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Abstract

Deep reinforcement learning (DRL)-based combinatorial optimization (CO) meth-1

ods (i.e., DRL-NCO) have shown significant merit over the conventional CO2

solvers as DRL-NCO is capable of learning CO solvers without supervised labels3

attained from the verified solver. This paper presents a novel training scheme,4

Sym-NCO, that achieves significant performance increments to existing DRL-NCO5

methods. Sym-NCO is a regularizer-based training scheme that leverages universal6

symmetricities in various CO problems and solutions. Imposing symmetricities7

such as rotational and reflectional invariance can greatly improve the generalization8

capability of DRL-NCO as symmetricities are invariant features shared by various9

CO tasks. Our experimental results verify that Sym-NCO greatly improved the10

performance of DRL-NCO methods in four CO tasks, including traveling salesman11

problem (TSP), capacitated vehicle routing problem (CVRP), prize collecting TSP12

(PCTSP), and orienteering problem (OP), without employing problem-specific13

techniques. Remarkably, Sym-NCO outperformed not only the existing DRL-NCO14

methods but also a competitive conventional solver, the iterative local search (ILS),15

in PCTSP at 240⇥ faster speed. Source code will be available after the decision is16

made.17

1 Introduction18

Combinatorial optimization problems (COPs) are mathematical optimization problems on discrete19

input space that carry numerous valuable applications, including vehicle routing problems (VRPs)20

[1, 2], drug discovery [3, 4], and semi-conductor chip design [5, 6, 7]. However, finding an optimal21

solution to COP is difficult due to its NP-hardness. Therefore, computing near-optimal solutions fast22

is essential from a practical point of view.23

Conventionally, COPs were solved by integer program (IP) solvers or hand-crafted (meta) heuristics.24

Recent advances in computing infrastructures and deep learning conceived the field of neural combi-25

natorial optimization (NCO), a deep learning-based COP solving strategy. Depending on the training26

scheme, NCO methods are generally classified into supervised learning [8, 9, 10, 11, 12] and rein-27

forcement learning (RL) [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. Depending on the solution28

generation scheme, NCO methods are also classified into improvement [15, 14, 13, 26, 16, 17, 23]29

and constructive heuristics [18, 19, 20, 21, 22, 24, 25]. Among the NCO approaches, deep RL30

(DRL)-based constructive heuristics (i.e., DRL-NCO) are favored over conventional approaches31

due to the train-ability of RL that does not rely on existing COP solvers, and the tractability of the32
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(a) Problem symmetricity (b) Solution symmetricity

Figure 1: Illustration of symmetricities in CO (exampled in TSP)

constructive process that prevents rule-violation of specific task and guarantees qualified solutions33

[19].34

Despite the strength of DRL-NCO, there exists a performance gap between the state-of-the-art35

conventional heuristics and DRL-NCO. In an effort to close the gap, there have been attempts to36

employ problem-specific heuristics to existing DRL-NCO methods [21, 27]. However, devising a37

general training scheme to improve the performance of DRL-NCO still remains challenging.38

In this study, we propose the Symmetric Neural Combinatorial Optimization (Sym-NCO), a general39

training scheme applicable to universal CO problems. Sym-NCO is a regularization-based training40

scheme that leverages the symmetricities commonly found in COPs to increase the performance of41

existing DRL-NCO methods. To this end, we first identify the symmetricities present in various COPs.42

Sym-NCO leverages two types of symmetricities innate in COP that are defined on the Euclidean43

graph. First, the problem symmetricity derived from rotational invariance of the solution; the rotated44

graph must exhibit the same optimal solution as the original graph as shown in Fig. 1a. Second, the45

solution symmetricity, which is the shared feature among solutions having identical optimal values.46

For example, the solution symmetricity in the traveling salesmen problem (TSP) includes the first-city47

permutation invariance (See Fig. 1b). However, the solution symmetricity of general COPs must48

be automatically identified during the training process. That is because the shared feature between49

multiple optimal solutions is usually intractable without highly investigated domain knowledge.50

The Sym-NCO is composed of two novel regularization methods for leveraging symmetricities. First,51

we suggest a new advantage function on REINFORCE algorithm that automatically identifies and52

exploits symmetricities without imposing misleading bias. Second, we devise a novel representation53

learning scheme to impose symmetricities by leveraging the pre-identified symmetricities.54

We experimentally validated Sym-NCO on various existing DRL-NCO methods by solving their55

original target problems without employing any problem-specific techniques. By leveraging the56

symmetricities of COPs, Sym-NCO achieved the following:57

• High performances. Sym-NCO achieved near-optimal performance in various COP tasks (less58

than 2%) with extremely high speed (few seconds to solve 10,000 instances). Moreover, Sym-59

NCO surpassed the competitive PCTSP solver, ILS [19], at 240⇥ faster speed.60

• Problem agnosticism. Sym-NCO does not employ problem-specific heuristics to solve various61

COPs. Sym-NCO is generally applicable to solve TSP, CVRP PCTSP, and OP.62

• Architecture agnosticism. Sym-NCO can easily be implemented to any encoder-decoder model63

and impose the symmetricities of COPs. Sym-NCO successfully improved the performance of64

existing encoder-decoder-based DRL-NCO methods, such as PointerNet [8, 18], AM [19] and65

POMO [21].66

2 Symmetricity in Combinatorial Optimization Markov Decision Process67

This section presents several symmetric characteristics found in combinatorial optimization, which is68

formulated in the Markov decision process. The objective of NCO is to train the ✓-parameterized69

solver F✓ by solving the following problem:70

✓
⇤ = arg max

✓
EP⇠⇢

⇥
E⇡(P )⇠F✓(P )

⇥
R(⇡(P ))

⇤⇤
(1)
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where P = (x,f) is a problem instance with the N node coordinates x = {xi}Ni=1 and corresponding71

N features f = {fi}Ni=1. The ⇢ is a problem generating distribution, ⇡(P ) is a solution of P , and72

R(⇡(P )) is the objective value of ⇡(P ).73

2.1 Combinatorial optimization Markov decision process74

We define the combinatorial optimization Markov decision process (CO-MDP) as the sequential75

construction of a solution of COP. For a given P , the components of the corresponding CO-MDP are76

defined as follows:77

• State. The state st = (a1:t,x,f) is the t-th (partially complete) solution, where a1:t represents78

the previously selected nodes. The initial and terminal states s0 and sT are equivalent to the79

empty and completed solution, respectively. In this paper, we denote the solution ⇡(P ) as the80

completed solution.81

• Action. The action at is the selection of a node from the un-visited nodes (i.e., at 2 At =82

{{1, ..., N} \ {a1:t�1}}).83

• Reward. The reward R(⇡(P )) is the objective of COP. We assume that the reward is a function84

of a1:T (solution sequences), ||xi � xj ||i,j2{1,...N} (relative distances) and f (nodes features). In85

TSP, capacitated VRP (CVRP), and prize collecting TSPs (PCTSP), the reward is the negative of86

the tour length. In orienteering problem (OP), the reward is the sum of the prizes.87

Having defined CO-MDP, we define the solution mapping as follows:88

⇡(P ) ⇠ F✓(P ) =
TY

t=1

p✓(at|st(P )) (2)

where p✓(at|st(P )) is the policy that produces at at st, and T is the maximum number of states in89

the solution construction process.90

2.2 Symmetricities in CO-MDP91

Symmetricities are found in various COPs. We conjecture that imposing those symmetricities on F✓92

improves the generalization and sample efficiency of F✓. We define the two identified symmetricities93

that are commonly found in various COPs:94

Definition 2.1 (Problem Symmetricity). Problem P i and P j are problem symmetric (P i sym �! P j)95

if their optimal solution sets are identical.96

Definition 2.2 (Solution Symmetricity). Two solutions of problem P (⇡i(P ) and ⇡j(P )) are97

solution symmetric (⇡i sym �! ⇡j) if R(⇡i) = R(⇡j).98

An exemplary problem symmetricity found in various COPs is the rotational symmetricity:99

Theorem 2.1 (Rotational symmetricity). For any orthogoanl matrix Q, the problem P and Q(P ) ,100

{{Qxi}Ni=1,f} are problem symmetric: i.e., P sym �! Q(P ). See Appendix A for the proof.101

Rotational problem symmetricity is identified in every Euclidean COPs. On the other hand, solution102

symmetricity cannot be identified easily as the properties of the solutions are distinct for every COP.103

3 Symmetric Neural Combinatorial Optimization104

This section presents Sym-NCO, an effective training scheme that leverages the symmetricities of105

COPs. Sym-NCO imposes the symmetricities on F✓ by minimizing the symmetric loss function that106

is defined as follows:107

Lsym = ↵Linv + �Lss + Lps (3)
where Linv, Lps, and Lss are the loss functions that impose invariant representation, problem-solution108

joint symmetricity, and solution symmetricity, respectively. ↵,� 2 [0, 1] are the weight coefficients.109

In the following subsections, we explain each loss component in detail.110
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Figure 2: An overview of Sym-NCO

3.1 Imposing invariant problem representation via Linv.111

By Theorem 2.1, the original problem x and its rotated problem Q(x) have identical solutions. We112

impose this solution symmetricity on the encoder of F✓ by using the rotational invariant representation.113

We denote h(x) and h (Q(x)) as the hidden representations of x and P (x), respectively. To impose114

the rotational invariant property on h(x), we define Linv as follows:115

Linv = �Scos

✓
g

⇣
h(x)

⌘
, g

⇣
h
�
Q(x)

�⌘◆
(4)

where Scos(a, b) is the cosine similarity between a and b. g(·) is the MLP-parameterized projection116

head.117

To impose the rotational invariance, we penalize the difference between the projected representation118

g(h(x)) and g((h(Q(x)))), instead of directly penalizing the difference between h(x) and (h(Q(x)).119

This penalizing scheme allows the use of an arbitrary encoder network architecture while maintaining120

the diversity of h [28]. We empirically verified that this approach attains stronger solvers as described121

in Section 6.1.122

Note that the rotational invariance of h can also be attained through the EGNN [29], an invariant123

encoder architecture. However, this approach inevitably restricts the flexibility of the encoder124

architecture, thus preventing the use of flexible architectures, like Transformer [30]. We have125

empirically validated that our approach is more effective than the EGNN.126

3.2 Imposing problem and solution symmetricities via Lps and Lss127

As discussed in Section 2.2, COPs have problem and solution symmetricities. We explain how to128

impose the symmetricities by minimizing Lps and Lss when training F✓. We provide the policy129

gradients to Lss (⇡(P )) and Lps (⇡(P )) in the context of the REINFORCE algorithm [31] with the130

proposed baseline scheme.131

Imposing solution symmetricity. In general COPs, symmetric solutions are usually intractable.132

As defined in Definition 2.2, the symmetric solutions must have the same objective values. Hence,133

we regularize F✓(⇡|P ) with the gradient of Lss(⇡(P )) so that its realized solutions have the same134

objective value. The gradient of Lss(⇡(P )) is as follows:135

r✓Lss(⇡(P )) = �E⇡k⇠F✓(·|P )

h⇥
R(⇡(P ))�

Baselinez }| {
1

K

KX

k=1

R(⇡k)

| {z }
Advantage

⇤
r✓ logF✓

�
⇡(P )

�i
(5)
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where {⇡k}Kk=1 are the solutions of P sampled from F✓(⇡|P ), and logF✓(⇡(P )) is the log-136

likelihood of F✓ to generate ⇡(P ). K is the number of sampled solutions.137

The REINFORCE trains a solver by maximizing the expected reward, which is saturated in the end138

(i.e., sub-optimal solutions can be found) if properly trained. Saturation of reward value indicates a139

small deviation of rewards between sampled solutions ⇡1
, ...,⇡K , which refers to the (near) solution140

symmetricity as defined in Definition 2.2. Although naive REINFORCE has the ability to impose141

solution symmetricity by nature, it does not guarantee that the identified symmetric solutions are142

optimal. Our proposed baseline guides the solver to find improved symmetric solutions by inducing143

competition within the symmetric solution groups. If any of a symmetric solution group has the higher144

optimality over the rest of solutions in the group, the proposed advantage of the rest of solutions145

becomes a negative value. Negative advantage then encourages the solver to find the better solution146

so that prevents to fall in a bad local optimum. Overall, the proposed Lss not only imposes solution147

symmetricity but also guides to find near-optimal solutions.148

POMO [21] employs a similar training technique that finds symmetric solutions by forcing F✓149

to visit all possible initial cities when solving TSP and CVRP. For TSP, the training technique is150

justifiable as the permutation of the initial cities preserves the reward. However, the reward of COPs,151

including CVRP, PCTSP, and OP, is usually sensitive to first city selection. To this end, we do not152

restrict first city selection (except TSP) but leave it to the training process of Lss. Therefore, the153

solution symmetricity must be identified through the training process without employing potentially154

misleading bias. Though the solution symmetricity is a significant feature to increase generalization155

capability, it is not always present nor found in all COPs. Such observations highlight the limitations156

of leveraging only the solution symmetricities when deriving F✓. This motivates us to devise a more157

general method to leverage symmetricities in COPs.158

Imposing problem and solution symmetricities. As discussed in Section 2.2, the rotational problem159

symmetricity is common in various COPs. Thus, we regularize F✓ in terms of the rotational problem160

symmetricity with the gradient of Lps(⇡(P )) defined as follows:161

r✓Lps(⇡(P )) = �EQl⇠Q


E⇡l,k⇠F✓(·|Ql(P ))

h⇥
R(⇡(P ))�

Baselinez }| {
1

LK

LX

l=1

KX

k=1

R(⇡l,k)
⇤

| {z }
Advantage

r✓ logF✓(⇡(P ))
i�

(6)

where Q is the distribution of random orthogonal matrices, Ql is the l
th sampled rotation matrix, and162

⇡l,k is the k
th sample solution of the l

th rotated problem. L and K are the number of the sampled163

rotation matrix and solution symmetric solutions, respectively.164

Similar to the regularization scheme of Lss, the advantage term of Lps also induces competition165

between solutions sampled from rotationally symmetric problems. Since the rotational symmetricity166

is defined as x and Ql(x) having the same solution, the negative advantage value forces the solver167

to find a better solution. As mentioned in Section 2.2, problem symmetricity in COPs is usually168

pre-identified; Lps are applicable to general COPs. Moreover, multiple solutions are sampled for each169

symmetric problem so that Lps can impose solution symmetricity with a similar approach taken for170

Lss.171

4 Related Works172

Deep construction heuristics Bello et al. [18] propose one of the earliest DRL-NCO methods,173

based on PointerNet [8], and trained it with an actor-critic method. Attention model (AM) [19]174

successfully extends [18] by swapping PointerNet with Transformer [30], and it is currently the175

de-facto standard method for NCO. Notably, AM verifies its problem agnosticism by solving several176

classical routing problems and their practical extensions [7, 17]. POMO [21] extends AM by177

exploiting the solution symmetricities in TSP and CVRP. Even though POMO shows significant178

5



improvements from AM, it relies on problem-specific solution symmetricities (i.e., not problem179

agnostic). MDAM [24] extends AM by employing an ensemble of decoders. However, such extension180

is inapplicable for stochastic routing problems (i.e., not problem agnostic). Among these promising181

DRL-NCO methods, Sym-NCO achieved SOTA performances with problem-agnostic properties.182

Equivariant deep learning In deep learning, symmetricities are often enforced by employing183

specific network architectures. EDP-GNN [32] proposes a permutation equivariant graph neural184

network (GNN) that produces equivariant outputs to the input order permutations. SE(3)-Transformer185

[33] restricts the Transformer so that it is equivariant to SE(3) group input transformation. Similarly,186

EGNN [29] proposes a GNN architecture that produces O(n) group equivariant output. These187

network architectures can dramatically reduce the search space of the model parameters. Some188

research applies equivariant neural networks to RL tasks to improve sample efficiency [34]. However,189

imposing the symmetricities via specialized network architecture (i.e., hardly constrained to satisfy190

the symmetries) can limit the representation capabilities of the models, which consequently limits the191

solution quality of DRL-NCO. We further discuss this issue in Section 6.1.192

5 Experiments193

This section provides the experimental results of Sym-NCO for TSP, CVRP, PCTSP, and OP. Focusing194

on the fact that Sym-NCO can be applied to any encoder-decoder-based NCO method, we implement195

Sym-NCO on top of POMO [21] to solve TSP and CVRP, and AM [19] to solve PCTSP and OP,196

respectively. We additionally validate the effectiveness of Sym-NCO on PointerNet [8].197

5.1 Tasks and baseline selections198

TSP aims to find the Hamiltonian cycle with a minimum tour length. We employ Concorde [35] and199

LKH-3 [36] as the non-learnable baselines, and PointerNet [8], S2V-DQN [37], RL [20] AM [19],200

POMO [21] and MDAM [24] as the neural constructive baselines.201

CVRP is an extension of TSP that aims to find a set of tours with minimal total tour lengths while202

satisfying the capacity limits of the vehicles. We employ LKH-3 [36] as the non-learnable baselines,203

and RL[20], AM [19], POMO [21], and MDAM [24] as the constructive neural baselines.204

PCTSP is a variant of TSP that aims to find a tour with minimal tour length while satisfying the prize205

constraints. We employ the iterative local search (ILS) [19] as the non-learnable baseline, and AM206

[19] and MDAM [24] as the constructive neural baselines.207

OP is a variant of TSP that aims to find the tour with maximal total prizes while satisfying the tour208

length constraint. We employ compass [38] as the non-learnable baseline, and AM [19] and MDAM209

[24] as the constructive neural baselines.210

5.2 Experimental setting211

Problem size. We provide the results of problems with N = 100 for the four problem classes, and212

real-world TSP problems with 50 < N < 250 from TSPLIB [39].213

Hyperparameters We apply Sym-NCO to POMO, AM, and PointerNet. To make fair comparisons,214

we use the same network architectures and training-related hyperparameters from their original papers215

to train their Sym-NCO-augmented models. Please refer to Appendix Appendix C.1 for more details.216

Dataset and Computing Resources We use the benchmark dataset [19] to evaluate the performance217

of the solvers. To train the neural solvers, we use Nvidia A100 GPU. To evaluate the inference speed,218

we use an Intel Xeon E5-2630 CPU and Nvidia RTX2080Ti GPU to make fair comparisons with the219

existing methods as proposed in [24].220
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Table 1: Performance evaluation results for TSP and CVRP. Bold represents the best performances in
each task. ‘-’ indicates that the solver does not support the problem. ‘s’ indicates multi-start sampling,
‘bs’ indicates the beam search. ‘⇥5 for the MDAM indicates the 5 decoder ensemble.

Method TSP (N = 100) CVRP (N = 100)
Cost # Gap Time Cost # Gap Time

Handcrafted Heuristic-based Classical Methods

Concorde Heuristic [35] 7.76 0.00% 3m –
LKH3 Heuristic [36] 7.76 0.00% 21m 15.65 0.00% 13h
RL-based Deep Constructive Heuristic methods with greedy rollout

PointerNet {gr.} NIPS’14 [8, 18] 8.30 6.90 % – –
S2V-DQN {gr.} NeurIPS’17 [37] 8.31 7.03 % – –
RL {gr.} NeurIPS’18 [20] – 17.23 10.12% –
AM {gr.} ICLR’19 [19] 8.12 4.53% 2s 16.80 7.34% 3s
POMO {gr.} NeurIPS’20 [21] 7.85 1.04% 2s 16.26 3.93% 3s
MDAM {gr.⇥ 5} AAAI’21 [23] 7.93 2.19% 36s 16.40 4.86% 45s
Sym-NCO {gr.} This work 7.84 0.94% 2s 16.10 2.88% 3s
RL-based Deep Constructive Heuristic methods with multi-start rollout

RL {bs.10} NeurIPS’18 [20] – 16.96 8.39% –
AM {s.1280} ICLR’19 [19] 7.94 2.26% 41m 16.23 3.72% 54m
POMO {s. 100} NeurIPS’20 [21] 7.80 0.44% 13s 15.90 1.67% 16s
MDAM {bs. 30 ⇥ 5} AAAI’21 [23] 7.80 0.48% 20m 16.03 2.49% 1h
Sym-NCO {s.100} This work 7.79 0.39% 13s 15.87 1.46% 16s

Table 2: Performance evaluation results for PCTSP and OP. Notations are the same with Table 1.

Method PCTSP (N = 100) OP (N = 100)
Cost # Gap Time Obj " Gap Time

Handcrafted Heuristic-based Classical Methods

ILS C++ Heuristic [19] 5.98 0.00% 12h –
Compass Heuristic [38] – 33.19 0.00% 15m
RL-based Deep Constructive Heuristic methods with greedy rollout (zero-shot inference)

AM {gr.} ICLR’19 [19] 6.25 4.46% 2s 31.62 4.75% 2s
MDAM {gr.⇥ 5} AAAI’21 [23] 6.17 3.13% 34s 32.32 2.61% 32s
Sym-NCO {gr.} This work 6.05 1.23% 2s 32.51 2.03% 2s
RL-based Deep Constructive Heuristic methods with multi-start rollout (Post-processing)

AM {s. 1280} ICLR’19 [19] 6.08 1.67% 27m 32.68 1.55% 25m
MDAM {bs. 30⇥ 5} AAAI’21 [23] 6.07 1.46% 16m 32.91 0.84% 14m
Sym-NCO {s. 200} This work 5.98 -0.02% 3m 33.04 0.45% 3m

5.3 Performance metrics221

This section provides detailed performance metrics:222

Average cost. We report an average cost of 10,000 benchmark instances which is proposed by [19].223

Evaluation speed. We report the evaluation speeds of solvers in an out-of-the-box manner as they are224

used in practice. In that regard, the execution time of non-neural and neural methods are measured on225

CPU and GPU, respectively.226

Greedy/Multi-start performance. For neural solvers, it is a common practice to measure multi-227

start performance as its final performance. However, when those are employed in practice, such228

resource-consuming multi-start may not be possible. Hence, we discuss greedy and multi-start229

separately.230

5.4 Experimental results231

TSP and CVRP. As shown in Table 1, Sym-NCO outperforms the NCO baselines in both the232

greedy rollout and multi-start settings with the fastest inference speed. Remarkably, Sym-NCO233
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Figure 3: The applications of Sym-NCO to DRL-NCO methods in TSP (N = 100)
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Figure 4: Time vs. cost plots. Green, orange, and blue colored lines visualize the results of hand-craft
heuristics, neural baselines, and Sym-NCO, respectively. For OP (d), higher y-axis values are better.

achieves a 0.95% gap in TSP using the greedy rollout. In the TSP greedy setting, it solves TSP234

10,000 instances in a few seconds.235

PCTSP and OP. As shown in Table 2, Sym-NCO outperforms the NCO baselines in both the236

greedy rollout and multi-start settings. In the multi-start setting, Sym-NCO outperforms the classical237

PCTSP baseline (i.e., ILS) with the 43200
180 ⇡ 240⇥ faster speed.238

Gap
POMO 1.87%
Sym-NCO 1.62%

Table 3: Optimality gap on
TSPLIB

Real-world TSP. We evaluate POMO and Sym-NCO on TSPLIB239

[39]. Table 3 shows that Sym-NCO outperforms POMO. Please240

refer to Appendix D.2 for the full benchmark results.241

Application to various DRL-NCO methods As discussed in242

Section 3, Sym-NCO can be applied to various various DRL-NCO243

methods. We validate that Sym-NCO significantly improves the244

existing DRL-NCO methods as shown in Fig. 3.245

Time-performance analysis for multi-starts Multi-starts is a246

common method that improves the solution qualities while requiring a longer time budget. We use247

the rotation augments [21] to produce multiple inputs (i.e., starts). As shown in Fig. 4, Sym-NCO248

achieves the Pareto frontier for all benchmark datasets. In other words, Sym-NCO exhibits the best249

solution quality among the baselines within the given time consumption.250

6 Discussion251

6.1 Soft invariant learning vs. hard constraint invariant learning252

This paper presents a novel invariant learning scheme that imposes the problem symmetricity on253

NCO via regularization (i.e., soft invariant learning). Furthermore, we devise Linv to impose the254

symmetricity on the hidden representations. In this section, we provide the discussion and ablations255

of these design choices.256

Ablation Study of Linv As shown in Fig. 5b, Linv increases the cosine similarity of the projected257

representation (i.e., g(h)). We can conclude that Linv contributes to the performance improvements258
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curves of the models with and with Linv, (c) Costs of the models with and without g(·).
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Figure 6: Comparisons of Sym-NCO and EGNN

(see Fig. 5a). We further verify that imposing similarity on h degrades the performance as demon-259

strated in Fig. 5c. This again proves the importance of maintaining the representation capability of260

the encoder.261

Comparison with EGNN One distinct aspect of Sym-NCO is to impose the symmetricies through262

the soft invariant learning. However, imposing the symmetriciticy through high constraint invariant263

learning by modifying the network architecture is also a viable option. To further understand the264

effects of the symmetricity-imposing mechanisms, we additionally train the high constraint invaraint265

learning model, EGNN [29], as the encoder. As shown in Fig. 6a, the hard approach (i.e., EGNN)266

strictly enforces the symmetricities. Nevertheless, we observed that EGNN significantly underper-267

forms than Sym-NCO, and fails to converge as shown Fig. 6b. We suspect that the performance268

difference originates mainly from the restricted network architecture of EGNN.269

6.2 Limitations & future directions270

Extended problem symmetricities. In this work, we employ the rotational symmetricity (Theo-271

rem 2.1) as the problem symmetricity. However, for some COPs, different problem symmetricities,272

such as scaling and translating P , can also be considered. Employing these additional symmetricities273

may further enhance the performance of Sym-NCO. We leave this for future research.274

Large scale adaptation. Large scale applicability is essential to NCO (this work solves N < 250).275

Hence, we expect that the transfer- [40], curriculum- [41], and meta-learning approaches may improve276

the generalizability of NCO to larger-sized problems.277

Extension to the graph COP. This work finds the problem symmetricity that is universally278

applicable for Euclidean COPs. However, some COPs are defined in the non-Euclidean spaces such279

as asymmetric TSP. We also leave finding the universal symmetricities of non-Euclidean COPs for280

future research.281
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