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Abstract

The idea of using a separately trained target model (or teacher) to improve the1

performance of the student model has been increasingly popular in various machine2

learning domains, and meta-learning is no exception; a recent discovery shows that3

utilizing task-wise target models can significantly boost the generalization perfor-4

mance. However, obtaining a target model for each task can be highly expensive,5

especially when the number of tasks for meta-learning is large. To tackle this issue,6

we propose a simple yet effective method, coined Self-improving Momentum Target7

(SiMT). SiMT generates the target model by adapting from the temporal ensemble8

of the meta-learner, i.e., the momentum network. This momentum network and its9

task-specific adaptations enjoy a favorable generalization performance, enabling10

self-improving of the meta-learner through knowledge distillation. Moreover, we11

found that perturbing parameters of the meta-learner, e.g., dropout, further stabilize12

this self-improving process by preventing fast convergence of the distillation loss13

during meta-training. Our experimental results demonstrate that SiMT brings a14

significant performance gain when combined with a wide range of meta-learning15

methods under various applications, including few-shot regression, few-shot classi-16

fication, and meta-reinforcement learning.17

1 Introduction18

Meta-learning [48] is the art of extracting and utilizing the knowledge from the distribution of tasks19

to better solve a relevant task. This problem is typically approached by training a meta-model that can20

transfer its knowledge to a task-specific solver, where the performance of the meta-model is evaluated21

on the basis of how well each solver performs on the corresponding task. To learn such meta-model,22

one should be able to (a) train an appropriate solver for each task utilizing the knowledge transferred23

from the meta-model, and (b) accurately evaluate the performance of the solver. A standard way to do24

this is the so-called S/Q (support/query) protocol [52, 32]: for (a), use a set of support set samples to25

train the solver; for (b), use another set of samples, called query set samples to evaluate the solver1.26

Recently, however, an alternative paradigm—called S/T (support/target) protocol—has received27

much attention [55, 59, 30]. The approach assumes that the meta-learner has an access to task-specific28

target models, i.e., an expert model for each given task, and uses these models to evaluate task-specific29

solvers by measuring the discrepancy of the solvers from the target models. Intriguingly, it has been30

observed that such knowledge distillation procedure [40, 20] helps to improve the meta-generalization31

performance [59], in a similar way that such teacher-student framework helps to avoid overfitting32

under non-meta-learning contexts [28, 22].33

Despite such advantage, the S/T protocol is difficult to be used in practice, as training target models34

for each task usually requires an excessive amount of compute, especially when the number of tasks35

1We give an overview of terminologies used in the paper to guide readers new to this field (see the Appendix).
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Figure 1: An overview of the proposed Self-improving Momentum Target (SiMT): the momentum
network efficiently generates the target model, and by distilling knowledge to the task-specific solver,
it forms a self-improving process. S and Q denote the support and query datasets, respectively.

is large. Prior works aim to alleviate this issue by proposing methods to generate target models in36

a compute-efficient manner. For instance, Lu et al. [30] consider the case where the learner has an37

access to a model pre-trained on a global data domain that covers most tasks (to be meta-trained38

upon), and propose to generate task-wise target models by simply fine-tuning the model for each task.39

However, the method still requires the compute for fine-tuning on a large number of tasks, and more40

importantly, is hard to be used when there is no effective pre-trained model available at hand. For41

example, a globally pre-trained model is usually not available in reinforcement learning, as collecting42

“global” data is a nontrivial task [8].43

In this paper, we ask whether we can generate the task-specific target models by (somewhat ironically)44

using meta-learning. We draw inspiration from recent observations in semi/self-supervised learning45

literature [47, 15, 5] that the temporal ensemble of a model, i.e., the momentum network [25], can46

be an effective teacher of the original meta-model. It turns out that a similar phenomenon happens47

in the meta-learning scenario: one can construct a momentum network of the meta-model, whose48

task-specific adaptation is an effective target model from which the task-specific knowledge can be49

distilled to train the original meta-model.50

Contribution. We establish a novel framework, coined Meta-Learning with Self-improving Momen-51

tum Target (SiMT), which brings the benefit of the S/T protocol to the S/Q-like scenario where52

task-specific target models are not available (but have access to query data). In a nutshell, SiMT is53

comprised of two (iterative) steps:54

• Momentum target: We generate the target model by adapting from the momentum network, which55

shows better adaptation performance than the meta-model itself. In this regard, generating the56

target model becomes highly efficient, e.g., one single forward is required when obtaining the57

momentum target for ProtoNet [42].58

• Self-improving process: The meta-model enables to improve through the knowledge distillation59

from the momentum target, and this recursively improves the momentum network by the temporal60

ensemble. Furthermore, we find that perturbing parameters of the task-specific solver of the61

meta-model, e.g., dropout [44], further stabilizes this self-improving process by preventing fast62

convergence of the distillation loss during meta-training.63

We verify the effectiveness of SiMT under various applications of meta-learning, including few-64

shot regression, few-shot classification, and meta-reinforcement learning (meta-RL). Overall, our65

experimental results show that incorporating the proposed method can consistently and significantly66

improve the baseline meta-learning methods [9, 29, 34, 42]. In particular, our method improves the67

few-shot classification accuracy of Conv4 [52] trained with MAML [9] on mini-ImageNet [52] from68

47.33%! 51.49% for 1-shot, and from 63.27%! 68.74% for 5-shot, respectively. Moreover, we69

show that our framework could even notably improve on the few-shot regression and meta-RL tasks,70

which supports that our proposed method is indeed domain-agnostic.71
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2 Related work72

Learning from target models. Learning from an expert model, i.e., the target model, has shown its73

effectiveness across various domains [28, 33, 62, 49]. As a follow-up, recent papers demonstrate that74

meta-learning can also be the case [55, 59]. However, training independent task-specific target models75

is highly expensive due to the large space of task distribution in meta-learning. To this end, recent76

work suggests pre-training a global encoder on the whole meta-training set and finetune target models77

on each task [30]; however, they are limited to specific domains and still require some computations,78

e.g., they take more than 6.5 GPU hours to pre-train only 10% of target models while ours require 279

GPU hours for the entire meta-learning process (ProtoNet [42] of ResNet-12 [32]) on the same GPU.80

Another recent relevant work is bootstrapped meta-learning [10], which generates the target model81

from the meta-model by further updating the parameters of the task-specific solver for some number82

of steps with the query dataset. While the bootstrapped target models can be obtained efficiently, their83

approach is specialized in gradient-based meta-learning schemes, e.g., MAML [9]. In this paper, we84

suggest an efficient and more generic way to generate the target model during the meta-training.85

Learning with momentum networks. The idea of temporal ensembling, i.e., the momentum network,86

has become an essential component of the recent semi/self-supervised learning algorithms [3, 5]. For87

example, Mean Teacher [47] first showed that the momentum network improves the performance of88

semi-supervised image classification, and recent advanced approaches [2, 43] adopted this idea for89

achieving state-of-the-art performances. Also, in self-supervised learning methods which enforce90

invariance to data augmentation, such momentum networks are widely utilized as a target network91

[18, 15] to prevent collapse by providing smoother changes in the representations. In this paper, we92

empirically demonstrate that the momentum network shows better adaptation performance compare93

to the original meta-model, which motivates us to utilize it for generating the target model in a94

compute-efficient manner.95

3 Problem setup and evaluation protocols96

In this section, we formally describe the meta-learning setup under consideration, and S/Q and97

S/T protocols studied in prior works.98

Problem setup: Meta-learning. Let p(⌧) be a distribution of tasks. The goal of meta-learning is99

to train a meta-model f✓, parameterized by the meta-model parameter ✓, which can transfer its100

knowledge to help to train a solver for a new task. More formally, we consider some adaptation101

subroutine Adapt(·, ·) which uses both information transferred from ✓ and the task-specific dataset102

(which we call support set) S⌧ to output a task-specific solver as �⌧ = Adapt(✓,S⌧ ). For example,103

the model-agnostic meta-learning algorithm (MAML; [9]) uses the adaptation subroutine of taking104

a fixed number of SGD on S⌧ , starting from the initial parameter ✓. In this paper, we aim to give a105

general meta-learning framework that can be used in conjunction with any adaptation subroutine,106

instead of designing a method specialized for a specific one.107

The objective is to learn a nice meta-model parameter ✓ from a set of tasks sampled from p(⌧) (or108

sometimes the task distribution itself), such that the expected loss of the task-specific adaptations109

is small, i.e., min✓ E⌧⇠p(⌧)[`
⌧ (Adapt(✓,S⌧ ))], where `

⌧ (·) denotes the test loss on task ⌧ . To train110

such meta-model, we need a mechanism to evaluate and optimize ✓ (e.g., via gradient descent). For111

this purpose, existing approaches take one of two approaches: the S/Q protocol or the S/T protocol.112

S/Q protocol. The majority of the existing meta-learning frameworks (e.g., [52, 32]) splits the113

task-specific training data into two, and use them for different purposes. One is the support set S⌧114

which is used to perform the adaptation subroutine. Another is the query set Q⌧ which is used for115

evaluating the performance of the adapted parameter and compute the gradient with respect to ✓. In116

other words, given the task datasets (S1,Q1), (S2,Q2), . . . , (SN ,QN ),2 the S/Q protocol solves117

min
✓

1

N

NX

i=1

L
�
Adapt(✓,S⌧i),Q⌧i

�
, (1)

where L(�,Q) denotes the empirical loss of a solver � on the dataset Q.118

2Here, while we assumed a static batch of tasks for notational simplicity, the expression is readily extendible
to the case of a stream of tasks drawn from p(⌧).
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S/T protocol. Another line of work considers the scenario where the meta-learner additionally has119

an access to a set of target models �target for each training task [55, 30]. In such case, one can120

use a teacher-student framework to regularize the adapted solver to behave similarly (or have low121

prediction discrepancy, equivalently) to the target model. Here, a typical practice is to not split each122

task dataset and measure the discrepancy using the support dataset that is used for the adaptation123

[30]. In other words, given the task datasets S1,S2, . . . ,SN and the corresponding target models124

�
⌧1
target,�

⌧2
target, . . . ,�

⌧N
target, the S/T protocol updates the meta-model by solving125

min
✓

1

N

NX

i=1

Lteach
�
Adapt(✓,S⌧i),�⌧i

target,S⌧i
�
, (2)

where Lteach(�,�target,S) denotes a discrepancy measure between the adapted model � and the126

target model �target, measured using the dataset S .127

4 Meta-learning with self-improving momentum target128

In this section, we develop a compute-efficient framework which bring the benefits of S/T protocol129

to the settings where we do not have access to target-specific tasks or a general pretrained model, as130

in general S/Q-like setups. In a nutshell, our framework iteratively generates a meta-target model131

which generalizes well when adapted to the target tasks, by constructing a momentum network [47]132

of the meta-model itself. The meta-model is then trained, using both the knowledge transferred from133

the momentum target and the knowledge freshly learned from the query sets. We first briefly describe134

our meta-model update protocol (Section 4.1), and then the core component, coined Self-Improving135

Momentum Target (SiMT), which efficiently generates the target model for each task (Section 4.2).136

4.1 Meta-model update with a S/Q-S/T hybrid loss137

To update the meta-model, we use a hybrid loss function of the S/Q protocol (1) and the S/T protocol138

(2). Formally, let (S1,Q1), (S2,Q2), . . . , (SN ,QN ) be given task datasets with support-query split,139

and let �⌧1
target,�

⌧2
target, . . . ,�

⌧N
target be task-specific target models generated by our target generation140

procedure (which will be explained with more detail in Section 4.2). We train the meta-model as141

min
✓

1

N

NX

i=1

✓
(1� �) · L(Adapt(✓,S⌧i),Q⌧i) + � · Lteach(Adapt(✓,S⌧i),�⌧i

target
,Q⌧i)

◆
, (3)

where � 2 [0, 1) is the weight hyperparameter. We note two things about Eq. 3. First, while we are142

training using the target model, we also use a S/Q loss term. This is because our method trains the143

meta-target model and the meta-model simultaneously from scratch, instead of requiring fully-trained144

target models. Second, unlike in the S/T protocol, we evaluate the discrepancy Lteach using the145

query set Q⌧i instead of the support set, to improve the generalization performance of the student146

model. In particular, the predictions of adapted models on query set samples are softer (i.e., having147

less confidence) than on support set samples, and such soft predictions are known to be beneficial on148

the generalization performance of the student model in the knowledge distillation literature [61, 46].149

4.2 SiMT: Self-improving momentum target150

We now describe the algorithm we propose, SiMT (Algorithm 1), to generate the target model in151

a compute-efficient manner. In a nutshell, SiMT is comprised of two iterative steps: momentum152

target and self-improving process. To efficiently generate a target model, SiMT utilizes the temporal153

ensemble of the network, i.e., the momentum network, then distills the knowledge of the generated154

target model into the task-specific solver of the meta-model to form a self-improving process.155

Momentum target. For the compute-efficient generation of target models, we utilize the momentum156

network ✓moment of the meta-model. Specifically, after every meta-model training iteration, we compute157

the exponential moving average of the meta-model parameter ✓ as158

✓moment  ⌘ · ✓moment + (1� ⌘) · ✓, (4)

where ⌘ 2 [0, 1) is the momentum coefficient. We find that ✓moment can adapt better than the meta-159

model ✓ itself and observe that the loss landscape has flatter minima (see Section 5.4), which can160
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Algorithm 1 SiMT: Self-Improving Momentum Target

Require: Distribution over tasks p(⌧), adaptation subroutine Adapt(·), momentum coefficient ⌘,
weight hyperparameter �, dropout probability p, task batch size N , learning rate �.

1: Initialize ✓ using the standard initialization scheme.
2: Initialize the momentum network with the meta-model parameter, ✓moment  ✓.
3: while not done do
4: Sample N tasks {⌧i}Ni=1 from p(⌧)
5: for i = 1 to N do
6: Sample support set S⌧i and query set Q⌧i from ⌧i

7: �
⌧i
moment = Adapt(✓moment,S⌧i). . Generate a momentum target.

8: �
⌧i = Adapt(✓,S⌧i). . Adapt a task-specific solver.

9: �
⌧i
drop

= Dropout(�⌧i , p). . Perturb the solver.
10: L⌧i

total
(✓) = (1� �) · L(�⌧i

drop
,Q⌧i) + � · Lteach(�

⌧i
drop

,�
⌧i
moment,Q⌧i) . Compute loss.

11: end for
12: ✓  ✓ � �

N ·r✓
PN

i=1 L
⌧i
total

(✓). . Train the meta-model.
13: ✓moment  ⌘ · ✓moment + (1� ⌘) · ✓. . Update the momentum network.
14: end while

be a hint for understanding the generalization improvement [27, 11]. Based on this, we propose161

to generate the task-specific target model, i.e., the momentum target �moment, by adapting from the162

momentum network ✓moment. For a given support set S , we generate the target model for each task as163

�
⌧i
moment

= Adapt(✓moment,S⌧i), 8i 2 {1, 2, . . . , N}. (5)

We remark that generating momentum targets does not require an excessive amount of compute (see164

Section 5.4), e.g., ProtoNet [42] requires a single forward of a support set, and MAML [9] requires165

few-gradient steps without second-order gradient computation for the adaptation.166

Self-improving process via knowledge distillation. After generating the momentum target, we167

utilize its knowledge to improve the generalization performance of the meta-model. To this end, we168

choose the knowledge distillation scheme [20], which is simple yet effective across various domains,169

including meta-learning [30]. Here, our key concept is that the momentum target self-improves170

during the training due to the knowledge transfer. To be specific, the knowledge distillation from171

the momentum target improves the meta-model itself, which recursively improves the momentum172

through the temporal ensemble. Formally, for a given query set Q, we distill the knowledge of the173

momentum target �moment to the task-specific solver of the meta-model � as174

Lteach(�,�moment,Q) :=
1

|Q|
X

(x,y)2Q

lKD

�
f�moment

(x), f�(x)
�
, (6)

where lKD is the distillation loss and | · | is the cardinality of the set. For regression tasks, we use the175

MSE loss, i.e., lKD(z1, z2) := kz1 � z2k22, and for classification tasks, we use the KL divergence with176

temperature scaling [16], i.e., lKD(z1, z2) := T
2 ·KL(�(z1/T ) k �(z2/T )), where T is the temperature177

hyperparameter, � is the softmax function and z1, z2 are logits of the classifier, respectively. We178

present the detailed distillation objective of reinforcement learning tasks in the Appendix. Also,179

note that optimizing the distillation loss only propagates gradients to the meta-model ✓, not to the180

momentum network ✓moment, i.e., known as the stop-gradient operator [5, 6].181

Furthermore, we find that the distillation loss (6) sometimes converges too fast during the meta-182

training, which can stop the self-improving process. To prevent this, we suggest perturbing the183

parameter space of �. Intuitively, injecting noise to the parameter space of � forces an asymmetricity184

between the momentum target’s prediction, hence, preventing f� and f�moment
from reaching a similar185

prediction. To this end, we choose the standard dropout regularization [44] due to its simplicity and186

generality across architectures and also have shown its effectiveness under distillation research [57]:187

�drop := Dropout(�, p) where p is the probability of dropping activations. In the end, we use the188

perturbed task-specific solver �drop and the momentum target �moment for our evaluation protocol (3).189
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Table 1: Few-shot regression results on ShapeNet and Pascal datasets. We report the angular error
for ShapeNet, and MSE for Pascal. SiMT utilizes the momentum network for the adaptation. The
reported results are averaged over three trials, subscripts denote the standard deviation, and bold
denotes the best result of each group.

ShapeNet Pascal

Method 10-shot 15-shot 10-shot 15-shot

MAML [9] 29.555±0.600 22.286±3.369 2.612±0.280 2.513±0.250
MAML [9] + SiMT 18.913±2.655 16.100±1.318 1.462±0.230 1.229±0.074

ANIL [34] 39.915±0.665 38.202±1.388 6.600±0.360 6.517±0.420
ANIL [34] + SiMT 37.424±0.951 29.478±0.212 5.339±0.321 5.007±0.145

MetaSGD [29] 17.353±1.110 15.768±1.266 3.532±0.381 2.833±0.216
MetaSGD [29] + SiMT 16.121±1.322 14.377±0.358 2.300±0.871 1.879±0.134

Table 2: Few-shot in-domain adaptation accuracy (%) on mini-ImageNet, and tiered-ImageNet. SiMT
utilizes the momentum network for the adaptation. The reported results are averaged over three trials,
subscripts denote the standard deviation, and bold denotes the best result of each group.

mini-ImageNet tiered-ImageNet

Model Method 1-shot 5-shot 1-shot 5-shot

Conv4 [52]

MAML [9] 47.33±0.45 63.27±0.14 50.19±0.21 66.05±0.19
MAML [9] + SiMT 51.49±0.18 68.74±0.12 52.51±0.21 69.58±0.11

ANIL [34] 47.71±0.47 63.13±0.43 49.57±0.04 66.34±0.28
ANIL [34] + SiMT 50.81±0.56 67.99±0.19 51.66±0.26 68.88±0.08

MetaSGD [29] 50.66±0.18 65.55±0.54 52.48±1.22 71.06±0.20
MetaSGD [29] + SiMT 51.70±0.80 69.13±1.40 52.98±0.07 71.46±0.12

ProtoNet [42] 47.97±0.29 65.16±0.67 51.90±0.55 71.51±0.25
ProtoNet [42] + SiMT 51.25±0.55 68.71±0.35 53.25±0.27 72.69±0.27

ResNet-12 [32]

MAML [9] 52.66±0.60 68.69±0.33 57.32±0.59 73.78±0.27
MAML [9] + SiMT 56.28±0.63 72.01±0.26 59.72±0.22 74.40±0.90

ANIL [34] 51.80±0.59 68.38±0.20 57.52±0.68 73.50±0.35
ANIL [34] + SiMT 54.44±0.27 69.98±0.66 58.18±0.31 75.59±0.50

MetaSGD [29] 54.95±0.11 70.65±0.43 58.97±0.89 76.37±0.11
MetaSGD [29] + SiMT 55.72±0.96 74.01±0.79 61.03±0.05 78.04±0.48

ProtoNet [42] 52.84±0.21 68.35±0.29 61.16±0.17 79.94±0.20
ProtoNet [42] + SiMT 55.84±0.57 72.45±0.32 62.01±0.42 81.82±0.12

5 Experiments190

In this section, we experimentally validate the effectiveness of the proposed SiMT by measuring191

its performance on various meta-learning applications, including few-shot regression (Section 5.1),192

few-shot classification (Section 5.2), and meta-reinforcement learning (meta-RL; Section 5.3).193

Common setup. By following the prior works, we chose the checkpoints and the hyperparameters on194

the meta-validation set for the few-shot learning tasks [31, 53]. For RL, we chose it based on the best195

average return during the training [9]. We find that the hyperparameters, e.g., momentum coefficient196

⌘ or the weight hyperparameter �, are not sensitive across datasets and architectures but can vary on197

the type of the meta-learning scheme or tasks. We provide further details in the Appendix. Moreover,198

we report the adaptation performance of the momentum network for SiMT.199

5.1 Few-shot regression200

For regression tasks, we demonstrate our experiments on ShapeNet [12] and Pascal [60] datasets,201

where they aim to predict the object pose of a gray-scale image relative to the canonical orientation.202

To this end, we use the following empirical loss L to train the meta-model: the angular loss for the203

ShapeNet (
P

(x,y)2Qkcos(f�(x))� cos(y)k2 + ksin(f�(x))� sin(y)k2 ) and the MSE loss for the204
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Table 3: Few-shot cross-domain adaptation accuracy (%) on ResNet-12 trained with mini-ImageNet
and tiered-ImageNet. We consider CUB and Cars as cross-domain datasets. SiMT utilizes the
momentum network for the adaptation. The reported results are averaged over three trials, subscripts
denote the standard deviation, and bold denotes the best result of each group.

mini-ImageNet ! tiered-ImageNet !
Problem Method CUB Cars CUB Cars

1-shot

MAML [9] 39.50±0.91 32.87±0.20 42.32±0.69 36.62±0.12
MAML [9] + SiMT 42.32±0.62 33.73±0.63 44.33±0.43 37.21±0.35

ANIL [34] 37.30±0.89 31.28±1.03 42.29±0.33 36.27±0.58
ANIL [34] + SiMT 38.86±0.98 32.34±0.95 44.53±1.21 36.92±0.56

MetaSGD [29] 41.98±0.18 34.52±0.56 46.48±2.10 38.09±1.21
MetaSGD [29] + SiMT 43.50±0.89 33.92±0.30 46.62±0.41 38.69±0.26

ProtoNet [42] 41.22±0.81 32.79±0.61 47.75±0.56 37.59±0.80
ProtoNet [42] + SiMT 44.13±0.30 34.53±0.40 48.89±0.65 38.07±0.42

5-shot

MAML [9] 56.17±0.92 44.56±0.79 65.00±0.89 51.08±0.28
MAML [9] + SiMT 59.22±0.39 46.59±0.21 67.58±0.61 51.88±0.52

ANIL [34] 53.42±0.97 41.65±0.67 62.48±0.85 50.50±1.18
ANIL [34] + SiMT 56.03±1.40 45.88±0.82 66.30±0.99 54.60±0.91

MetaSGD [29] 58.90±1.30 47.44±1.55 70.38±0.27 56.28±0.07
MetaSGD [29] + SiMT 65.07±1.89 49.86±0.84 73.93±0.42 57.97±1.34

ProtoNet [42] 57.87±0.77 48.06±1.10 74.35±0.93 57.23±0.25
ProtoNet [42] + SiMT 63.85±0.76 51.67±0.29 75.97±0.09 59.01±0.50

Pascal (
P

(x,y)2Qkf�(x)� yk2), following the prior works [60, 12]. For the backbone meta-learning205

schemes we use gradient-based approaches, including MAML [9], ANIL [34], and MetaSGD [29].206

For all methods, we train the convolutional neural network with 7 layers [60] and apply dropout207

regularization [44] before the max-pooling layer for SiMT. Table 1 summarizes the results, showing208

that SiMT significantly improves the overall meta-learning schemes in all tested cases.209

5.2 Few-shot classification210

For few-shot classification tasks, we use the cross-entropy loss for the empirical loss term L to211

train the meta-model ✓., i.e.,
P

(x,y)2Q lce(f�(x), y) where lce is the cross-entropy loss. We train the212

meta-model on mini-ImageNet [52] and tiered-ImageNet [36] datasets, following the prior works213

[30, 53]. Here, we consider the following gradient-based and metric-based meta-learning approaches214

as our backbone algorithm to show the wide usability of our method: MAML, ANIL, MetaSGD, and215

ProtoNet [42]. We train each method on Conv4 [52] and ResNet-12 [32], and apply dropout before216

the max-pooling layer for SiMT. For the training details, we mainly follow the setups from each217

backbone algorithm paper. See the Appendix for more details.218

In-domain adaptation. In this setup, we evaluate the adaptation performance on different classes219

of the same dataset used in meta-training. As shown in Table 2, incorporating SiMT into existing220

meta-learning methods consistently and significantly improves the in-domain adaptation performance.221

In particular, SiMT achieves higher accuracy gains on the mini-ImageNet dataset, e.g., 5-shot222

performance improves from 63.27%! 68.74% on Conv4. We find that this is due to the overfitting223

issue of backbone algorithms on the mini-ImageNet dataset, where SiMT is more robust to such224

issues. For instance, when training mini-ImageNet 5-shot classification on Conv4, MAML starts to225

overfit after the first 40% of the training process, while SiMT does not overfit during the training.226

Cross-domain adaptation. We also consider the cross-domain adaptation scenarios. Here, we adapt227

the meta-model on different datasets from the meta-training: we use CUB [54] and Cars [24] datasets.228

Such tasks are known to be challenging, as there exists a large distribution shift between training229

and testing domains [17]. Table 3 shows the results. Somewhat interestingly, SiMT also improves230

the cross-domain adaptation performance of the base meta-learning methods across the considered231

datasets. These results indicate that SiMT successfully learns the ability to generalize to unseen tasks232

even for the distributions that highly differ from the training.233
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Table 4: Ablation study on each component of SiMT. We report the few-shot in-domain adaptation
accuracy (%) on Conv4 trained with mini-ImageNet. Here, we use the learned momentum network at
meta-test time, except for the first experiment of the table. The reported results are averaged over
three trials, subscripts denote the standard deviation, and bold denotes the best result.

Momentum Distillation Dropout 1-shot 5-shot

- - - 47.33±0.45 63.27±0.14
X - - 48.98±0.32 66.12±0.21
X X - 49.23±0.24 66.52±0.15
X - X 49.25±0.41 65.25±0.15
X X X 51.49±0.18 68.74±0.12

5.3 Reinforcement learning234

The goal of meta-RL is training an agent to quickly adapt a policy to maximize the expected return for235

unseen tasks using only a limited number of sample trajectories. Since the expected return is usually236

not differentiable, we use policy gradient methods to update the policy. Specifically, we use vanilla237

policy gradient [56], and trust-region policy optimization (TRPO; [37]) for the task-specific solver238

and meta-model, respectively, following MAML [9]. The overall training objective of meta-RL is in239

the Appendix, including the empirical loss L, and the knowledge distillation loss Lteach. We evaluate240

SiMT on continuous control tasks based on OpenAI Gym [4] environments. In these experiments, we241

choose MAML as our backbone algorithm, and train a multi-layer perceptron policy network with242

two hidden layers of size 100 by following the prior setup [9]. We find that the distillation loss is243

already quite effective even without the dropout regularization, and applying it does not improve244

more. We conjecture that dropout on such a small network may not be effective as it is designed to245

reduce the overfitting of large networks [44]. We provide more experimental details in the Appendix.246
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Figure 2: Meta-RL results for (a) 2D navigation and
(b) Half-cheetah locomotion tasks. The solid line and
shaded regions represent the truncated mean and stan-
dard deviation, respectively, across five runs.

2D Navigation. We first evaluate SiMT on247

a 2D Navigation task, where a point agent248

moves to different goal positions which are249

randomly chosen within a 2D unit square.250

Figure 2 shows the adaptation performance251

of learned models with up to 3 gradient up-252

dates. These results demonstrate that SiMT253

(red) could consistently improve the adap-254

tation performance of MAML (blue). Also,255

SiMT makes faster performance improve-256

ments than vanilla MAML with additional257

gradient updates.258

Locomotion. To further demonstrate our259

method, we also study high-dimensional,260

complex locomotion tasks based on the MuJoCo [50] simulator. We choose a set of goal direction261

tasks with a planar cheetah (“Half-cheetah”), following previous works [9, 34]. In the goal direction262

tasks, the reward is the magnitude of the velocity in either the forward or backward direction,263

randomly chosen for each task. Figure 2b shows that SiMT significantly improves the adaptation264

performance of MAML even with a single gradient step.265

5.4 Ablation study266

Throughout this section, unless otherwise specified, we perform the experiments in 5-shot in-domain267

adaptation on mini-ImageNet with Conv4, where MAML is the backbone meta-learning scheme.268

Component analysis. We perform an analysis on each component of our method in both 1-shot269

and 5-shot classification on mini-ImageNet: namely, the use of (a) the momentum network ✓moment,270

(b) the distillation loss Lteach (6), and (c) the dropout regularization Dropout(·), by comparing the271

accuracies. The results in Table 4 show each component is indeed important for the improvement.272

We find that a naïve combination of the distillation loss and the momentum network does not show273

significant improvements. But, by additionally applying the dropout, the distillation loss becomes274

more effective and further improves the performance. Note that this improvement does not fully come275

from the dropout itself, as only using dropout slightly degrades the performance in some cases.276
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Figure 3: Validation accuracy curves of 5-shot mini-ImageNet on Conv4: we compare the adaptation
performance of (a) MAML and SiMT, under the same training wall-clock time, and (b) the meta-
model and the momentum network of SiMT, under the same number of training steps. The solid line
and shaded regions represent the mean and standard deviation, respectively, across three runs.

(a) Meta-model (b) Momentum network

Figure 4: Loss landscape visualization of Conv4
trained under 5-shot mini-ImageNet with MAML.

Loss landscape of the momentum network.277

We visualize the loss landscape of the momen-278

tum network ✓moment and the meta-model ✓, to279

give insights into the generalization improve-280

ment. To do this, we train MAML with a momen-281

tum network (without distillation and dropout)282

and visualize the loss by perturbing each pa-283

rameter space [27] (See the Appendix for the284

detail of the visualization method). As shown in285

Figure 4, the momentum network forms a flat-286

ter loss landscape than the meta-model, where287

recent studies demonstrate that such a flat land-288

scape is effective under various domains [11].289

Computational efficiency. Our method may be seemingly compute-inefficient when incorporating290

meta-learning methods (due to the momentum target generation); however, we show that it is not.291

Although SiMT increases the total training time of MAML by roughly 1.2 times, we have observed292

that it is 3 times faster to achieve the best performance of MAML: in Figure 3a, we compare the293

accuracy under the same training wall-clock time with MAML.294

Comparison of the momentum network and meta-model. To understand how the momentum295

network improves the performance of the meta-model, we compare the adaptation performance of the296

momentum network and the meta-model during training SiMT. As shown in Figure 3b, we observe297

that the performance of the momentum network is consistently better than the meta-model, which298

implies that the proposed momentum target is a nice target model in our self-improving mechanism.299

6 Discussion and conclusion300

In this paper, we propose a simple yet effective method, SiMT, for improving meta-learning. Our key301

idea is to efficiently generate target models using a momentum network and utilize its knowledge to302

self-improve the meta-learner. Our experiments demonstrate that SiMT significantly improves the303

performance of meta-learning methods on various applications.304

Limitations and future work. While SiMT is a compute-efficient way to use target models in305

meta-learning, it is still built on top of existing meta-model update techniques. Since existing meta-306

learning methods have limited scalability (to large-scale scenarios) [41], SiMT is no exception. Hence,307

improving the scalability of meta-learning schemes is an intriguing future research direction, where308

we believe incorporating SiMT into such scenarios is worthwhile.309

Potential negative impacts. Meta-learning often requires a large computation due to the numerous310

task adaptation during meta-training, therefore raising environmental concerns, e.g., carbon generation311

[39]. As SiMT is built upon the meta-learning methods, practitioners may need to consider some312

computation for successful training. To address this issue, efficient meta-learning schemes [53] or313

lightweight methods for meta-learning [26] would be required for the applications.314
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