extra burden during inference, our method
improves about 25% of FPS5 and reduces 40% of parameters compared with teachers.

Mobile backbones. Aside from main experiments on commonly used ResNet [17], we also conduct
experiments on mobile backbones, which are frequently used in low-power devices. We evaluate our
method on two prevalent architectures: MobileNet V2 (MBV2) [38] and EfficientNet-B0 (Eff-B0)
[39]. The latter one adopts the MobileNet V2 as basis, and further extends it with advanced designs
like stronger data augmentation and better activations.

Experiments are conducted on Faster R-CNN (abbr., FRCNN) [36] and RetinaNet [30] following
the above settings. As shown in Table 3, our method also significantly improves the performance on
smaller backbones. For instance, we improve the RetinaNet with MobileNet V2 backbone with 5.2
AP gain and 3.1 AP gain with and without inheriting strategy respectively, and up to 3.1 AP gain for
EfficientNet-B0. We also observe consistent improvements over Faster R-CNN, with up to 4.2 AP
gain for MobileNet-V2 and 2.6 AP gain for EfficientNet-B0.

4.3 Ablation Studies

To verify the design options and the effectiveness of each component, we conduct ablation studies
with the classic RetinaNet detector on MS-COCO following the above settings.

Design of the auxiliary task. To better understand the role of our auxiliary task, we conduct
experiments to evaluate the contribution of each sub-task. Specifically, our auxiliary task is composed

5FPS is evaluated on Nvidia Tesla V100.
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of an identification task with binary cross-entropy loss and a localization task with regression loss,
the localization task is further augmented with a hint on bounding box scales. As shown in Table
4, the identification task itself leads to 2.2 AP gain compare with the baseline, this high-light the
importance of knowledge on object perception. The regression task itself leads to 1.8 AP gain, and
the scale information boosts it for extra 0.2 AP gain. Combine two of them, we achieve 2.5 AP
overall improvement, which indicates the fusion of two knowledge brings extra benefits. Note the
auxiliary task only update the decoder and does not introduce extra data, which is very different from
multitask learning, e.g., Mask R-CNN[16].

Table 4: Comparison with different auxiliary task designs.

Identification Localization + Scale AP AP50 AP75 APS APM APL

37.4 56.7 40.3 23.1 41.6 48.3
X 39.6 59.2 42.8 23.4 44.0 50.4

X 39.2 58.6 42.4 23.1 43.5 50.3
X X 39.4 58.8 42.4 23.2 43.8 50.5

X X X 39.9 59.4 43.1 25.0 43.9 51.0

Impact of the instance-aware attention. To verify the effectiveness of instance-aware attention
learned by conditional computation, we directly replace it with different variations: the fine-grained
mask in [45], pixel-wise attention activation [51, 43], foreground mask analog to [14] and no attention
mask. The result in Fig. 5 shows our instance-aware mask leads to about 0.9 AP gain over the
baseline and 0.4 AP gain compare with the best replacement.

Table 5: Comparison with different types of attention.

Attention Type AP AP50 AP75 APS APM APL

No Attention 39.0 58.4 42.1 23.5 43.2 49.9
Foreground Mask 39.4 58.9 42.4 23.5 43.6 50.0

Fine-grained Mask [45] 39.5 59.0 42.4 23.4 43.8 50.2
Attention Activation [43] 39.3 58.6 42.3 22.6 43.6 50.1

Instance-conditional Attention 39.9 59.4 43.1 25.0 43.9 51.0

Design of the decoder. We mainly verify two properties of the decoder design, as shown in Table
6. First, we find a proper number of heads is important for the best performance. The head number
balances the dimension for each sub-space and the number of spaces. The best number lies around
8, which is consistent with former studies [5]. Second, we evaluate the effectiveness of cascaded
decoders, as it is widely adopted in former studies [43, 5, 8]. However, we do not find significant
differences between different cascade levels, it might because we use a fixed teacher to provide
knowledge, that limited the learning ability.

Table 6: Ablation on the number of heads and cascade levels.

(a) Number of heads.

Heads AP APS APM APL

1 39.4 23.7 43.8 50.5
4 39.7 24.0 43.9 51.2
8 39.9 25.0 43.9 51.0
16 39.7 23.6 44.2 50.5

(b) Number of cascade levels.

Levels AP APS APM APL

1 39.9 25.0 43.9 51.0
2 39.9 24.1 44.0 51.4
4 39.8 24.3 44.0 50.9

5 Discussion

Qualitative analysis. We present a visualization of our learned instance-aware attention in Fig. 4.
We find different heads attend to different components related to each instance, e.g., salient parts,
boundaries. This might suggest that salient parts are important and knowledge for regression mostly
lies around boundaries, instead of averaged on the foreground as assumed in former studies. The head
(vi) and (vii) are smoother around key regions, which may relate to context. The head (iv) mainly
attends on image corners, which might be a degenerated case or relate to some implicit descriptors.
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Images Instances Heads
(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Figure 4: Visualization of our learned instance-aware attention over each head. Red denotes weak
areas and pink denotes strong areas.

33 h

8 h

2.2 h
0.5 h 0.8 h

Train Teacher

Train Student

Forward Teacher

Distillation

Train Decoder

Figure 5: Time consumption.

Resource consumption. We benchmark the train-
ing speed for our distillation method. As shown in
Fig. 5, training the decoder introduces negligible
cost. Specifically, we benchmark on 1× scheduler
on RetinaNet [30] with eight 2080ti, following the
same configuration in Section 4.2. The major time
consumption is spent on training the teacher (3×),
which takes about 33 hours. Training (forward and
backward) the student takes about 8 hours, while
training decoder and distillation only take 1.3 hours.
Besides the training time, memory consumption of
our method is also limited. One can update the de-
coder part and the student part in consecutive itera-
tions, leaving only intermediate features for distillation in memory across iterations.

Real-world impact. The proposed method provides a convenient approach to enhance a detector
under a certain setting, resulting in that a small model can perform on par with a larger one. On
the positive side, it allows users to replace a big model with a smaller one, which reduces energy
consumption. On the potentially negative side, the teacher could be costly in training, also the student
might inherit biases from the teacher, which is hard for tracing.

6 Conclusion

We propose a novel framework for knowledge distillation. The proposed Instance-Conditional
knowledge Distillation (ICD) method utilizes instance-feature cross attention to select and locate
knowledge that correlates with human observed instances, which provides a new framework for KD.
Our formulation encodes instance as query and teacher’s representation as key. To teach the decoder
how to find knowledge, we design an auxiliary task that relies on knowledge for recognition and
localization. The proposed method consistently improves various detectors, leading to impressive
performance gain, some student networks even surpass their teachers. In addition to our design of the
auxiliary task, we believe there are other alternations that can cover different situations or provide a
theoretical formulation of knowledge, which will be a potential direction for further researches.
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