
Sym-NCO: Leveraging Symmetricity for
Neural Combinatorial Optimization

Anonymous Author(s)
Affiliation
Address
email

Abstract

Deep reinforcement learning (DRL)-based combinatorial optimization (CO) meth-1

ods (i.e., DRL-NCO) have shown significant merit over the conventional CO2

solvers as DRL-NCO is capable of learning CO solvers without supervised labels3

attained from the verified solver. This paper presents a novel training scheme,4

Sym-NCO, that achieves significant performance increments to existing DRL-NCO5

methods. Sym-NCO is a regularizer-based training scheme that leverages universal6

symmetricities in various CO problems and solutions. Imposing symmetricities7

such as rotational and reflectional invariance can greatly improve the generalization8

capability of DRL-NCO as symmetricities are invariant features shared by various9

CO tasks. Our experimental results verify that Sym-NCO greatly improved the10

performance of DRL-NCO methods in four CO tasks, including traveling salesman11

problem (TSP), capacitated vehicle routing problem (CVRP), prize collecting TSP12

(PCTSP), and orienteering problem (OP), without employing problem-specific13

techniques. Remarkably, Sym-NCO outperformed not only the existing DRL-NCO14

methods but also a competitive conventional solver, the iterative local search (ILS),15

in PCTSP at 240⇥ faster speed. Source code will be available after the decision is16

made.17

1 Introduction18

Combinatorial optimization problems (COPs) are mathematical optimization problems on discrete19

input space that carry numerous valuable applications, including vehicle routing problems (VRPs)20

[1, 2], drug discovery [3, 4], and semi-conductor chip design [5, 6, 7]. However, finding an optimal21

solution to COP is difficult due to its NP-hardness. Therefore, computing near-optimal solutions fast22

is essential from a practical point of view.23

Conventionally, COPs were solved by integer program (IP) solvers or hand-crafted (meta) heuristics.24

Recent advances in computing infrastructures and deep learning conceived the field of neural combi-25

natorial optimization (NCO), a deep learning-based COP solving strategy. Depending on the training26

scheme, NCO methods are generally classified into supervised learning [8, 9, 10, 11, 12] and rein-27

forcement learning (RL) [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. Depending on the solution28

generation scheme, NCO methods are also classified into improvement [15, 14, 13, 26, 16, 17, 23]29

and constructive heuristics [18, 19, 20, 21, 22, 24, 25]. Among the NCO approaches, deep RL30

(DRL)-based constructive heuristics (i.e., DRL-NCO) are favored over conventional approaches31

due to the train-ability of RL that does not rely on existing COP solvers, and the tractability of the32

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

(a) Problem symmetricity (b) Solution symmetricity

Figure 1: Illustration of symmetricities in CO (exampled in TSP)

constructive process that prevents rule-violation of specific task and guarantees qualified solutions33

[19].34

Despite the strength of DRL-NCO, there exists a performance gap between the state-of-the-art35

conventional heuristics and DRL-NCO. In an effort to close the gap, there have been attempts to36

employ problem-specific heuristics to existing DRL-NCO methods [21, 27]. However, devising a37

general training scheme to improve the performance of DRL-NCO still remains challenging.38

In this study, we propose the Symmetric Neural Combinatorial Optimization (Sym-NCO), a general39

training scheme applicable to universal CO problems. Sym-NCO is a regularization-based training40

scheme that leverages the symmetricities commonly found in COPs to increase the performance of41

existing DRL-NCO methods. To this end, we first identify the symmetricities present in various COPs.42

Sym-NCO leverages two types of symmetricities innate in COP that are defined on the Euclidean43

graph. First, the problem symmetricity derived from rotational invariance of the solution; the rotated44

graph must exhibit the same optimal solution as the original graph as shown in Fig. 1a. Second, the45

solution symmetricity, which is the shared feature among solutions having identical optimal values.46

For example, the solution symmetricity in the traveling salesmen problem (TSP) includes the first-city47

permutation invariance (See Fig. 1b). However, the solution symmetricity of general COPs must48

be automatically identified during the training process. That is because the shared feature between49

multiple optimal solutions is usually intractable without highly investigated domain knowledge.50

The Sym-NCO is composed of two novel regularization methods for leveraging symmetricities. First,51

we suggest a new advantage function on REINFORCE algorithm that automatically identifies and52

exploits symmetricities without imposing misleading bias. Second, we devise a novel representation53

learning scheme to impose symmetricities by leveraging the pre-identified symmetricities.54

We experimentally validated Sym-NCO on various existing DRL-NCO methods by solving their55

original target problems without employing any problem-specific techniques. By leveraging the56

symmetricities of COPs, Sym-NCO achieved the following:57

• High performances. Sym-NCO achieved near-optimal performance in various COP tasks (less58

than 2%) with extremely high speed (few seconds to solve 10,000 instances). Moreover, Sym-59

NCO surpassed the competitive PCTSP solver, ILS [19], at 240⇥ faster speed.60

• Problem agnosticism. Sym-NCO does not employ problem-specific heuristics to solve various61

COPs. Sym-NCO is generally applicable to solve TSP, CVRP PCTSP, and OP.62

• Architecture agnosticism. Sym-NCO can easily be implemented to any encoder-decoder model63

and impose the symmetricities of COPs. Sym-NCO successfully improved the performance of64

existing encoder-decoder-based DRL-NCO methods, such as PointerNet [8, 18], AM [19] and65

POMO [21].66

2 Symmetricity in Combinatorial Optimization Markov Decision Process67

This section presents several symmetric characteristics found in combinatorial optimization, which is68

formulated in the Markov decision process. The objective of NCO is to train the ✓-parameterized69

solver F✓ by solving the following problem:70

✓
⇤ = arg max

✓
EP⇠⇢

⇥
E⇡(P)⇠F✓(P)

⇥
R(⇡(P))

⇤⇤
(1)

2

where P = (x,f) is a problem instance with the N node coordinates x = {xi}Ni=1 and corresponding71

N features f = {fi}Ni=1. The ⇢ is a problem generating distribution, ⇡(P) is a solution of P , and72

R(⇡(P)) is the objective value of ⇡(P).73

2.1 Combinatorial optimization Markov decision process74

We define the combinatorial optimization Markov decision process (CO-MDP) as the sequential75

construction of a solution of COP. For a given P , the components of the corresponding CO-MDP are76

defined as follows:77

• State. The state st = (a1:t,x,f) is the t-th (partially complete) solution, where a1:t represents78

the previously selected nodes. The initial and terminal states s0 and sT are equivalent to the79

empty and completed solution, respectively. In this paper, we denote the solution ⇡(P) as the80

completed solution.81

• Action. The action at is the selection of a node from the un-visited nodes (i.e., at 2 At =82

{{1, ..., N} \ {a1:t�1}}).83

• Reward. The reward R(⇡(P)) is the objective of COP. We assume that the reward is a function84

of a1:T (solution sequences), ||xi � xj ||i,j2{1,...N} (relative distances) and f (nodes features). In85

TSP, capacitated VRP (CVRP), and prize collecting TSPs (PCTSP), the reward is the negative of86

the tour length. In orienteering problem (OP), the reward is the sum of the prizes.87

Having defined CO-MDP, we define the solution mapping as follows:88

⇡(P) ⇠ F✓(P) =
TY

t=1

p✓(at|st(P)) (2)

where p✓(at|st(P)) is the policy that produces at at st, and T is the maximum number of states in89

the solution construction process.90

2.2 Symmetricities in CO-MDP91

Symmetricities are found in various COPs. We conjecture that imposing those symmetricities on F✓92

improves the generalization and sample efficiency of F✓. We define the two identified symmetricities93

that are commonly found in various COPs:94

Definition 2.1 (Problem Symmetricity). Problem P i and P j are problem symmetric (P i sym �! P j)95

if their optimal solution sets are identical.96

Definition 2.2 (Solution Symmetricity). Two solutions of problem P (⇡i(P) and ⇡j(P)) are97

solution symmetric (⇡i sym �! ⇡j) if R(⇡i) = R(⇡j).98

An exemplary problem symmetricity found in various COPs is the rotational symmetricity:99

Theorem 2.1 (Rotational symmetricity). For any orthogoanl matrix Q, the problem P and Q(P) ,100

{{Qxi}Ni=1,f} are problem symmetric: i.e., P sym �! Q(P). See Appendix A for the proof.101

Rotational problem symmetricity is identified in every Euclidean COPs. On the other hand, solution102

symmetricity cannot be identified easily as the properties of the solutions are distinct for every COP.103

3 Symmetric Neural Combinatorial Optimization104

This section presents Sym-NCO, an effective training scheme that leverages the symmetricities of105

COPs. Sym-NCO imposes the symmetricities on F✓ by minimizing the symmetric loss function that106

is defined as follows:107

Lsym = ↵Linv + �Lss + Lps (3)
where Linv, Lps, and Lss are the loss functions that impose invariant representation, problem-solution108

joint symmetricity, and solution symmetricity, respectively. ↵,� 2 [0, 1] are the weight coefficients.109

In the following subsections, we explain each loss component in detail.110

3

Figure 2: An overview of Sym-NCO

3.1 Imposing invariant problem representation via Linv.111

By Theorem 2.1, the original problem x and its rotated problem Q(x) have identical solutions. We112

impose this solution symmetricity on the encoder of F✓ by using the rotational invariant representation.113

We denote h(x) and h (Q(x)) as the hidden representations of x and P (x), respectively. To impose114

the rotational invariant property on h(x), we define Linv as follows:115

Linv = �Scos

✓
g

⇣
h(x)

⌘
, g

⇣
h
�
Q(x)

�⌘◆
(4)

where Scos(a, b) is the cosine similarity between a and b. g(·) is the MLP-parameterized projection116

head.117

To impose the rotational invariance, we penalize the difference between the projected representation118

g(h(x)) and g((h(Q(x)))), instead of directly penalizing the difference between h(x) and (h(Q(x)).119

This penalizing scheme allows the use of an arbitrary encoder network architecture while maintaining120

the diversity of h [28]. We empirically verified that this approach attains stronger solvers as described121

in Section 6.1.122

Note that the rotational invariance of h can also be attained through the EGNN [29], an invariant123

encoder architecture. However, this approach inevitably restricts the flexibility of the encoder124

architecture, thus preventing the use of flexible architectures, like Transformer [30]. We have125

empirically validated that our approach is more effective than the EGNN.126

3.2 Imposing problem and solution symmetricities via Lps and Lss127

As discussed in Section 2.2, COPs have problem and solution symmetricities. We explain how to128

impose the symmetricities by minimizing Lps and Lss when training F✓. We provide the policy129

gradients to Lss (⇡(P)) and Lps (⇡(P)) in the context of the REINFORCE algorithm [31] with the130

proposed baseline scheme.131

Imposing solution symmetricity. In general COPs, symmetric solutions are usually intractable.132

As defined in Definition 2.2, the symmetric solutions must have the same objective values. Hence,133

we regularize F✓(⇡|P) with the gradient of Lss(⇡(P)) so that its realized solutions have the same134

objective value. The gradient of Lss(⇡(P)) is as follows:135

r✓Lss(⇡(P)) = �E⇡k⇠F✓(·|P)

h⇥
R(⇡(P))�

Baselinez }| {
1

K

KX

k=1

R(⇡k)

| {z }
Advantage

⇤
r✓ logF✓

�
⇡(P)

�i
(5)

4

where {⇡k}Kk=1 are the solutions of P sampled from F✓(⇡|P), and logF✓(⇡(P)) is the log-136

likelihood of F✓ to generate ⇡(P). K is the number of sampled solutions.137

The REINFORCE trains a solver by maximizing the expected reward, which is saturated in the end138

(i.e., sub-optimal solutions can be found) if properly trained. Saturation of reward value indicates a139

small deviation of rewards between sampled solutions ⇡1
, ...,⇡K , which refers to the (near) solution140

symmetricity as defined in Definition 2.2. Although naive REINFORCE has the ability to impose141

solution symmetricity by nature, it does not guarantee that the identified symmetric solutions are142

optimal. Our proposed baseline guides the solver to find improved symmetric solutions by inducing143

competition within the symmetric solution groups. If any of a symmetric solution group has the higher144

optimality over the rest of solutions in the group, the proposed advantage of the rest of solutions145

becomes a negative value. Negative advantage then encourages the solver to find the better solution146

so that prevents to fall in a bad local optimum. Overall, the proposed Lss not only imposes solution147

symmetricity but also guides to find near-optimal solutions.148

POMO [21] employs a similar training technique that finds symmetric solutions by forcing F✓149

to visit all possible initial cities when solving TSP and CVRP. For TSP, the training technique is150

justifiable as the permutation of the initial cities preserves the reward. However, the reward of COPs,151

including CVRP, PCTSP, and OP, is usually sensitive to first city selection. To this end, we do not152

restrict first city selection (except TSP) but leave it to the training process of Lss. Therefore, the153

solution symmetricity must be identified through the training process without employing potentially154

misleading bias. Though the solution symmetricity is a significant feature to increase generalization155

capability, it is not always present nor found in all COPs. Such observations highlight the limitations156

of leveraging only the solution symmetricities when deriving F✓. This motivates us to devise a more157

general method to leverage symmetricities in COPs.158

Imposing problem and solution symmetricities. As discussed in Section 2.2, the rotational problem159

symmetricity is common in various COPs. Thus, we regularize F✓ in terms of the rotational problem160

symmetricity with the gradient of Lps(⇡(P)) defined as follows:161

r✓Lps(⇡(P)) = �EQl⇠Q


E⇡l,k⇠F✓(·|Ql(P))

h⇥
R(⇡(P))�

Baselinez }| {
1

LK

LX

l=1

KX

k=1

R(⇡l,k)
⇤

| {z }
Advantage

r✓ logF✓(⇡(P))
i�

(6)

where Q is the distribution of random orthogonal matrices, Ql is the l
th sampled rotation matrix, and162

⇡l,k is the k
th sample solution of the l

th rotated problem. L and K are the number of the sampled163

rotation matrix and solution symmetric solutions, respectively.164

Similar to the regularization scheme of Lss, the advantage term of Lps also induces competition165

between solutions sampled from rotationally symmetric problems. Since the rotational symmetricity166

is defined as x and Ql(x) having the same solution, the negative advantage value forces the solver167

to find a better solution. As mentioned in Section 2.2, problem symmetricity in COPs is usually168

pre-identified; Lps are applicable to general COPs. Moreover, multiple solutions are sampled for each169

symmetric problem so that Lps can impose solution symmetricity with a similar approach taken for170

Lss.171

4 Related Works172

Deep construction heuristics Bello et al. [18] propose one of the earliest DRL-NCO methods,173

based on PointerNet [8], and trained it with an actor-critic method. Attention model (AM) [19]174

successfully extends [18] by swapping PointerNet with Transformer [30], and it is currently the175

de-facto standard method for NCO. Notably, AM verifies its problem agnosticism by solving several176

classical routing problems and their practical extensions [7, 17]. POMO [21] extends AM by177

exploiting the solution symmetricities in TSP and CVRP. Even though POMO shows significant178

5

improvements from AM, it relies on problem-specific solution symmetricities (i.e., not problem179

agnostic). MDAM [24] extends AM by employing an ensemble of decoders. However, such extension180

is inapplicable for stochastic routing problems (i.e., not problem agnostic). Among these promising181

DRL-NCO methods, Sym-NCO achieved SOTA performances with problem-agnostic properties.182

Equivariant deep learning In deep learning, symmetricities are often enforced by employing183

specific network architectures. EDP-GNN [32] proposes a permutation equivariant graph neural184

network (GNN) that produces equivariant outputs to the input order permutations. SE(3)-Transformer185

[33] restricts the Transformer so that it is equivariant to SE(3) group input transformation. Similarly,186

EGNN [29] proposes a GNN architecture that produces O(n) group equivariant output. These187

network architectures can dramatically reduce the search space of the model parameters. Some188

research applies equivariant neural networks to RL tasks to improve sample efficiency [34]. However,189

imposing the symmetricities via specialized network architecture (i.e., hardly constrained to satisfy190

the symmetries) can limit the representation capabilities of the models, which consequently limits the191

solution quality of DRL-NCO. We further discuss this issue in Section 6.1.192

5 Experiments193

This section provides the experimental results of Sym-NCO for TSP, CVRP, PCTSP, and OP. Focusing194

on the fact that Sym-NCO can be applied to any encoder-decoder-based NCO method, we implement195

Sym-NCO on top of POMO [21] to solve TSP and CVRP, and AM [19] to solve PCTSP and OP,196

respectively. We additionally validate the effectiveness of Sym-NCO on PointerNet [8].197

5.1 Tasks and baseline selections198

TSP aims to find the Hamiltonian cycle with a minimum tour length. We employ Concorde [35] and199

LKH-3 [36] as the non-learnable baselines, and PointerNet [8], S2V-DQN [37], RL [20] AM [19],200

POMO [21] and MDAM [24] as the neural constructive baselines.201

CVRP is an extension of TSP that aims to find a set of tours with minimal total tour lengths while202

satisfying the capacity limits of the vehicles. We employ LKH-3 [36] as the non-learnable baselines,203

and RL[20], AM [19], POMO [21], and MDAM [24] as the constructive neural baselines.204

PCTSP is a variant of TSP that aims to find a tour with minimal tour length while satisfying the prize205

constraints. We employ the iterative local search (ILS) [19] as the non-learnable baseline, and AM206

[19] and MDAM [24] as the constructive neural baselines.207

OP is a variant of TSP that aims to find the tour with maximal total prizes while satisfying the tour208

length constraint. We employ compass [38] as the non-learnable baseline, and AM [19] and MDAM209

[24] as the constructive neural baselines.210

5.2 Experimental setting211

Problem size. We provide the results of problems with N = 100 for the four problem classes, and212

real-world TSP problems with 50 < N < 250 from TSPLIB [39].213

Hyperparameters We apply Sym-NCO to POMO, AM, and PointerNet. To make fair comparisons,214

we use the same network architectures and training-related hyperparameters from their original papers215

to train their Sym-NCO-augmented models. Please refer to Appendix Appendix C.1 for more details.216

Dataset and Computing Resources We use the benchmark dataset [19] to evaluate the performance217

of the solvers. To train the neural solvers, we use Nvidia A100 GPU. To evaluate the inference speed,218

we use an Intel Xeon E5-2630 CPU and Nvidia RTX2080Ti GPU to make fair comparisons with the219

existing methods as proposed in [24].220

6

Table 1: Performance evaluation results for TSP and CVRP. Bold represents the best performances in
each task. ‘-’ indicates that the solver does not support the problem. ‘s’ indicates multi-start sampling,
‘bs’ indicates the beam search. ‘⇥5 for the MDAM indicates the 5 decoder ensemble.

Method TSP (N = 100) CVRP (N = 100)
Cost # Gap Time Cost # Gap Time

Handcrafted Heuristic-based Classical Methods

Concorde Heuristic [35] 7.76 0.00% 3m –
LKH3 Heuristic [36] 7.76 0.00% 21m 15.65 0.00% 13h
RL-based Deep Constructive Heuristic methods with greedy rollout

PointerNet {gr.} NIPS’14 [8, 18] 8.30 6.90 % – –
S2V-DQN {gr.} NeurIPS’17 [37] 8.31 7.03 % – –
RL {gr.} NeurIPS’18 [20] – 17.23 10.12% –
AM {gr.} ICLR’19 [19] 8.12 4.53% 2s 16.80 7.34% 3s
POMO {gr.} NeurIPS’20 [21] 7.85 1.04% 2s 16.26 3.93% 3s
MDAM {gr.⇥ 5} AAAI’21 [23] 7.93 2.19% 36s 16.40 4.86% 45s
Sym-NCO {gr.} This work 7.84 0.94% 2s 16.10 2.88% 3s
RL-based Deep Constructive Heuristic methods with multi-start rollout

RL {bs.10} NeurIPS’18 [20] – 16.96 8.39% –
AM {s.1280} ICLR’19 [19] 7.94 2.26% 41m 16.23 3.72% 54m
POMO {s. 100} NeurIPS’20 [21] 7.80 0.44% 13s 15.90 1.67% 16s
MDAM {bs. 30 ⇥ 5} AAAI’21 [23] 7.80 0.48% 20m 16.03 2.49% 1h
Sym-NCO {s.100} This work 7.79 0.39% 13s 15.87 1.46% 16s

Table 2: Performance evaluation results for PCTSP and OP. Notations are the same with Table 1.

Method PCTSP (N = 100) OP (N = 100)
Cost # Gap Time Obj " Gap Time

Handcrafted Heuristic-based Classical Methods

ILS C++ Heuristic [19] 5.98 0.00% 12h –
Compass Heuristic [38] – 33.19 0.00% 15m
RL-based Deep Constructive Heuristic methods with greedy rollout (zero-shot inference)

AM {gr.} ICLR’19 [19] 6.25 4.46% 2s 31.62 4.75% 2s
MDAM {gr.⇥ 5} AAAI’21 [23] 6.17 3.13% 34s 32.32 2.61% 32s
Sym-NCO {gr.} This work 6.05 1.23% 2s 32.51 2.03% 2s
RL-based Deep Constructive Heuristic methods with multi-start rollout (Post-processing)

AM {s. 1280} ICLR’19 [19] 6.08 1.67% 27m 32.68 1.55% 25m
MDAM {bs. 30⇥ 5} AAAI’21 [23] 6.07 1.46% 16m 32.91 0.84% 14m
Sym-NCO {s. 200} This work 5.98 -0.02% 3m 33.04 0.45% 3m

5.3 Performance metrics221

This section provides detailed performance metrics:222

Average cost. We report an average cost of 10,000 benchmark instances which is proposed by [19].223

Evaluation speed. We report the evaluation speeds of solvers in an out-of-the-box manner as they are224

used in practice. In that regard, the execution time of non-neural and neural methods are measured on225

CPU and GPU, respectively.226

Greedy/Multi-start performance. For neural solvers, it is a common practice to measure multi-227

start performance as its final performance. However, when those are employed in practice, such228

resource-consuming multi-start may not be possible. Hence, we discuss greedy and multi-start229

separately.230

5.4 Experimental results231

TSP and CVRP. As shown in Table 1, Sym-NCO outperforms the NCO baselines in both the232

greedy rollout and multi-start settings with the fastest inference speed. Remarkably, Sym-NCO233

7

30,000 35,000 40,000 45,000 50,000
Step

9.0

9.5

10.0

10.5

11.0

Va
lid

at
io

n
C

os
t

PointerNet + Sym-NCO
PointerNet

(a) PointerNet

20,000 40,000
Step

8.25

8.50

8.75

9.00

Va
lid

at
io

n
C

os
t

AM + Sym-NCO
AM

(b) AM

0 20,000 40,000
Step

8.5

9.0

9.5

Va
lid

at
io

n
C

os
t

POMO + Sym-NCO
POMO

(c) POMO

Figure 3: The applications of Sym-NCO to DRL-NCO methods in TSP (N = 100)

101 102 103

Time (Sec.)

7.80

7.85

7.90

C
os

t

Concorde
AM
POMO
MDAM
Sym-NCO (Ours)

(a) TSP (N = 100)

101 102 103 104

Time (Sec.)

15.8

16.0

16.2

16.4
C

os
t

LKH-3
AM
POMO
MDAM
Sym-NCO (Ours)

(b) CVRP (N = 100)

101 102 103 104

Time (Sec.)

6.0

6.1

6.2

C
os

t

ILS
AM
MDAM
Sym-NCO (Ours)

(c) PCTSP (N = 100)

101 102 103

Time (Sec.)

32.0

32.5

33.0

Pr
iz

e Compass
AM
MDAM
Sym-NCO (Ours)

(d) OP (N = 100)

Figure 4: Time vs. cost plots. Green, orange, and blue colored lines visualize the results of hand-craft
heuristics, neural baselines, and Sym-NCO, respectively. For OP (d), higher y-axis values are better.

achieves a 0.95% gap in TSP using the greedy rollout. In the TSP greedy setting, it solves TSP234

10,000 instances in a few seconds.235

PCTSP and OP. As shown in Table 2, Sym-NCO outperforms the NCO baselines in both the236

greedy rollout and multi-start settings. In the multi-start setting, Sym-NCO outperforms the classical237

PCTSP baseline (i.e., ILS) with the 43200
180 ⇡ 240⇥ faster speed.238

Gap
POMO 1.87%
Sym-NCO 1.62%

Table 3: Optimality gap on
TSPLIB

Real-world TSP. We evaluate POMO and Sym-NCO on TSPLIB239

[39]. Table 3 shows that Sym-NCO outperforms POMO. Please240

refer to Appendix D.2 for the full benchmark results.241

Application to various DRL-NCO methods As discussed in242

Section 3, Sym-NCO can be applied to various various DRL-NCO243

methods. We validate that Sym-NCO significantly improves the244

existing DRL-NCO methods as shown in Fig. 3.245

Time-performance analysis for multi-starts Multi-starts is a246

common method that improves the solution qualities while requiring a longer time budget. We use247

the rotation augments [21] to produce multiple inputs (i.e., starts). As shown in Fig. 4, Sym-NCO248

achieves the Pareto frontier for all benchmark datasets. In other words, Sym-NCO exhibits the best249

solution quality among the baselines within the given time consumption.250

6 Discussion251

6.1 Soft invariant learning vs. hard constraint invariant learning252

This paper presents a novel invariant learning scheme that imposes the problem symmetricity on253

NCO via regularization (i.e., soft invariant learning). Furthermore, we devise Linv to impose the254

symmetricity on the hidden representations. In this section, we provide the discussion and ablations255

of these design choices.256

Ablation Study of Linv As shown in Fig. 5b, Linv increases the cosine similarity of the projected257

representation (i.e., g(h)). We can conclude that Linv contributes to the performance improvements258

8

0 200,000 400,000 600,000
Step

8.0

8.2

8.4

8.6

O
bj

ec
tiv

e

Lss + Lps + Linv (Ours)
Lss + Lps

Lss (POMO)

(a) Cost curves of the loss designs

0 500,000 1,000,000 1,500,000
Step

0.2

0.5

0.8

1.0

C
os

in
e

Si
m

ila
ri

ty

w/ Linv

w/o Linv

(b) Cosine similarity curves

0 20,000 40,000 60,000
Step

8.5

9.0

9.5

Va
lid

at
io

n
C

os
t

w/ proj. head
w/o proj. head

(c) Projection head ablation results

Figure 5: Loss design ablation results (a) Effect of loss components to the costs, (b) Cosine similarity
curves of the models with and with Linv, (c) Costs of the models with and without g(·).

0 500,000 1,000,000 1,500,000
Step

0.6

0.8

1.0

C
os

in
e

Si
m

ila
ri

ty

Sym-NCO
EGNN

(a) Cosine similarity curves

0 20,000 40,000 60,000
Step

10

15

20

25

Va
lid

at
io

n
C

os
t Sym-NCO

EGNN

(b) Cost curves

Figure 6: Comparisons of Sym-NCO and EGNN

(see Fig. 5a). We further verify that imposing similarity on h degrades the performance as demon-259

strated in Fig. 5c. This again proves the importance of maintaining the representation capability of260

the encoder.261

Comparison with EGNN One distinct aspect of Sym-NCO is to impose the symmetricies through262

the soft invariant learning. However, imposing the symmetriciticy through high constraint invariant263

learning by modifying the network architecture is also a viable option. To further understand the264

effects of the symmetricity-imposing mechanisms, we additionally train the high constraint invaraint265

learning model, EGNN [29], as the encoder. As shown in Fig. 6a, the hard approach (i.e., EGNN)266

strictly enforces the symmetricities. Nevertheless, we observed that EGNN significantly underper-267

forms than Sym-NCO, and fails to converge as shown Fig. 6b. We suspect that the performance268

difference originates mainly from the restricted network architecture of EGNN.269

6.2 Limitations & future directions270

Extended problem symmetricities. In this work, we employ the rotational symmetricity (Theo-271

rem 2.1) as the problem symmetricity. However, for some COPs, different problem symmetricities,272

such as scaling and translating P , can also be considered. Employing these additional symmetricities273

may further enhance the performance of Sym-NCO. We leave this for future research.274

Large scale adaptation. Large scale applicability is essential to NCO (this work solves N < 250).275

Hence, we expect that the transfer- [40], curriculum- [41], and meta-learning approaches may improve276

the generalizability of NCO to larger-sized problems.277

Extension to the graph COP. This work finds the problem symmetricity that is universally278

applicable for Euclidean COPs. However, some COPs are defined in the non-Euclidean spaces such279

as asymmetric TSP. We also leave finding the universal symmetricities of non-Euclidean COPs for280

future research.281

9

References282

[1] Stefan Irnich, Paolo Toth, and Daniele Vigo. Chapter 1: The Family of Vehicle Routing283

Problems, pages 1–33.284

[2] Matthew Veres and Medhat Moussa. Deep learning for intelligent transportation systems: A sur-285

vey of emerging trends. IEEE Transactions on Intelligent Transportation Systems, 21(8):3152–286

3168, 2020.287

[3] Sungsoo Ahn, Junsu Kim, Hankook Lee, and Jinwoo Shin. Guiding deep molecular optimization288

with genetic exploration. Advances in neural information processing systems, 33:12008–12021,289

2020.290

[4] Sungsoo Ahn, Binghong Chen, Tianzhe Wang, and Le Song. Spanning tree-based graph291

generation for molecules. In International Conference on Learning Representations, 2021.292

[5] Azalia Mirhoseini, Hieu Pham, Quoc V. Le, Benoit Steiner, Rasmus Larsen, Yuefeng Zhou,293

Naveen Kumar, Mohammad Norouzi, Samy Bengio, and Jeff Dean. Device placement optimiza-294

tion with reinforcement learning. In Doina Precup and Yee Whye Teh, editors, Proceedings of295

the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine296

Learning Research, pages 2430–2439. PMLR, 06–11 Aug 2017.297

[6] Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Jiang, Ebrahim M. Songhori, Shen Wang,298

Young-Joon Lee, Eric Johnson, Omkar Pathak, Sungmin Bae, Azade Nazi, Jiwoo Pak, Andy299

Tong, Kavya Srinivasa, William Hang, Emre Tuncer, Anand Babu, Quoc V. Le, James Laudon,300

Richard C. Ho, Roger Carpenter, and Jeff Dean. Chip placement with deep reinforcement301

learning. CoRR, abs/2004.10746, 2020.302

[7] Haiguang Liao, Qingyi Dong, Xuliang Dong, Wentai Zhang, Wangyang Zhang, Weiyi Qi, Elias303

Fallon, and Levent Burak Kara. Attention routing: track-assignment detailed routing using304

attention-based reinforcement learning, 2020.305

[8] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In C. Cortes, N. Lawrence,306

D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing307

Systems, volume 28, pages 2692–2700. Curran Associates, Inc., 2015.308

[9] Chaitanya K. Joshi, Quentin Cappart, Louis-Martin Rousseau, Thomas Laurent, and Xavier309

Bresson. Learning tsp requires rethinking generalization, 2020.310

[10] Wouter Kool, Herke van Hoof, Joaquim A. S. Gromicho, and Max Welling. Deep policy311

dynamic programming for vehicle routing problems. CoRR, abs/2102.11756, 2021.312

[11] Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to313

arbitrarily large tsp instances, 2020.314

[12] André Hottung, Bhanu Bhandari, and Kevin Tierney. Learning a latent search space for315

routing problems using variational autoencoders. In International Conference on Learning316

Representations, 2020.317

[13] André Hottung and Kevin Tierney. Neural large neighborhood search for the capacitated vehicle318

routing problem. CoRR, abs/1911.09539, 2019.319

[14] Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement320

heuristics for solving routing problems, 2020.321

[15] Paulo R d O da Costa, Jason Rhuggenaath, Yingqian Zhang, and Alp Akcay. Learning 2-opt322

heuristics for the traveling salesman problem via deep reinforcement learning. In Sinno Jialin323

Pan and Masashi Sugiyama, editors, Proceedings of The 12th Asian Conference on Machine324

Learning, volume 129 of Proceedings of Machine Learning Research, pages 465–480, Bangkok,325

Thailand, 18–20 Nov 2020. PMLR.326

10

[16] Sungsoo Ahn, Younggyo Seo, and Jinwoo Shin. Learning what to defer for maximum inde-327

pendent sets. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International328

Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,329

pages 134–144. PMLR, 13–18 Jul 2020.330

[17] Minsu Kim, Jinkyoo Park, and Joungho Kim. Learning collaborative policies to solve np-hard331

routing problems. In Advances in Neural Information Processing Systems, 2021.332

[18] Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural combi-333

natorial optimization with reinforcement learning, 2017.334

[19] Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In335

International Conference on Learning Representations, 2019.336

[20] MohammadReza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takac. Reinforce-337

ment learning for solving the vehicle routing problem. In S. Bengio, H. Wallach, H. Larochelle,338

K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Pro-339

cessing Systems, volume 31, pages 9839–9849. Curran Associates, Inc., 2018.340

[21] Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai341

Min. Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in342

Neural Information Processing Systems, 33:21188–21198, 2020.343

[22] Junyoung Park, Jaehyeong Chun, Sang Hun Kim, Youngkook Kim, and Jinkyoo Park. Learning344

to schedule job-shop problems: representation and policy learning using graph neural network345

and reinforcement learning. International Journal of Production Research, 59(11):3360–3377,346

2021.347

[23] Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and Jing348

Tang. Learning to iteratively solve routing problems with dual-aspect collaborative transformer.349

Advances in Neural Information Processing Systems, 34, 2021.350

[24] Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Multi-decoder attention model with em-351

bedding glimpse for solving vehicle routing problems. In Proceedings of 35th AAAI Conference352

on Artificial Intelligence, pages 12042–12049, 2021.353

[25] Junyoung Park, Sanjar Bakhtiyar, and Jinkyoo Park. Schedulenet: Learn to solve multi-agent354

scheduling problems with reinforcement learning. arXiv preprint arXiv:2106.03051, 2021.355

[26] Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial356

optimization. In Advances in Neural Information Processing Systems, 2019.357

[27] Hansen Wang, Zefang Zong, Tong Xia, Shuyu Luo, Meng Zheng, Depeng Jin, and Yong Li.358

Rewriting by generating: Learn heuristics for large-scale vehicle routing problems, 2021.359

[28] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework360

for contrastive learning of visual representations. In International conference on machine361

learning, pages 1597–1607. PMLR, 2020.362

[29] Vıéctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural363

networks. In International Conference on Machine Learning, pages 9323–9332. PMLR, 2021.364

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,365

Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg,366

S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural367

Information Processing Systems, volume 30, pages 5998–6008. Curran Associates, Inc., 2017.368

[31] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-369

ment learning. Machine learning, 8(3):229–256, 1992.370

11

[32] Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon.371

Permutation invariant graph generation via score-based generative modeling. In International372

Conference on Artificial Intelligence and Statistics, pages 4474–4484. PMLR, 2020.373

[33] Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max Welling. Se (3)-transformers: 3d374

roto-translation equivariant attention networks. Advances in Neural Information Processing375

Systems, 33:1970–1981, 2020.376

[34] Elise van der Pol, Daniel Worrall, Herke van Hoof, Frans Oliehoek, and Max Welling. Mdp377

homomorphic networks: Group symmetries in reinforcement learning. Advances in Neural378

Information Processing Systems, 33:4199–4210, 2020.379

[35] Vašek Chvátal David Applegate, Robert Bixby and William Cook. Concorde tsp solver.380

[36] Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling381

salesman and vehicle routing problems. 12 2017.382

[37] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial383

optimization algorithms over graphs. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,384

R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing385

Systems, volume 30, pages 6348–6358. Curran Associates, Inc., 2017.386

[38] Gorka Kobeaga, María Merino, and Jose A Lozano. An efficient evolutionary algorithm for the387

orienteering problem. Computers & Operations Research, 90:42–59, 2018.388

[39] Gerhard Reinelt. Tsplib—a traveling salesman problem library. ORSA journal on computing,389

3(4):376–384, 1991.390

[40] André Hottung, Yeong-Dae Kwon, and Kevin Tierney. Efficient active search for combinatorial391

optimization problems. arXiv preprint arXiv:2106.05126, 2021.392

[41] Michal Lisicki, Arash Afkanpour, and Graham W Taylor. Evaluating curriculum learning393

strategies in neural combinatorial optimization. arXiv preprint arXiv:2011.06188, 2020.394

12

1. For all authors...395

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s396

contributions and scope? [Yes]397

(b) Have you read the ethics review guidelines and ensured that your paper conforms to398

them? [Yes]399

(c) Did you discuss any potential negative societal impacts of your work? [N/A]400

(d) Did you describe the limitations of your work? [Yes] See Section 6.2401

2. If you are including theoretical results...402

(a) Did you state the full set of assumptions of all theoretical results? [N/A]403

(b) Did you include complete proofs of all theoretical results? [N/A]404

3. If you ran experiments...405

(a) Did you include the code, data, and instructions needed to reproduce the main experi-406

mental results (either in the supplemental material or as a URL)? [Yes] Source code407

will be available after decision is made.408

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they409

were chosen)? [Yes] See Section 5.2.410

(c) Did you report error bars (e.g., with respect to the random seed after running experi-411

ments multiple times)? [N/A]412

(d) Did you include the amount of compute and the type of resources used (e.g., type of413

GPUs, internal cluster, or cloud provider)? [Yes] See Appendix C.414

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...415

(a) If your work uses existing assets, did you cite the creators? [Yes]416

(b) Did you mention the license of the assets? [N/A]417

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]418

419

(d) Did you discuss whether and how consent was obtained from people whose data you’re420

using/curating? [N/A]421

(e) Did you discuss whether the data you are using/curating contains personally identifiable422

information or offensive content? [N/A]423

5. If you used crowdsourcing or conducted research with human subjects...424

(a) Did you include the full text of instructions given to participants and screenshots, if425

applicable? [N/A]426

(b) Did you describe any potential participant risks, with links to Institutional Review427

Board (IRB) approvals, if applicable? [N/A]428

(c) Did you include the estimated hourly wage paid to participants and the total amount429

spent on participant compensation? [N/A]430

13

	Introduction
	Symmetricity in Combinatorial Optimization Markov Decision Process
	Combinatorial optimization Markov decision process
	Symmetricities in CO-MDP

	Symmetric Neural Combinatorial Optimization
	Imposing invariant problem representation via Linv.
	Imposing problem and solution symmetricities via Lps and Lss

	Related Works
	Experiments
	Tasks and baseline selections
	Experimental setting
	Performance metrics
	Experimental results

	Discussion
	Soft invariant learning vs. hard constraint invariant learning
	Limitations & future directions

	Proof of thm:rotsym
	Formulation of Target Task
	Implementation Details
	Hyperparameters
	Implementation of Baselines

	Additional Experiments
	Hyperparameter Tuning of in CVRP
	Performance Evaluation on TSPLIB

