
A Neural Corpus Indexer for Document Retrieval

Anonymous Author(s)
Affiliation
Address
email

Abstract

Current state-of-the-art document retrieval solutions mainly follow an index-1

retrieve paradigm, where the index is hard to be optimized for the final retrieval2

target. In this paper, we aim to show that an end-to-end deep neural network unify-3

ing training and indexing stages can significantly improve the recall performance4

of traditional methods. To this end, we propose Neural Corpus Indexer (NCI), a5

sequence-to-sequence network that generates relevant document identifiers directly6

for a designated query. To optimize the recall performance of NCI, we invent a7

prefix-aware weight-adaptive decoder architecture, and leverage tailored techniques8

including query generation, semantic document identifiers and consistency-based9

regularization. Empirical studies demonstrated the superiority of NCI on a com-10

monly used academic benchmark, achieving +51.9% relative improvement on11

NQ320k dataset compared to the best baseline.12

1 Introduction13

Document retrieval and ranking are two key stages for a standard web search engine [46, 27]. First,14

the document retrieval stage retrieves candidate documents relevant to the query, and then, the ranking15

stage gives a more precise ranking score for each document. The ranking stage is often fulfilled16

by a deep neural network, taking each pair of query and document as input and predicting their17

relevance score. Nevertheless, a precise ranking model is very costly, while typically only a hundred18

or thousand candidates per query are affordable in an online system. Therefore, the recall performance19

of document retrieval stage is very crucial to the effectiveness of web search engine.20

Existing document retrieval methods can be divided into two categories, namely term-based and21

semantic-based approaches [18]. Term-based retrieval approaches [8, 48] build an inverted index22

for the entire web corpus, but they hardly capture document semantics and fail to retrieve similar23

documents in different wordings. Thus, semantic-based approaches [46, 29] are proposed to alleviate24

this discrepancy. First, they learn dense representations for both queries and documents through a25

twin-tower architecture; then Approximate Nearest Neighbor (ANN) search is applied to retrieve26

relevant documents for the designated query. Despite of their success in real applications, these27

approaches can not fully leverage the power of deep neural networks for the following reasons.28

First, a single embedding vector has limited capacity to memorize all semantics in a document,29

and it performs even worse than term-based methods in applications that heavily rely on exact30

match [30]. Second, the model is unable to incorporate deep query-document interactions. Because31

ANN algorithms theoretically require a strong assumption for the Euclidean space, we have to adopt32

simple functions such as cosine similarity to capture the query-document interactions [16].33

Given the above limitations, several research works have explored end-to-end models that directly34

retrieve relevant candidates without using an explicit index. Gao et al. [16] proposed a Deep Retrieval35

(DR) framework for item recommendation, which learned a retrievable structure with historical36

user-item interactions. Nevertheless, it is more challenging to design a universal model for semantic37

text retrieval, as we need to leverage the power of both pre-trained language models and deep retrieval38

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

networks simultaneously. Tay et al. [41] proposed Differentiable Search Index (DSI), a text-to-text39

model that maps queries directly to relevant docids. To the best of our knowledge, this is the first40

attempt to propose a differentiable index for semantic search. However, the vanilla transformer41

decoder in DSI does not fully leverage the hierarchical structures of document identifiers, and the42

model is pruned to over-fitting with limited training data. Furthermore, Bevilacqua et al. [4] proposed43

SEAL by leveraging all n-grams in a passage as its identifiers. But for long documents, it is hard to44

enumerate all possible n-grams. In general, the recall performance of end-to-end document retrieval45

remains a large room to be improved.46

In this paper, we show that the traditional text retrieval frameworks can be fundamentally changed47

by a unified deep neural network with tailored designs. To this end, we propose a Neural Corpus48

Indexer (NCI), which supports end-to-end document retrieval by a sequence-to-sequence neural49

network. The model takes user query as input, generates query embedding through the encoder, and50

outputs the identifiers of relevant documents using the decoder. It can be trained by ground-truth51

and augmented query-document pairs. During inference, the top N documents are retrieved directly52

via beam search based on the decoder. Designing and training such a model is non-trivial, so we53

propose several crucial techniques to ensure its effectiveness. First, to get sufficient query-document54

pairs for training, we leverage a query generation network to obtain possible pairs of queries and55

documents. Second, we utilize the hierarchical k-means algorithm to generate a semantic identifier56

for each document. Third, we design a prefix-aware weight-adaptive decoder to replace the vanilla57

one in a sequence-to-sequence architecture. Specifically, the same token will be assigned different58

embedding vectors at different positions in the identifiers, while another transformer-based adaptive59

module is applied to the classification weights for token prediction in the context of a certain prefix.60

This makes the classifiers customized to different prefixes when decoding along the hierarchical tree61

structure. Besides, a consistency-based regularization loss is taken for training both encoder and62

decoder networks to mitigate the over-fitting problem.63

Our NCI design solves the limitations of traditional index-retrieve pipelines from multiple perspec-64

tives. On one hand, a whole neural network model replaces the traditional inverted index or vector65

search solutions. It can be optimized end-to-end using realistic query-document pairs, which fully66

capture both term-based and semantic-based features and is adaptive to the changing of workloads.67

On the other hand, the model is able to capture deep interactions between queries and documents via68

encoder-decoder attention, which enlarges the capacity of vector-based representations. Moreover,69

NCI achieves much better ranking results than ANN-based approaches as it is optimized directly by70

the final target. Thus, it can be served as an end-to-end retrieval solution and release the burden of71

re-ranking for a long candidate list.72

In addition to the superior performance, the invention of Neural Corpus Indexer is also promising73

from the perspective of system design. As nowadays, ranking and query-answering modules are74

already implemented by neural networks, NCI finishes the last piece of puzzle for the next-generation75

information retrieval system based on a unified differentiable model architecture. This reduces the76

dependency among different sub-modules, while the process of system deployment and maintenance77

could be greatly eased.78

Our contributions are highlighted as follows.79

• For the first time, we demonstrate that an end-to-end differentiable document retrieval model80

can significantly outperform both inverted index and dense retrieval solutions. This finding will81

inspire research on further steps towards the next-generation search systems, for instance, unifying82

informational retrieval, ranking and question answering in a single differentiable framework.83

• We design a sequence-to-sequence model, named Neural Corpus Indexer (NCI), which generates84

relevant document identifiers directly for a specific query. In our experiments, the proposed NCI85

model improves the state-of-the-art performance of existing methods by a significant margin,86

achieving +51.9% and +19.2% relative enhancement for Recall@1 and Recall@10 respectively87

on NQ320k dataset. Also, NCI itself can achieve a competitive MRR score without using an88

explicit ranking model.89

• We propose a novel decoder architecture, namely prefix-aware weight-adaptive (PAWA) decoder,90

to generate document identifiers. As verified by ablation studies, this invention is very crucial for91

NCI to achieve an outstanding performance. Moreover, query generation, semantic document92

identifiers and consistency-based regularization are all accountable for the superior capability of93

Neural Corpus Indexer.94

2

2 Related work95

In this section, we briefly introduce the related works and leave more discussions about the traditional96

web search techniques in the Appendix A.97

Sparse retrieval. Traditional document retrieval methods are based on Sparse Retrieval, which is98

built upon inverted index with term matching metrics such as TF-IDF [37], query likelihood [26]99

or BM25 [36]. In industry-scale web search, BM25 is a difficult-to-beat baseline owing to its100

outstanding trade-off between accuracy and efficiency. In recent years, there are some attempts101

to incorporate the power of neural networks into inverted index. The Standalone Neural Ranking102

Model (SNRM) [47] learns high-dimensional sparse representations for query and documents, which103

enables the construction of inverted index for efficient document retrieval. Doc2Query [33] predicts104

relevant queries to augment the content of each document before building the BM25 index, and105

DocT5Query [32] improves the performance of query generation by the pre-trained language model106

T5 [5]. Furthermore, DeepCT [8] calculates context-aware term importance through neural networks107

to improve the term matching metrics of BM25.108

Dense retrieval. Another line of research lies in Dense Retrieval, which presents query and documents109

in dense vectors and models their similarities with inner product or cosine similarity. These methods110

benefit from recent progresses of pre-trained language models, such as BERT [13] and RoBERTa [28]111

to obtain dense representations for queries and documents. At inference time, efficient Approximate112

Nearest Neighbor (ANN) search algorithms, such as k-dimensional trees [3], locality-sensitive113

hashing [9], and graph-based indexes (e.g., HNSW [31], DiskANN [23] and SPANN [7]) can be114

utilized to retrieve relevant documents within a sublinear time. Besides, Luan et al. [30] analyze the115

limited capacity of dual encoders, and propose a combination of sparse and dense retrieval methods116

with multi-vector encoding to achieve better search quality.117

Autoregressive retrieval. The other way to approach retrieval is utilizing an end-to-end autoregressive118

models. Firstly, several efforts have been done on entity linking [12, 11, 10], which can be regard119

as a special type of retrieval task, e.g., using an entity to ask the posed question. Recently, different120

from the entity linking task, Tay et al. [41] proposed the DSI (differentiable search index) to generate121

relevant document identifiers directly according to the query. Bevilacqua et al. [4] employ the122

autoregressive model to generate the relevant words for a query and utilize the generated string to123

retrieve relevant documents. Besides, the Deep Retrieval (DR) [16] approach for recommendation is124

also related to this category, which learns a deep retrievable network with user-item clicks and gets125

rid of the ANN algorithms based on the Euclidean space assumption.126

Pre-trained language models. Recently, pre-trained Language Models (LMs), such as BERT [13]127

and RoBERTa [28], have led to a revolution in web search techniques. The representation vectors128

for all documents can be calculated and indexed offline. In the online serving stage, it calculates the129

representation vector for the input query and applies a crossing layer to calculate the relevance score130

between each query and document. The crossing layer usually adopts simple operators such as cosine131

similarity or a single feed-forward layer to retain a high efficiency. Gao et al. [14] find that a standard132

LMs’ internal attention structure is not ready-to-use for dense encoders and propose the Condenser133

to improve the performance of dense retrieval. Moreover, ANCE [45] leverages hard negatives to134

improve the effectiveness of contrastive learning, which generates better text representations for the135

retrieval tasks.136

3 Neural corpus indexer137

The neural corpus indexer (NCI) is a sequence-to-sequence neural network model. The model takes138

query as input and outputs the most relevant document identifier (docid), which can be trained by a139

large collection of <query, docid> pairs. The documents are encoded into semantic docids by the140

hierarchical k-means algorithm [19], which makes similar documents have “close” identifiers in the141

hierarchical tree. As shown in Figure 1, NCI is composed of three components, including Query142

Generation, Encoder and Prefix-Aware Weight-Adaptive (PAWA) Decoder. Query generation is imple-143

mented by a sequence-to-sequence transformer model [43] that takes as an input the document terms144

and produces a query as output [33]. The encoder, following the standard transformer architecture, is145

composed of N1 stacked transformer blocks, which outputs the representation for an input query. For146

the decoder network, we stack N2 transformer layers. To better align with the hierarchical nature of147

the semantic identifiers, we propose a weight adaptation mechanism based on another transformer148

3

Figure 1: Overview of Neural Corpus Indexer (NCI). (a) Preprocessing. Each document is represented by a
semantic identifier via hierarchical k-means. (b) Query Generation. Queries are generated for each document
based on the content. (c) The training pipeline of NCI. The model is trained over augmented <query, docid>
pairs through a standard transformer encoder and the proposed Prefix-Aware Weight-Adaptive (PAWA) Decoder.

to make the decoder aware of semantic prefixes. At inference time, the top N relevant documents149

can be easily obtained via beam search. Due to the hierarchical property of semantic identifiers, it is150

relatively easy to constrain the beam search decoding process on the prefix tree so that only valid151

identifiers will be generated.152

3.1 Representing document with semantic identifiers153

NCI generates document identifiers solely based on the input query without explicit document content,154

which is difficult when the size of the corpus is very large. Thus, we aim to inject useful priors into155

the identifiers, so that the semantic information of documents can be considered in the tree-based156

decoding process. In other words, we hope the documents with similar information have close157

docids to facilitate the learning process of NCI. To achieve this, we leverage the hierarchical k-means158

algorithm to encode documents. As shown in Figure 1(a), given a collection of documents be indexed,159

all documents are first classified into k clusters by using their representations encoded by BERT [13].160

For cluster with more than c documents, the k-means algorithm is applied recursively. For each161

cluster containing c documents or less, each document is assigned a number starting from 0 to at162

most c-1. In this way, we organize all documents into a tree structure T with root r0. Each document163

is associated with one leaf node with a deterministic routing path l = {r0, r1, ..., rm} from the root,164

where ri ∈ [0, k) represents the internal cluster index for level i, and rm ∈ [0, c) is the leaf node.165

The semantic identifier for a document is concatenated by the node indices along the path from166

root to its corresponding leaf node. For documents with similar semantics, the prefixes of their167

corresponding identifiers are likely to be the same. For simplicity, we set k = 10 and c = 10 in168

all experiments, leaving the optimization of these hyper-parameters to future work. The detailed169

procedure of hierarchical k-means will be described in Algorithm 1 in the Appendix B.2.170

3.2 Query generation171

One challenge of generating document identifiers by single query input is how to make the identifiers172

aware of the document semantics. Since the content of each document is not explicitly known at173

inference, it must be incorporated into the model parameters during training. To facilitate the training174

process, we generate a bunch of queries with a query generation module and bind the information175

of document content through training the sequence-to-sequence model with generated queries and176

their document identifiers. We adopt a standard sequence-to-sequence transformer [43] based on the177

implementation of Doc2Query [1], which takes as an input the document terms and produces relevant178

queries via random sampling. Note that we use random sampling instead of beam search to ensure179

the diversity of generated queries.180

3.3 Prefix-aware weight-adaptive decoder181

The probability of generating a document identifier can be written as follows:182

p(l|x, θ) =
m∏
i=1

p(ri|x, r1, r2, ..., ri−1, θi), (1)

where ri is the i-th token in the current identifier; x is the representation output from encoder; θ183

denotes the total parameters and θi is the parameter for the i-th step.184

4

Figure 2: Overview of the Prefix-Aware Weight-
Adaptive (PAWA) Decoder.

This probability can be modeled by a transformer-based185

decoder. For an internal node with level i, the probabil-186

ity is calculated by:187

hi = TransformerDecoder(x, h1, h2, ..., hi−1; θi),
(2)

188 p(ri|x, r1, r2, ..., ri−1, θi) = Softmax(hiW). (3)
Here hi is the hidden representation for step i, which189

is calculated by a multi-head attention over encoder190

representation x and token representations of previous191

decoding steps. The linear classification weight is de-192

noted by W ∈ Rd×v, d is the hidden dimension size193

and v is the vocabulary size of identifiers.194

As the encoder and decoder utilize distinct vocabulary spaces, we do not share the embedding space195

for their tokens. Different from a standard decoding task, the meanings of the same token appearing196

at different places of the same identifier are different, as they correspond to different clusters in the197

hierarchical tree structure. For instance, the “52” and “53” of the same identifier “315253” correspond198

to different semantic meanings. Moreover, the same token in the same position may have different199

semantics with different prefixes. For example, in identifiers “111253” and ”214253”, the same200

token “53” has different semantics in two different identifiers, as they are routed from different prefix201

paths. The two properties of the hierarchical semantic identifiers motivate us to design the novel202

Prefix-Aware Weight-Adaptor (PAWA) decoder.203

Unlike a standard transformer decoder, the probabilities at different tree levels, such as204

p(ri|x, r1..i−1, θi) and p(rj |x, r1..j−1, θj) when i ̸= j, do not share parameters with each other.205

To distinguish different semantic levels, we concatenate the position and token values as input for206

each decoding step, as shown in the left corner of Figure 2. Specifically, we have “(1, 3)(2, 5)(3, 5)”207

for the semantic identifier “315253”, while “(2, 5)” and “(3, 5)” represent different tokens in the208

vocabulary space. As the token embedding and linear classification layers share the same weights, the209

same token value in different positions would correspond to different model parameters. Moreover,210

to reflect the influence of different prefixes, we expect the linear classification layer to be aware of211

different prefixes for predicting a specific token. Concretely, instead of using the same projection212

weight W in the linear classification layer, we employ the prefix-aware adaptive weights for each213

token classifier, which can be calculated by another transformer decoder,214

W i
ada = AdaptiveDecoder(e; r1, r2, ..., ri−1)Wi (4)

where e is the query embedding vector taken as initial input to the transformer decoder; {rt|t ∈215

(1, 2, ..., i−1)} are prefix tokens before the i-th position, AdaptiveDecoder stacks N3 transformer de-216

coding layers with dimension d, and W i
ada ∈ Rd×v is the adapted weight matrix for the corresponding217

classifier. Finally, the i-th token in the given prefix can be predicted by Softmax(hiW
i
ada).218

For instance, to predict the third tokens in the identifiers “(1,3)(2,1)(3,5)” and “(1,2)(2,4)(3,5)” respec-219

tively, the corresponding adaptive weights are derived separately for different prefixes “(1,3)(2,1)” and220

“(1,2)(2,4)”. As we already know the previous tokens for each position in the teacher forcing setting,221

the prefix-aware adaptive weights can be calculated and trained in parallel in different positions while222

adding little burden to the entire model.223

3.4 Training and inference224

Consistency-based regularization. To alleviate over-fitting, we employ a consistency-based reg-225

ularization loss for training each decoding step. Given an input query q, we denote the model226

probabilities predicted by two forward passes with independent dropouts as p1(ri|E(q), r1,...,i−1, θi)227

and p2(ri|E(q), r1,...,i−1, θi) respectively, where E(·) denotes the encoder network. The consistency-228

based regularization loss tries to regularize the model prediction by minimizing the bidirectional229

Kullback-Leibler (KL) Divergence between two output probabilities with random dropout. The230

regularization loss of query q for the i-th decoding step is defined as,231

Lreg =
1

2

(m∑
i=1

DKL

(
p1(ri|E(q), r1,...,i−1, θi)∥p2(ri|E(q), r1,...,i−1, θi)

)
+DKL

(
p2(ri|E(q), r1,...,i−1, θi)∥p1(ri|E(q), r1,...,i−1, θi)

))
.

(5)

5

Training loss. Given a set of training examples D = {(q, d)} composed of queries (training queries232

and augmented queries) and document identifiers, the loss function can be written as follows:233

L(θ) =
∑

(q,d)∈D

(
log p(d|E(q), θ) + αLreg

)
, (6)

where p(d|E(q), θ) denotes the probability of generating d with q as the input. The first part is234

the seq2seq cross-entropy loss with teacher forcing and the second part is the consistency-based235

regularization loss summed by all decoding steps. The whole process formulates a sequence-to-236

sequence neural network, which can be optimized end-to-end via gradient descent. The hyper-237

parameter α denotes a scaling factor of regularization loss, which will be analyzed in Section 4.4.238

Inference via beam search. In the inference stage, we calculate the query embedding through the239

encoder network and then perform the beam search on the decoder network. Due to the hierarchical240

nature of docid, it is convincing to constrain the beam search decoding process with a prefix tree,241

which in turn only generates the valid identifiers. The time complexity of beam search is O(LBF),242

where L is the max length of identifiers (the depth of tree), B is the beam size and F is the max243

fanout of the tree (10 in our experiments). Given a balanced tree structure built by a corpus with244

M documents, the average time complexity for beam search is O(BlogM). We leave detailed245

descriptions of the constrained beam search algorithm in Appendix B.3.246

4 Experiments247

In this section, we empirically verify the performance of NCI and the effectiveness of each com-248

ponent on the document retrieval task, which generates a ranking list of documents in response to249

a query. In the following, we discuss the datasets and evaluation protocol in Section 4.1, describe250

the implementation details and baseline methods in Section 4.2, and present empirical results and251

analyses in Section 4.3 and 4.4 respectively.252

4.1 Datasets & evaluation metrics253

Datasets. Following DSI [41] and SEAL [4], we conduct our experiments on the Natural Questions254

[25] dataset. Natural Questions (NQ) dataset was introduced by Google in 2019 [25]. The version255

we use is often referred to as NQ320k, which consists of 320k query-document pairs, where the256

documents are gathered from Wikipedia pages and the queries are natural language questions. We257

use its predetermined training and validation split for evaluation.258

Metrics. We use widely accepted metrics for information retrieval, including Recall@N and Mean259

Reciprocal Rank (MRR). Recall@N measures how often the desired document is hit by the top-N260

retrieved candidates. MRR calculates the reciprocal of the rank at which the first relevant document is261

retrieved. A high recall means that the ground truth document is contained in the retrieved candidate262

list, while a high MRR indicates that the corresponding document has already been ranked at the top263

position without a need for re-ranking.264

4.2 Implementation details265

Hierarchical semantic identifier. For semantic identifiers, we apply hierarchical k-means algorithm266

over the document embeddings obtained through a 12 layers BERT model with pre-trained parameters267

provided by the HuggingFace [44]. For each hierarchical layer, we employ the default k-means268

algorithm implemented in scikit-learn [34] with k = 10. For simplicity, the recursion terminal269

condition is also set as c = 10.270

Query generation. We leverage the pre-trained model docT5query [32] for query generation. We271

provide all documents in the NQ320k dataset to predict augmented query-document pairs. For each272

document, we generate 10 queries with the first 512 input tokens of the document as the input and273

constrain the maximum length of the generated query as 64.274

Training and inference. Neural Corpus Indexer (our approach) are implemented with python 3.6.10,275

PyTorch 1.8.1 and HuggingFace transformers 3.4.0. We utilize the parameters of the T5 pre-trained276

model [5] to initialize the encoder and randomly initialize the PAWA decoder. All NCI experiments277

are based on a learning rate 2× 10−4 for encoder and 1× 10−4 for decoder with a batch size 16 per278

GPU. We set the scaling factor of the consistency-based regularization loss as α = 0.015, and the279

dropout ratio is 0.1. For inference, we apply the partial beam search algorithm to the trained seq2seq280

6

Table 1: Performance comparison on NQ320k retrieval task

Method Recall@1 Recall@10 Recall@100 MRR@100

Neural Corpus Indexer (Ours) 88.72 95.84 97.43 91.59

DSI (T5-Base) 27.40 56.60 – –
DSI (T5-XXL) 40.40 70.30 – –
SEAL (BART-Base) 26.55 53.61 72.67 35.64
ANCE (FirstP) 51.33 80.33 91.78 61.71
ANCE (MaxP) 52.63 80.38 91.31 62.84
BERT + BruteForce 28.65 53.42 73.16 36.60
BERT + ANN (Faiss) 27.92 53.63 73.01 37.08
BM25 + DocT5Query 58.39 75.76 89.51 64.53
BM25 30.23 47.02 68.54 36.26

model. We set the length penalty and the beam size as 0.3 and 100 respectively. All experiments are281

based on a cluster of NVIDIA V100 GPUs with 32GB memory. Each job takes 8 GPUs, resulting in282

a total batch size of 128 (16× 8).283

Baselines. We evaluate BM25 on both raw documents and those augmented by DocT5Query. The284

performance of DSI [40] is referred from its original paper as the implementation has not been285

open-sourced. To avoid the difference in data processing, we reproduce SEAL [4] and ANCE [45] by286

their official implementations. We leave the detailed settings in Appendix B.4.287

4.3 Results288

In Table 1, we compare the empirical results of NCI and corresponding baselines. On the NQ320k289

dataset, the proposed NCI model outperforms all baselines by a large margin across four different290

metrics. Compared with the state-of-the-art model, NCI improves 51.9% on Recall@1, 19.2% on291

Recall@10, 6.2% on Recall@100, and 41.9% on MRR@100 relatively. It is worth noting that we292

are the first to verify the superiority of deep text retrieval over traditional sparse and dense retrieval293

methods. Previous deep text retrieval methods (i.e., DSI and SEAL) obtain relatively poor results294

even with a very large model size (e.g., T5-XXL). Consistent with previous studies, BM25 is an295

efficient and effective baseline. It even outperforms BERT-based dense retrieval solutions, perhaps296

owning to its capability to retrieve precise documents based on exact match. Further, we notice that297

query generation plays a key role in boosting the retrieval performance. With query generation, the298

BM25 + DocT5Query method achieves much higher performance than its vanilla version. ANCE299

also achieves competitive performance after fine-tuned by the training pairs, but the performance is300

far lower than our proposed NCI model. Moreover, the Recall@1 and MRR@100 metrics of NCI are301

outstanding, indicating that more than 90% of the queries can be fulfilled without re-ranking on the302

retrieved document list. This shows the potential of NCI to be served as an end-to-end solution that303

replaces the entire index-retrieve-rank pipeline in traditional web search engines.304

Furthermore, to study the effect of each component, we report ablation results on NQ320k dataset in305

Table 2. In general, all five components are able to improve the performance of document retrieval,306

which are detailed below.307

w/o query generation. This configuration removes the query generation module for data augmenta-308

tion. Remarkably, the query generation boosts the performance greatly. The result is aligned with309

our expectation because training with the generated queries allows the model to be agnostic to the310

semantic meaning of each documents. Besides, although training on <doc-content, docid> pairs311

like DSI [40] also make the model aware of the semantic meaning of each documents, we argue that312

Table 2: Ablation Study on NQ320k retrieval task

Method Recall@1 Recall@10 Recall@100 MRR@100

Neural Corpus Indexer (Ours) 88.72 95.84 97.43 91.59
w/o query generation 53.63 67.84 78.43 59.16
w/o PAWA decoder 87.01 95.27 97.18 90.79
w/o semantic id 87.22 95.34 97.25 90.85
w/o regularization 87.34 95.42 97.27 90.89
w/o constrained beam search 87.41 95.71 97.32 90.84

7

training with generated queries is able to avoid the distribution shift problem, which also benefit the313

generalization performance.314

w/o PAWA decoder. This configuration removes the adaptive decoder layer in Equation (4) and315

leverages shared weights with token embedding for the linear classification layer. We notice that the316

prefix-aware weight-adaptive decoder has a noticeable influence on the performance, which indicates317

that, instead of borrowing the vanilla transformer decoder, it is necessary to design a tailored decoder318

architecture for the task of semantic identifier generation.319

w/o semantic id. This configuration replaces the semantic identifier of each document to a random320

generated one. We find a relative drop in the model performance on all four metrics, demonstrating that321

the semantic identifiers derived by hierarchical k-means have injected useful priors. We conjecture322

that the performance enhancement would be more significant on a larger document corpus.323

w/o regularization. There is a performance drop on all four metrics without using consistency-based324

regularization loss. The reason is that the decoder network is prone to over-fitting. By making the325

prediction results for two augmented versions of the decoder to be consistent, the decoder model326

becomes more generalizable and resistant to over-fitting.327

w/o constrained beam search. This configuration disables the validating constraint in beam search.328

In other words, the decoder network does not have a tree-based prior structure. Instead, all tokens329

in the vocabulary can be generated in each decoding step. We observe a performance drop on four330

evaluation metrics. This indicates that it is difficult to remember all information of valid identifiers in331

the network, and an explicit prior could be helpful for improving the quality of beam search.332

� ����� ����� ����� �����
����

���

���

���

���

��	

��

���

�
��
��
��

��

���
�����
�����

Figure 3: Learning curves of NCI with
different model capacities

Setting Recall@1 Recall@10 Recall@100 MRR@100
#layer = 0 87.01 95.27 97.18 90.79
#layer = 1 88.54 95.62 97.16 91.44
#layer = 2 88.56 95.67 97.28 91.48
#layer = 4 88.65 95.72 97.54 91.51
#layer = 6 88.72 95.84 97.43 91.59
#layer = 8 85.31 94.17 96.34 89.25

Table 3: NCI with different number of layers in PAWA adapter
and different regularization hyper-parameter α in loss function333

4.4 Analysis334

Model capacity. Figure 3 compares the learning curves of NCI with different model capacities,335

which are identical to the small, base, and large settings of ordinary T5 [35]. We observe that with336

the increase of model size, NCI convergences more quickly with fewer epochs. At convergence, the337

small model achieves a relatively lower recall@1. Instead, both the base and large models achieve338

similar results after sufficient training epochs. This implies that the model capacity has a critical339

impact on the retrieval performance, and the capacity of base model seems to be enough to memorize340

all documents in NQ320k dataset. For a larger corpus, one may need to increase the model size to341

obtain satisfactory performance.342

Layer number of PAWA adapter. We study the influence of the number of transformer layers in343

the PAWA adapter and choose the layer number from {0,1,2,4,6,8}. The results are summarized in344

Table 3. We notice that with the increasing of layer number, i.e. from 0 to 6, the overall performance345

is consistently improved under four metrics, except the Recall@100. But when the number of layer346

achieves 8, the performance is dropped significantly. We attribute that to the overfitting caused by a347

large PAWA adapter. Therefore, we adopt the design with 6 layer adapter in NCI.348

Retrieved documents and their semantics identifiers. To verify the effectiveness of retrieval as349

well as the semantic identifiers learned by hierarchical k-means, we analyze the retrieval results of350

NCI for some exemplar queries. To illustrate, we select four queries denoted by A-1, A-2, B-1 and351

B-2, where two queries inside the same group are semantically similar, and the queries in different352

groups correspond to distinct topics. In Figure 4(a) and 4(b), we show the probabilities of retrieved353

documents for each query in group A and B respectively. The digits along x-axis denote the four-bit354

prefixes for semantic identifiers of retrieved documents, and the y-axis stands for their probabilities.355

8

1377 4254 4299 4361 6030 6032 6033 6034 6046 7860
Semantic Id Prefix

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pr
ob

ab
ilit

y
A-1: when did the eagles last play in a superbowl
A-2: when did the eagles play in the superbowl

(a) Query Group A

4221 7046 7049 7382 7388 7511 7514 7516 7524 7567
Semantic Id Prefix

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Pr
ob
ab
ilit
y

B-1: latest season on keeping up with the kardashians
B-2: latest series of keeping up with the kardashians

(b) Query Group B (c) Document Embeddings

Figure 4: Analyses of retrieved documents with semantic identifiers. (a) The probabilities of retrieved documents
for Query Group A; (b) Query Group B. (c) The t-SNE visualization of BERT-based document embeddings.

We notice that similar queries result in close document distributions, while dissimilar queries in356

different groups result in un-overlapped document collections. In addition, the documents retrieved357

by the same group of queries have close prefixes for the identifiers, e.g., 6030, 6032, 6033, 6034 in358

group A and 7511, 7514, 7516 in group B. Also, we visualize BERT-based document embeddings by359

t-SNE [42] in Figure 4(c), in which each color represents the corresponding documents for a specific360

query. As shown in the figure, these documents naturally form two clusters with respect to different361

query groups. Thus, we conclude that the semantic document identifiers generated by the hierarchical362

k-means algorithm have positive effects on the retrieval performance.363

Table 4: Efficiency analysis
Model Beam Latency Throughput
size size (ms) (queries / s)
Small 10 78.46 58.48
Base 10 115.17 52.55
Large 10 188.60 43.39

Small 100 216.01 6.12
Base 100 269.31 5.62
Large 100 356.07 4.75

Efficiency Analysis. We use an NVIDIA V100-32G GPU364

to analyze the efficiency of NCI. As the inference speed is365

influenced by both model capacity and beam size, we report366

the latency and throughput measures for multiple settings367

in Table 4. As NCI is an end-to-end retrieval method and368

achieves competitive performance without re-ranking, the369

latency and throughput are already affordable for some370

near-real-time applications. The latency of NCI is on par371

with DSI and SEAL using the same model size and beam372

size as all of them conduct beam search based on transformer decoders. BM25 is very efficient373

(<100ms per query on CPU using an open-source implementation [2], but the recall metrics are much374

lower. Furthermore, we can leverage other techniques to improve the efficiency of NCI, which will375

be discussed in the later section.376

5 Limitation & Future Works377

Despite the significant breakthrough, the current implementation of NCI still suffers from several378

limitations before deployment in an industrial web search system. Firstly, it requires a much larger379

model capacity for extending NCI to the web scale. Secondly, its inference speed needs to be380

improved to serve online queries in real time. Thirdly, it is difficult to update the model-based index381

when new documents are added to the system. In future works, we may tackle these problems from382

four aspects. (1) The architecture of sparsely-gated Mixture of Expert (MoE) [38] can be employed383

to enhance the model capacity. (2) Documents can be grouped into semantic clusters, and then NCI384

is used to retrieve relevant cluster identifiers. In this way, all documents in relevant clusters can be385

retrieved efficiently. (3) Model compression techniques, like weight quantization [22] and knowledge386

distillation [20], can be further taken to speed up inference. (4) We plan to explore a hybrid solution387

by building another index that serves new documents through traditional indexing algorithms.388

6 Conclusion389

In this work, we introduce a novel learning paradigm that unifies the learning and indexing stages by390

an end-to-end deep neural network framework. The proposed Neural Corpus Indexer (NCI) retrieves391

the identifiers of relevant documents directly for an input query, which can be optimized end-to-end392

with augmented query-document pairs. To optimize the recall and ranking performance, we invent393

the tailored prefix-aware weight-adaptive decoder. Empirically, we evaluate NCI on NQ320k dataset394

and demonstrate its outstanding recall and MRR performance over state-of-the-art solutions.395

9

References396

[1] https://github.com/castorini/docTTTTTquery.397

[2] https://github.com/castorini/anserini.398

[3] Jon Louis Bentley. Multidimensional binary search trees used for associative searching. Com-399

munications of the ACM, 18(9):509–517, 1975.400

[4] Michele Bevilacqua, Giuseppe Ottaviano, Patrick Lewis, Wen-tau Yih, Sebastian Riedel, and401

Fabio Petroni. Autoregressive search engines: Generating substrings as document identifiers.402

arXiv preprint arXiv:2204.10628, 2022.403

[5] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,404

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are405

few-shot learners. arXiv preprint arXiv:2005.14165, 2020.406

[6] Wei-Cheng Chang, X Yu Felix, Yin-Wen Chang, Yiming Yang, and Sanjiv Kumar. Pre-training407

tasks for embedding-based large-scale retrieval. In International Conference on Learning408

Representations, 2019.409

[7] Qi Chen, Bing Zhao, Haidong Wang, Mingqin Li, Chuanjie Liu, Zengzhong Li, Mao Yang, and410

Jingdong Wang. Spann: Highly-efficient billion-scale approximate nearest neighbor search.411

arXiv preprint arXiv:2111.08566, 2021.412

[8] Zhuyun Dai and Jamie Callan. Context-aware sentence/passage term importance estimation for413

first stage retrieval. arXiv preprint arXiv:1910.10687, 2019.414

[9] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-sensitive hashing415

scheme based on p-stable distributions. In Proceedings of the twentieth annual symposium on416

Computational geometry, pages 253–262, 2004.417

[10] Nicola De Cao, Wilker Aziz, and Ivan Titov. Highly parallel autoregressive entity linking with418

discriminative correction. arXiv preprint arXiv:2109.03792, 2021.419

[11] Nicola De Cao, Gautier Izacard, Sebastian Riedel, and Fabio Petroni. Autoregressive entity420

retrieval. arXiv preprint arXiv:2010.00904, 2020.421

[12] Nicola De Cao, Ledell Wu, Kashyap Popat, Mikel Artetxe, Naman Goyal, Mikhail Plekhanov,422

Luke Zettlemoyer, Nicola Cancedda, Sebastian Riedel, and Fabio Petroni. Multilingual autore-423

gressive entity linking. arXiv preprint arXiv:2103.12528, 2021.424

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of425

deep bidirectional transformers for language understanding. In North American Chapter of426

the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT),427

2019.428

[14] Luyu Gao and Jamie Callan. Condenser: a pre-training architecture for dense retrieval. In429

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,430

pages 981–993, 2021.431

[15] Luyu Gao, Zhuyun Dai, and Jamie Callan. Coil: Revisit exact lexical match in information432

retrieval with contextualized inverted list. In Proceedings of the 2021 Conference of the433

North American Chapter of the Association for Computational Linguistics: Human Language434

Technologies, pages 3030–3042, 2021.435

[16] Weihao Gao, Xiangjun Fan, Chong Wang, Jiankai Sun, Kai Jia, Wenzhi Xiao, Ruofan Ding,436

Xingyan Bin, Hui Yang, and Xiaobing Liu. Deep retrieval: Learning a retrievable structure for437

large-scale recommendations. arXiv preprint arXiv:2007.07203, 2020.438

[17] Jiafeng Guo, Yixing Fan, Qingyao Ai, and W Bruce Croft. A deep relevance matching model439

for ad-hoc retrieval. In Proceedings of the 25th ACM international on conference on information440

and knowledge management, pages 55–64, 2016.441

10

https://github.com/castorini/docTTTTTquery
https://github.com/castorini/anserini

[18] Tonglei Guo, Jiafeng Guo, Yixing Fan, Yanyan Lan, Jun Xu, and Xueqi Cheng. A comparison442

between term-based and embedding-based methods for initial retrieval. In China Conference on443

Information Retrieval, pages 28–40. Springer, 2018.444

[19] John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means clustering algorithm.445

Journal of the royal statistical society. series c (applied statistics), 28(1):100–108, 1979.446

[20] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distilling the knowledge in a neural network.447

arXiv preprint arXiv:1503.02531, 2(7), 2015.448

[21] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck. Learning449

deep structured semantic models for web search using clickthrough data. In Proceedings of450

the 22nd ACM international conference on Information & Knowledge Management, pages451

2333–2338, 2013.452

[22] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,453

Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for454

efficient integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer455

vision and pattern recognition, pages 2704–2713, 2018.456

[23] Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravishankar Krishnawamy,457

and Rohan Kadekodi. Diskann: Fast accurate billion-point nearest neighbor search on a single458

node. Advances in Neural Information Processing Systems, 32, 2019.459

[24] Omar Khattab and Matei Zaharia. Colbert: Efficient and effective passage search via contextual-460

ized late interaction over bert. In Proceedings of the 43rd International ACM SIGIR conference461

on research and development in Information Retrieval, pages 39–48, 2020.462

[25] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris463

Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a464

benchmark for question answering research. Transactions of the Association for Computational465

Linguistics, 7:453–466, 2019.466

[26] John Lafferty and Chengxiang Zhai. Document language models, query models, and risk467

minimization for information retrieval. In Proceedings of the 24th annual international ACM468

SIGIR conference on Research and development in information retrieval, pages 111–119, 2001.469

[27] Canjia Li, Andrew Yates, Sean MacAvaney, Ben He, and Yingfei Sun. Parade: Passage470

representation aggregation for document reranking. arXiv preprint arXiv:2008.09093, 2020.471

[28] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,472

Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT473

pretraining approach. CoRR, abs/1907.11692, 2019.474

[29] Wenhao Lu, Jian Jiao, and Ruofei Zhang. Twinbert: Distilling knowledge to twin-structured475

compressed bert models for large-scale retrieval. In Proceedings of the 29th ACM International476

Conference on Information & Knowledge Management, pages 2645–2652, 2020.477

[30] Yi Luan, Jacob Eisenstein, Kristina Toutanova, and Michael Collins. Sparse, dense, and478

attentional representations for text retrieval. Transactions of the Association for Computational479

Linguistics, 9:329–345, 2021.480

[31] Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor search481

using hierarchical navigable small world graphs. IEEE transactions on pattern analysis and482

machine intelligence, 42(4):824–836, 2018.483

[32] Rodrigo Nogueira, Jimmy Lin, and AI Epistemic. From doc2query to doctttttquery. Online484

preprint, 2019.485

[33] Rodrigo Nogueira, Wei Yang, Jimmy Lin, and Kyunghyun Cho. Document expansion by query486

prediction. arXiv preprint arXiv:1904.08375, 2019.487

11

[34] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,488

Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-489

learn: Machine learning in python. the Journal of machine Learning research, 12:2825–2830,490

2011.491

[35] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,492

Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified493

text-to-text transformer. arXiv preprint arXiv:1910.10683, 2019.494

[36] Stephen Robertson and Hugo Zaragoza. The probabilistic relevance framework: BM25 and495

beyond. Now Publishers Inc, 2009.496

[37] Stephen E Robertson and Steve Walker. On relevance weights with little relevance information.497

In Proceedings of the 20th annual international ACM SIGIR conference on Research and498

development in information retrieval, pages 16–24, 1997.499

[38] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,500

and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts501

layer. International Conference on Learning Representations (ICLR), 2017.502

[39] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. Learning semantic503

representations using convolutional neural networks for web search. In Proceedings of the 23rd504

international conference on world wide web, pages 373–374, 2014.505

[40] Yi Tay, Dara Bahri, Donald Metzler, Da-Cheng Juan, Zhe Zhao, and Che Zheng. Synthesizer:506

Rethinking self-attention in transformer models. arXiv preprint arXiv:2005.00743, 2020.507

[41] Yi Tay, Vinh Q Tran, Mostafa Dehghani, Jianmo Ni, Dara Bahri, Harsh Mehta, Zhen Qin, Kai508

Hui, Zhe Zhao, Jai Gupta, et al. Transformer memory as a differentiable search index. arXiv509

preprint arXiv:2202.06991, 2022.510

[42] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine511

learning research, 9(11), 2008.512

[43] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,513

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Informa-514

tion Processing Systems (NeurIPS), pages 5998–6008, 2017.515

[44] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony516

Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transform-517

ers: State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.518

[45] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul N Bennett, Junaid Ahmed,519

and Arnold Overwijk. Approximate nearest neighbor negative contrastive learning for dense520

text retrieval. In International Conference on Learning Representations, 2020.521

[46] Wei Yang, Haotian Zhang, and Jimmy Lin. Simple applications of bert for ad hoc document522

retrieval. arXiv preprint arXiv:1903.10972, 2019.523

[47] Hamed Zamani, Mostafa Dehghani, W Bruce Croft, Erik Learned-Miller, and Jaap Kamps. From524

neural re-ranking to neural ranking: Learning a sparse representation for inverted indexing.525

In Proceedings of the 27th ACM international conference on information and knowledge526

management, pages 497–506, 2018.527

[48] Shengyao Zhuang, Hang Li, and G. Zuccon. Deep query likelihood model for information528

retrieval. In ECIR, 2021.529

12

Checklist530

The checklist follows the references. Please read the checklist guidelines carefully for information on531

how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or532

[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing533

the appropriate section of your paper or providing a brief inline description. For example:534

• Did you include the license to the code and datasets? [Yes] See Section.535

• Did you include the license to the code and datasets? [No] The code and the data are536

proprietary.537

• Did you include the license to the code and datasets? [N/A]538

Please do not modify the questions and only use the provided macros for your answers. Note that the539

Checklist section does not count towards the page limit. In your paper, please delete this instructions540

block and only keep the Checklist section heading above along with the questions/answers below.541

1. For all authors...542

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s543

contributions and scope? [Yes]544

(b) Did you describe the limitations of your work? [Yes] See Section 5.545

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See546

appendix.547

(d) Have you read the ethics review guidelines and ensured that your paper conforms to548

them? [Yes]549

2. If you are including theoretical results...550

(a) Did you state the full set of assumptions of all theoretical results? [N/A]551

(b) Did you include complete proofs of all theoretical results? [N/A]552

3. If you ran experiments...553

(a) Did you include the code, data, and instructions needed to reproduce the main experi-554

mental results (either in the supplemental material or as a URL)? [Yes]555

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they556

were chosen)? [Yes] See Section 4.557

(c) Did you report error bars (e.g., with respect to the random seed after running experi-558

ments multiple times)? [No]559

(d) Did you include the total amount of compute and the type of resources used (e.g., type560

of GPUs, internal cluster, or cloud provider)? [Yes] See Section 4.561

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...562

(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 4.563

(b) Did you mention the license of the assets? [Yes] See appendix.564

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]565

(d) Did you discuss whether and how consent was obtained from people whose data you’re566

using/curating? [Yes]567

(e) Did you discuss whether the data you are using/curating contains personally identifiable568

information or offensive content? [Yes]569

5. If you used crowdsourcing or conducted research with human subjects...570

(a) Did you include the full text of instructions given to participants and screenshots, if571

applicable? [N/A]572

(b) Did you describe any potential participant risks, with links to Institutional Review573

Board (IRB) approvals, if applicable? [N/A]574

(c) Did you include the estimated hourly wage paid to participants and the total amount575

spent on participant compensation? [N/A]576

13

	Introduction
	Related work
	Neural corpus indexer
	Representing document with semantic identifiers
	Query generation
	Prefix-aware weight-adaptive decoder
	Training and inference

	Experiments
	Datasets & evaluation metrics
	Implementation details
	Results
	Analysis

	Limitation & Future Works
	Conclusion
	Related work
	Document retrieval
	Document ranking
	Pre-trained language models
	End-to-end retrieval

	Reproducibility
	Dataset processing
	Hierarchical k-means for semantic identifier
	Constrained beam search
	Baselines

	More Experimental Results
	Miscellaneous

