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Abstract

Sequence-to-sequence learning with neural networks has become the de facto1

standard for sequence prediction tasks. This approach typically models the local2

distribution over the next element with a powerful neural network that can condition3

on arbitrary context. While flexible and performant, these models often require4

large datasets for training and can fail spectacularly on benchmarks designed to test5

for compositional generalization. This work explores an alternative, hierarchical6

approach to sequence-to-sequence learning with synchronous grammars, where7

each node in the target tree is transduced by a subset of nodes in the source tree. The8

source and target trees are treated as latent and marginalized out during training. We9

develop a neural parameterization of the grammar which enables parameter sharing10

over combinatorial structures without the need for manual feature engineering.11

We apply this latent neural grammar to various domains—a diagnostic language12

navigation task designed to test for compositional generalization (SCAN), style13

transfer, and small-scale machine translation—and find that it performs respectably14

compared to standard baselines.15

1 Introduction16

Sequence-to-sequence learning with neural networks [53, 18, 89] encompasses a powerful and general17

class of methods for modeling the distribution over an output target sequence y given an input source18

sequence x. Key to its success is a factorization of the output distribution via the chain rule coupled19

with a richly-parameterized neural network that models the local conditional distribution over the20

next element given the previous elements (and the input). While architectural innovations such as21

attention [7], convolutional layers [32], and transformers [93] have led to significant improvements,22

this element-by-element modeling remains core to the approach, and with good reason—since any23

distribution over the output can be factorized autoregressively via the chain rule, this approach should24

be able to well-approximate the true conditional distribution p?(y |x) given enough data and a25

powerful-enough neural network.26

However, despite their excellent performance across key benchmarks these models are often sample27

inefficient and can moreover fail spectacularly on diagnostic tasks designed to test for compositional28

generalization [58, 54]. This is commonly attributed to the relatively weak inductive bias imposed by29

standard sequence-to-sequence models [64], which can result in learners that exhibit over-reliance on30

surface-form correlations rather than the underlying structure.31

In this work, we explore an alternative, hierarchical approach to sequence-to-sequence learning with32

latent neural grammars. This work departs from previous approaches in three important ways. First,33

we model the distribution over the target sequence with a quasi-synchronous grammar [86] which34

assumes a hierarchical generative process whereby each node in the target tree is transduced by a35

subset of nodes in the source tree. Such node-level alignments provide provenance and a causal36

mechanism for how each output part is generated, thereby making the generation process more37

interpretable. We additionally find that the explicit modeling of source- and target-side hierarchy38
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with grammars improves compositional generalization compared to non-hierarchical autoregressive39

models. Second, in contrast the existing line of work on incorporating (often observed) tree structures40

into sequence modeling with neural networks [28, 4, 73, 30, 106, 1, 81, 14, 27, inter alia], we treat the41

source and target trees as fully latent and induce them during training. Finally, whereas previous work42

on synchronous grammars typically utilized log-linear models over handcrafted/pipelined features43

[16, 48, 97, 86, 94, 20, 34, inter alia] we make use of dense neural features to parameterize the44

grammar’s rule probabilities, which enables efficient sharing of parameters over the combinatorial45

space of derivation rules without the need for any smoothing or feature engineering. We also use the46

grammar directly for end-to-end generation instead of as part of a larger pipelined system (e.g. to47

extract alignments) [103, 33, 11].48

We apply our approach to a variety of sequence-to-sequence learning tasks—SCAN language navi-49

gation task designed to test for compositional generalization [58], style transfer on the the English50

Penn Treebank [63], and small-scale English-French machine translation—and find that it performs51

favorably compared to baseline approaches.52

2 Neural Synchronous Grammars for Sequence-to-Sequence Learning53

We use x = [x1, . . . , xS ], y = [y1, . . . , yT ] to denote the source/target strings, and further use s, t to54

refer to source/target trees, represented as a set of nodes including the leaves (i.e. yield(s) = x and55

yield(t) = y).56

2.1 Quasi-Synchronous Grammars57

Quasi-synchronous grammars, introduced by Smith and Eisner [86], define a monolingual grammar58

over target strings conditioned on a source tree, where the grammar’s rule set depends dynamically59

on the source tree s. In this paper we work with probabilistic quasi-synchronous context-free60

grammars (QCFG), which can be represented as a tuple G[s] = (S,N ,P,Σ,R[s], θ) where S is the61

distinguished start symbol,N is the set of nonterminals which expand to other nonterminals, P is the62

set of nonterminals which expand to terminals (i.e. preterminals), Σ is the set of terminals, andR[s]63

is a set of context-free rules conditioned on s, where each rule is one of64

S → A[αi], A ∈ N , αi ⊆ s

A[αi]→ B[αj ]C[αk], A ∈ N , B,C ∈ N ∪ P , αi, αj , αk ⊆ s

D[αi]→ w, D ∈ P, w ∈ Σ, αi ⊆ s.

We use θ to parameterize the rule probabilities pθ(r) for each r ∈ R[s]. In the above, αi’s are subsets65

of nodes in the source tree s, and therefore QCFGs model a tree transduction process where each66

target tree node is aligned to a subset of source tree nodes. This quasi-synchronous generation process67

generalizes classic synchronous context-free grammars [100] and relaxes the assumption that the68

source tree is isormorphic to the target tree.1 Since the αi’s take values in the power set of s, the69

above formulation as presented is completely intractable. We follow prior work [86, 94] and restrict70

αi, αj , αk ∈ s, which amounts to assuming that each target tree node can be aligned to exactly one71

source tree node.72

In contrast to standard, “flat” sequence-to-sequence models where any hierarchical structure necessary73

for the task must be captured implicitly within the network’s hidden layers, synchronous grammars74

explicitly model the hierarchical structure on both the source and target side, which acts as a75

strong source of inductive bias. This tree transduction process further results in a more interpretable76

generation process as each span in the target aligned to a span in the source via node-level alignments.277

More generally, the grammar rules provide a symbolic interface to the model, and we show how this78

mechanism can be used to, for example, incorporate phrase-to-phrase copy mechanisms (section 2.4).79

2.2 Parameterization80

Since each source tree node αi is likely to occur only a few times (or just once) in the training corpus,81

parameter sharing becomes crucial. Prior work on QCFGs typically utilized log-linear models over82

1It is also possible to use richer grammatical formalisms to model syntactic divergences [84, 66]. However
these approaches require more expensive algorithms for learning and inference.

2Similarly, latent variable attention [102, 6, 21, 80, 101] also provides for more a interpretable generation
process than standard soft attention via explicit alignments. However, latent variable attention can only model
word-to-word alignments, in contrast to synchronous grammars which can model phrase-to-phrase alignments.
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hand-crafted features to share parameters across rules [86, 34]. In this work we instead work with83

a neural parameterization which allows for parameter sharing without the need for manual feature84

engineering.85

Concretely, we first represent each symbol A[αi] as an embedding,86

eA[αi] = uA + hαi ,

where uA is the nonterminal embedding for A, and hαi is the representation of node αi given by87

running a TreeLSTM over the source tree s [90, 112]. These embeddings are then combined to88

produce the probability of each rule,89

pθ(S → A[αi]) ∝ exp
(
u>S eA[αi]

)
,

pθ(A[αi]→ B[αj ]C[αk]) ∝ exp
(
f1(eA[αi])

>(f2(eB[αj ]) + f3(eC[αk]))
)
,

pθ(D[αi]→ w) ∝ exp
(
f4(eD[αi])

>uw + bw
)
,

where f1, f2, f3, f4 are feedforward networks with residual layers (see appendix A.1 for the exact90

parameterization). Therefore the parameters of this model are the nonterminal embeddings (i.e. uA91

for A ∈ {S} ∪ N ∪ P), terminal embeddings/biases (i.e. uw, bw for w ∈ Σ), and the parameters of92

the TreeLSTM and the feedforward networks.93

2.3 Learning and Inference94

The QCFG described above defines a distribution over target trees (and by marginalization, target95

side strings) given a source tree. While prior work on QCFGs typically relied on an off-the-shelf96

parser over the source to obtain its parse tree, this limits the generality of the approach. In this work,97

we instead learn a probabilistic source-side parser along with the QCFG. This parser is a monolingual98

PCFG with parameters φ that defines a posterior distribution over binary parse trees given source99

strings, i.e. pφ(s |x). Our PCFG uses the parameterization from [55]. With the parser in hand, we100

are now ready to define the log marginal likelihood,101

log pθ,φ(y |x) = log

 ∑
s∈T (x)

∑
t∈T (y)

pθ(t | s)pφ(s |x)

 .

Here T (x) and T (y) are the set of trees whose leaves are x and y. Unlike classic synchronous102

context-free grammars, full marginalization over both T (y) and T (x) is intractable. However, we103

observe that the inner summation
∑

t∈T (y) pθ(t | s) = pθ(y | s) is tractable to compute with dynamic104

programming (i.e. the inside algorithm [8]) in O(|N |(|N | + |P|)2S3T 3), where S is the source105

length and T is the target length.3 This motivates the following lower bound on the log marginal106

likelihood,107

log pθ,φ(y |x) ≥ Es∼pφ(s |x) [log pθ(y | s)] ,

which is obtained by the usual application of Jensen’s inequality (see appendix A.2).4108

An unbiased Monte Carlo estimator for the gradient with respect to θ is straightforward to compute109

given a sample from pφ(s |x), since we can just backpropagate through the inside algorithm. For the110

gradient respect to φ, we use the score function estimator with a self-critical baseline [76],111

∇φ Es∼pφ(s |x) [log pθ(y | s)] ≈ (log pθ(y | s′)− log pθ(y | ŝ))∇θ log p(s′ |x),

where s′ is a sample from pφ(s |x) and ŝ is the most likely tree in pφ(s |x). We also found it112

important to regularize the source parser by simultaneously training it as a monolingual PCFG, and113

therefore add ∇φ log pφ(x) to the gradient expression above.5 Obtaining the sample tree s′, the114

3This run time is the same as the bitext inside algorithm for classic synchronous context-free grammars.
4It is possible to tighten this bound with the use of a variational distribution qψ(s |x,y), which results in the

following evidence lower bound,

log pθ,φ(y |x) ≥ Es∼qψ(s |x,y) [log pθ(y | s)]−KL[qψ(s |x,y) ‖ pφ(s |x)].

Our use of the non-variational lower bound is implicitly assuming that s and y are conditionally independent
given x (i.e. all uncertainty about s is captured by x), which is reasonable for many language applications.

5This motivates our use of a generative rather than a discriminative parser on the source side.
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argmax tree ŝ, and scoring the sampled tree log p(s′ |x) all requireO(S3) dynamic programs. Hence115

the runtime is still dominated by the O(S3T 3) dynamic program to compute pθ(y | s′) and pθ(y | ŝ).116

We found this to be manageable on modern GPUs with a vectorized implementation of the inside117

algorithm. Our implementation uses the Torch-Struct library [77].118

Predictive inference For decoding, we first run MAP inference with the source parser to obtain119

ŝ = argmaxs pφ(s |x). Given ŝ, finding the most probable sequence argmaxy pθ(y | ŝ) (i.e. the120

consensus string of the grammar G[ŝ]) is still difficult, and in fact NP-hard [85, 13, 62]. We therefore121

resort to an approximate decoding scheme where we sample K target trees t(1), . . . t(K) from G[ŝ],122

rescore the yields of the sampled trees, and return the tree whose yield has the lowest perplexity.123

2.4 Extensions124

Here we show that the the formalism of synchronous grammars provides a flexible interface with125

which to interact with the model and imbue inductive biases.126

Phrase-to-phrase copying Incorporating latent copy mechanisms into sequence-to-sequence mod-127

els has led to significant improvements for tasks where there is overlap between the source and128

target sequences [49, 68, 40, 39, 79]. These models typically define a binary latent variable at each129

time step that decides to either copy from the source or generate from the target vocabulary. While130

useful, existing copy mechanisms can typically copy at only the word-level due to the word-level131

encoder/decoder.6 In contrast, the hierarchical generative process of QCFGs makes it convenient132

to incorporate phrase-level copy mechanisms by using a special-purpose nonterminal/preterminal133

that always copies the yield of the source subtree that it is combined with. In particular, letting134

ACOPY ∈ N be a COPY nonterminal, we can expand the rule set R[s] to include rules of the form135

ACOPY[αi]→ v for v ∈ Σ+, and define its probability to be136

pθ(ACOPY[αi]→ v) = 1{v = yield(αi)}.
The preterminal copy mechanism is similarly defined. Computing pθ(y | s) in this modified grammar137

requires a straightforward modification of the usual inside algorithm.7 In our style transfer experi-138

ments in section 3.2 we show that this phrase-level copying is crucial to obtaining good performance.139

While not explored in the present work, such a mechanism can readily be employed to embed known140

transformations rules (e.g. from bilingual lexicons or transliteration tables) into the modeling process.141

Adding domain-specific constraints For some applications we may want to place additional142

restrictions on the rule set to operationalize domain-specific constraints and inductive biases. For143

example, setting αj , αk ∈ descendant(αi) for rules of the form A[αi] → B[αj ]C[αk] would144

constrain the target tree hierarchy to respect the source tree hierarchy, while restricting αi to terminal145

nodes only (i.e. αi ∈ yield(s)) for rules of the form D[αi] → w would enforce that each target146

terminal be aligned to a source terminal. We indeed make use of such restrictions in our experiments.147

Incorporating autoregressive language models Finally, we show that a simple extension of the148

QCFG can incorporate standard autoregressive language models. Let pLM(w | γ) be a distribution149

over the next element given by a (potentially conditional) language model given arbitrary context150

γ (e.g. γ = y<t for a monolingual language model and γ = [x;y<t] for a sequence-to-sequence151

model). We can then add a special LM preterminal DLM ∈ P with symbol embedding uDLM
that is152

not combined with any source node, and define the associated probabilities to be,153

pθ(A[αi]→ DLMC[αk]) ∝ exp
(
f1(eA[αi])

>(f2(uDLM
) + f3(eC[αk]))

)
,

pθ(A[αi]→ B[αj ]DLM) ∝ exp
(
f1(eA[αi])

>(f2(eB[αj ]) + f3(uDLM
))
)
,

pθ(DLM → w) = pLM(w | γ).

Both the QCFG and the language model can be trained end-to-end against the log marginal likelihood.154

While this modified model can embed flexible sequence models within a QCFG,8 it also inherits155

6However see Panthaplackel et al. [72] and Wiseman et al. [96] for recent exceptions.
7Letting β[s, t,N ] = pθ(N

∗→ ys:t) be the inside variable for N deriving ys:t, we can simply force
β[s, t, Acopy[αi]] = 1{ys:t = yield(αi)}.

8Alternatively, it is also possible embed a QCFG within an autoregressive language model with a binary
switch variable zt at each time step. This variable (with distribution pLM(zt | γ)) selects between pLM(yt | γ)
and pθ(yt | s,y<t), where the latter next-word probability distribution in the QCFG can be computed with a
probabilistic Earley parser [88]. The difference between the two approaches stems from whether the switch
decision is made by the QCFG or by the language model.
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many of their attendant issues (e.g. left-to-right generation). In preliminary attempts to incorporate156

sequence-to-sequence models into the QCFG we found that this combined model quickly degenerated157

into the uninteresting case of always using the autoregressive model, and hence did not pursue this158

further. However it is possible that modifications to the approach (e.g. separate pretraining of both159

models followed by joint finetuning, or using a pretrained monolingual language model that remains160

fixed) could lead to improvements.161

3 Experiments162

We apply the neural QCFG described above to a variety of sequence-to-sequence learning tasks.163

These experiments are not intended to push the state-of-the-art on these tasks but rather intended to164

assess whether our approach performs respectably against standard baselines while simulatenously165

learning interesting and interpretable structures.166

3.1 SCAN167

We first experiment on SCAN [58], a diagnostic dataset where a model has to learn to translate168

simple English commands to actions (e.g. jump twice after walk =⇒ WALK JUMP JUMP). While169

conceptually simple, standard sequence-to-sequence models have been shown to fail on splits of170

the data designed to test for compositional generalization. We focus on four commonly-used splits:171

(1) simple, where train/test split is random, (2) add primitive (jump), where the primitive command172

jump is seen in isolation in training and must combine with other commands during testing,9 (3) add173

template (around right), where the template around right is not seen during training, and (4) length,174

where the model is trained on action sequences of length at most 22 and tested on action sequences175

of length between 24 and 48. In these experiments, the nonterminals A ∈ N are only combined with176

source nodes that govern at least two nodes, and the preterminals P ∈ P are only combined with177

source terminals. We set |N | = 10 and |P| = 1, and place two additional restrictions on the rule178

set. First, for rules of the form S → A[αi] we restrict αi to always be the root of the source tree.179

Second, for rules of the form A[αi]→ B[αj ]C[αk] we restrict αj , αk to be descendants of αi, or αi180

itself (i.e. αj , αk ∈ descendant(αi) ∪ {αi}). These restrictions operationalize the constraint that181

the target tree hierarchy respects the source tree hierarchy, though still in a much looser sense than in182

an isomorphism. See appendix A.3.1 for the full experimental setup and hyperparameters.183

Approach Simple Jump A. Right Length

Uses SCAN-specific knowledge
Equivar. Seq2Seq [36] 100.0 99.1 92.0 15.9
Span-based SP [46] 100.0 − 100.0 −
NeSS [15] 100.0 100.0 100.0 100.0
LANE [61] 100.0 100.0 100.0 100.0
Program Synth. [70] 100.0 100.0 100.0 100.0
NQG-T5 [82] 100.0 100.0 − 100.0

Domain-agnostic
RNN [58] 99.7 1.7 2.5 13.8
CNN [22] 100.0 69.2 56.7 0.0
Transformer [31] − 1.0 53.3 0.0
T5-base [31] − 99.5 33.2 14.4
Syntactic Attn [78] 100.0 91.0 28.9 15.2
Meta Seq2Seq [57] − 99.9 99.9 16.6
CGPS [60] 99.9 98.8 83.2 20.3
GECA [5] − 87.0 82.0 −
R&R Data Aug. [3] − 88.0 82.0 −
Neural QCFG (ours) 96.9 96.8 98.7 95.7

Table 1: Results on SCAN. We separate out between ap-
proaches that exploit SCAN-specific information (top) ver-
sus those that do not (bottom).

Results Table 1 shows our results against184

various baselines on SCAN. While many ap-185

proaches are able to solve this dataset al-186

most perfectly, they often exploit SCAN-187

specific knowledge (e.g. that walk is an ac-188

tion word), which precludes their straightfor-189

ward application to other domains. Among190

the domain-agnostic approaches that do191

not use SCAN-specific information, the192

neural QCFG performs respectably, espe-193

cially on the challenging length split of the194

data. Figure 1 shows an example gener-195

ation from the test set of the add primi-196

tive (jump) split, where we observe that197

the model seems to have learned sensible198

transduction rules (e.g. N1[run left twice]→199

N4[run left] N4[run left]). The node-level200

alignments further provide explicit prove-201

nance for each target span and makes the202

generation process more interpretable than203

standard attention mechanisms.204

9The QCFG defined in this paper places zero probability on length-one target strings, which presents an
issue for this split of SCAN where jump =⇒ JUMP is the only context in which JUMP occurs in the training set.
For length-one target strings we simply replicate the source and target strings, i.e. jump =⇒ JUMP becomes
jump jump =⇒ JUMP JUMP.
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Figure 1: Generation from the neural QCFG on a test example from the add primitive (jump) split of SCAN.
The induced tree from the learned source parser is shown on the left, and the target tree derivation is shown on
the right. While the model does not distinguish between preterminals and terminals on the source tree, we have
shown them separately for additional clarity. We also show some of the node-level alignments with dashed lines.
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Figure 2: A test example from the active to passive style transfer task on the Penn Treebank. The induced tree
from the learned source parser is shown on the left, and the target tree derivation is shown on the right. The
source tree is linguistically incorrect but the model is still able to correctly tranduce the output. Some examples
of copy nonterminals/preterminals and their aligned source nodes are shown with dashed arrows.

3.2 Style Transfer205

We next apply our approach on style transfer on English utilizing the StylePTB dataset from Lyu206

et al. [63]. We focus on the three hard transfer tasks identified by the original authors: (1) active to207

passive (2808 examples), (2) adjective emphasis (696 examples), and (3) verb/action emphasis (1201208

examples). The main difficulty with these tasks stems from the small training set combined with the209

relative complexity of these tasks. We set |N | = |P| = 8 and use the same restrictions on the rule210

set as in the SCAN experiments. We also experiment with the phrase-to-phrase copy mechanism as211

described in section 2.4. The original paper provides several strong baselines: finetuned GPT2, a212

standard sequence-to-sequence model, and the retrieve-and-edit model from Hashimoto et al. [45].213

We also train our own baseline sequence-to-sequence models with a (word-level) copy mechanism.214

See appendix A.3.2 for more details.215

Results Table 2 shows the results,10 where we observe that the neural QCFG performs well216

compared to the various baselines. We further find that incorporating the copy mechanism improves217

results substantially for both the baseline LSTM and the neural QCFG.11 Figure 2 shows a test218

example from the active-to-passive task, which shows the word- and phrase-level copying mechanism219

in action. In this example the source tree is linguistically incorrect, but the grammar is nonetheless220

able to appropriately transduce the output. Given that linguistic phrases are generally more likely221

to remain unchanged in these types tasks, biasing the model towards copying longer phrases (e.g.222

via posterior regularization) could potentially improve results. For example in figure 2 the ideal case223

would involve copying the phrase a 2-for-1 stock split, but this is not possible due to the incorrectly224

predicted source tree.225

10As in the original paper we calculate the automatic evaluation metrics using the nlg-eval library, available at
https://github.com/Maluuba/nlg-eval.

11Even for models that do not explicitly use the copy mechanism, we indirectly allow for copying by replacing
the 〈unk〉 token with the source token that the preterminal is combined with in the neural QCFG case, or the
source token that had the maximum attention weight in the LSTM case. This explains the outperformance of our
baseline sequence-to-sequence models compared to the baselines from Lyu et al. [63].
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Transfer Type Approach BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

Active to Passive

GPT2-finetune 0.476 0.329 0.238 0.189 0.216 0.464 1.820
Seq2Seq 0.373 0.220 0.141 0.103 0.131 0.345 0.845
Retrieve-Edit 0.681 0.598 0.503 0.427 0.383 0.663 4.535
Human 0.931 0.881 0.835 0.795 0.587 0.905 8.603

Seq2Seq-LSTM 0.505 0.349 0.253 0.190 0.235 0.475 2.000
Neural QCFG 0.431 0.637 0.548 0.472 0.415 0.695 4.294
Seq2Seq-LSTM + copy 0.838 0.735 0.673 0.598 0.467 0.771 5.941
Neural QCFG + copy 0.836 0.771 0.713 0.662 0.499 0.803 6.410

Adj. Emphasis

GPT2-finetune 0.263 0.079 0.028 0.000 0.112 0.188 0.386
Seq2Seq 0.187 0.058 0.018 0.000 0.059 0.179 0.141
Retrieve-Edit 0.387 0.276 0.211 0.164 0.193 0.369 1.679
Human 0.834 0.753 0.679 0.661 0.522 0.811 6.796

Seq2Seq-LSTM 0.332 0.333 0.051 0.000 0.142 0.27 0.845
Neural QCFG 0.348 0.178 0.062 0.000 0.162 0.317 0.667
Seq2Seq-LSTM + copy 0.505 0.296 0.184 0.119 0.242 0.514 1.839
Neural QCFG + copy 0.676 0.506 0.393 0.316 0.373 0.683 3.424

Verb Emphasis

GPT2-finetune 0.309 0.170 0.095 0.041 0.140 0.292 0.593
Seq2Seq 0.289 0.127 0.066 0.038 0.098 0.275 0.300
Retrieve-Edit 0.416 0.284 0.209 0.148 0.223 0.423 1.778
Human 0.649 0.569 0.493 0.421 0.433 0.693 5.668

Seq2Seq-LSTM 0.355 0.152 0.083 0.043 0.151 0.320 0.530
Neural QCFG 0.431 0.250 0.140 0.073 0.219 0.408 1.097
Seq2Seq-LSTM + copy 0.526 0.389 0.294 0.214 0.294 0.464 2.346
Neural QCFG + copy 0.664 0.512 0.407 0.319 0.370 0.589 3.227

Table 2: Results on the hard style transfer tasks from the StylePTB dataset [63]. For each transfer type, the top
four rows are from Lyu et al. [63], while the bottom four rows are from this paper.

3.3 Machine Translation226

Our final experiment is on a small-scale English-French machine translation dataset from Lake and227

Baroni [58]. Here we are interested in evaluating the model in two ways: first, as a standard machine228

translation system on a randomly held out test set, and second, to see if the model can systematically229

generalize to previously unseen combinations. To assess the latter, Lake and Baroni [58] add230

1000 repetitions of i am daxy =⇒ je suis daxiste to the training set and test on 8 new sentences231

that use daxy in novel combinations (e.g. he is daxy =⇒ it est daxiste and i am not daxy =⇒232

je ne sui pas daxiste). We use 9000 examples for training (1000 of which is the i am daxy example)233

and 1000 examples each for validation/test.234

For these experiments, we set |N | = |P| = 6 and combine all source nodels with all nontermi-235

nals/preterminals. We place two restrictions on the rule set: for rules of the form S → A[αi] we236

restrict αi to be the root of the source tree (as in the previous experiments), and for rules of the237

form A[αi]→ B[αj ]C[αk] we restrict αj , αk to be the direct children of αi, or αi itself if αi has no238

children.12 See appendix A.3.3 for the full experimental setup and hyperparameters.239

Model BLEU daxy acc.

Seq2Seq-LSTM 28.4 12.5%
CGPS [60] 23.5 100%
Neural QCFG 30.7 87.5%

Table 3: Machine translation results.

Results Table 3 shows the BLEU on the test set of 1000240

examples, as well as the accuracy on the 8 daxy sentences.241

Compared to the baseline LSTM attention model, the neural242

QCFG performs well on the regular test set (as measured by243

BLEU) as well as the daxy test set. CGPS [60], which learns244

separate representations for generating attention distributions245

vs. the output, performs particularly well on the daxy test set,246

but not as well on the regular test set. Figure 3 shows several examples of target tree derivations.247

As in the style transfer experiments, the source trees here would not be considered conventionally248

correct (the period is typically attached to the root), but the QCFG model is still able to correctly249

transduce the output by also learning unconventional trees on the target side as well.250

12These restrictions are closer to the strict isormorphic requirement in synchronous context-free grammars
than in the previous case. However they still allow for non-isormorphic trees since αi can be inherited if it has
no children.
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N3[i am broke and tired .]

N1[am broke and tired .]

P1[.]

.

N3[am broke and tired]

N1[broke and tired]

P3[tired]

fatigue

N1[broke and]

P3[and]

et

P2[broke]

ruine

P2[am]

suis

P2[i]

je

N3[i m playing with my friends .]

N1[m playing with my friends .]

P1[.]

.

N1[m playing with my friends]

N4[playing with my friends]

P1[friends]

amis

N1[playing with my]

P3[my]

mes

P2[playing with]

avec

P2[m]

joue

P2[i]

je

N3[i am not daxy .]

N1[am not daxy .]

P1[.]

.

N3[am not daxy]

N1[not daxy]

P3[daxy]

daxiste

P2[not]

pas

N1[am]

P1[am]

suis

P4[am]

ne

P2[i]

je

N3[he is daxy .]

N1[is daxy .]

P1[. ]

.

N3[is daxy]

P3[daxy]

daxiste

P2[is]

est

P2[he]

il

N3[he is not daxy .]

N1[is not daxy .]

P1[.]

.

N3[is not daxy]

N1[not daxy]

P3[daxy]

daxiste

P2[not]

pas

N1[is]

P1[is]

est

P4[is]

n

P2[he]

il

Figure 3: Target tree derivations from the English-French machine translation experiments. The top two trees
are from the regular test set, while the bottom three trees are from the daxy test set. We do not explicitly show the
source trees here and instead show the source phrases as arguments to the target tree nonterminals/preterminals.

4 Discussion251

Neural quasi-synchronous grammars provide a general-purpose framework for many sequence-to-252

sequence learning tasks. On the positive side, our work can potentially pave the path towards more253

interpretable neural generative models that can provide explanations for their decisions via explicit254

node alignments and derivation rules. Further, by exposing the model’s internals through the use of255

latent nonterminals, it also may be possible to achieve some level of control via manipulation of these256

variables. Such control mechanisms could, for example, be used to mitigate pronouns biases of that257

often exist in current neural generation systems.258

However, several limitations remain. For one, the O(S3T 3) dynamic program will likely pose259

challenges in scaling this approach to larger datasets with longer sequences. The conditional indepen-260

dence assumptions made by the grammar also may not be appropriate for some tasks that involve261

complex dependencies. Finally, QCFGs may not be the most appropriate tool for domains in which262

the input/output is not naturally represented with tree structures, although it may be possible to extend263

these formalisms to consider (for example) graph-structured data.264

5 Related Work265

Synchronous grammars Synchronous grammars and tree transducers have a long and rich history266

in natural language processing [2, 84, 100, 65, 29, 25, 69, 48, 97, 37, 10, 19, inter alia]. In this work267

we focus on the formalism of quasi-synchronous grammars, which relaxes the assumption that the268

source and target tree be isomorphic. Quasi-synchronous grammars have enjoyed applications across269

many domains including in machine translation [86, 34, 35], question answering [94], paraphrase270

detection [20], sentence simplification [99, 98], and parser projection [87]. Prior work on quasi-271

synchronous grammars generally relied on pipelined parse trees for the source and only marginalized272

out the target tree, in contrast to the present work which treats both source and target trees as latent.273

Compositional sequence-to-sequence learning Lake and Baroni [58] proposed the influential274

SCAN dataset for assessing the compositional generalization capabilities of neural sequence-to-275

sequence models. There has since been a large body of work on compositional sequence-to-sequence276

learning through various approaches including architectural modifications [60, 78, 36], grammars and277

neuro-symbolic models [71, 82, 70, 15, 61], meta-learning [57], and data augmentation [5, 41, 42, 3].278
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Deep latent variable models There has much recent work on neural parameterizations of classic279

probabilistic latent variable models including hidden Markov models [92, 95, 17], topic models [67,280

23, 24], dependency models [50, 43, 12, 44, 104], and context-free grammars [55, 52, 111, 110, 105].281

These works essentially extend feature-based unsupervised learning [9] to the neural case with the use282

of neural networks over embedding parameterizations, which makes it possible to easily condition the283

generative model on side information such as auxiliary latent variables [44, 55], images [109, 51, 47],284

videos [108], and source-side context [95, 83]. Since we marginalize over unobserved trees during285

learning, our work is also related to the line of work on marginalizing out latent variables/structures286

for sequence transduction tasks [38, 26, 75, 56, 107, 74, 101, 21, 59, 91].287

6 Conclusion288

In this paper we have studied sequence-to-sequence learning with latent neural grammars. We have289

shown that the formalism quasi-synchronous grammars provides a powerful tool with which to290

imbue inductive biases, operationalize domain-specific constraints, and interface with the model. Our291

approach performs favorably against standard baselines when applied to a variety of sequence-to-292

sequence learning tasks.293

Future work in this area will consider: (1) revisiting richer grammatical formalisms (e.g. synchronous294

tree-adjoining grammars) with contemporary techniques parameterization and inference, (2) com-295

bining such structured models with pretrained language models, and (3) applying these methods to296

other structured domains such as programs and graphs. More generally, incorporating grammatical297

formalisms and symbolic systems into neural networks remains an exciting avenue for much future298

work.299
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