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ABSTRACT

Mixed-integer linear programming (MILP) is widely employed for modeling com-
binatorial optimization problems. In practice, similar MILP instances with only
coefficient variations are routinely solved, and machine learning (ML) algorithms
are capable of capturing common patterns across these MILP instances. In this
work, we combine ML with optimization and propose a novel predict-and-search
framework for efficiently identifying high-quality feasible solutions. Specifically,
we first predict the solution distributions, then we search for the best feasible solu-
tion within a properly defined ball around the predicted solution. We show that our
framework is both theoretically and computationally superior to fixing strategies.
We conduct extensive experiments on four public datasets and numerical results
demonstrate that our proposed framework achieves 51% and 9% better primal
gaps than state-of-the-art general-purpose optimization solvers SCIP and Gurobi,
respectively.

1 INTRODUCTION

Mixed-integer linear programming is one of the most widely used techniques for modeling combi-
natorial optimization problems, such as production planning Pochet & Wolsey (2006); Chen (2010),
resource allocation Liu & Fan (2018); Watson & Woodruff (2011), and transportation manage-
ment Luathep et al. (2011); Schöbel (2001). In real-world settings, MILP models from the same
application share similar patterns and characteristics, and such models are repeatedly solved with-
out making uses of those similarities. ML algorithms are well-known for its capability of recogniz-
ing patterns Khalil et al. (2022), and hence they are helpful for building optimization algorithms.
Recent works have shown the great potential of utilizing learning techniques to address MILP prob-
lems. The work of Bengio et al. (2021) categorized ML efforts for optimization as (i) end-to-end
learning Vinyals et al. (2015); Bello* et al. (2017); Khalil et al. (2022), (ii) learning to configuring
algorithms Bischl et al. (2016); Kruber et al. (2017); Gasse et al. (2022) and (iii) learning alongside
optimization Gasse et al. (2019); Khalil et al. (2016); Gupta et al. (2020). For the sake of inter-
est, we only focus on the end-to-end approach. While such an approach learns to quickly identify
high-quality solutions, it generally faces the following two challenges:

(I) high sample collection cost. The supervised learning task for predicting solutions is to
map from the instance-wise information to a high-dimensional vector. Such a learning task
becomes computationally expensive since it necessitates collecting a considerable amount
of optimal solutions (see, e.g., Kabir et al. (2009)).

(II) feasibility. Most of the end-to-end approaches directly predict solutions to MILP problems,
ignoring feasibility requirements enforced by model constraints (e.g. Yoon (2022); Nair
et al. (2020)). As a result, the solutions provided by ML methods could potentially violate
constraints.

We propose a novel predict-and-search framework to address aforementioned challenges. In prin-
ciple, end-to-end approaches for MILP problems require the collection of abundant optimal solu-
tions. However, the cost of collecting such training samples is generally impractical since obtaining
optimal solutions is excessively time-consuming. A possible approach is to learn distributions of
solutions as proposed by Nair et al. (2020), but it still demands sufficient solutions for calculations.
Hence, we consider to approximate the distribution by weighing near-optimal solutions with their
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corresponding objective values. This reduces the cost of sample collections by avoiding gathering
optimal solutions as mentioned in challenge (I). Regarding challenge (II), we implement a trust
region inspired algorithm that searches for near-optimal solutions within the intersection of the orig-
inal feasible region and a properly defined ball centered at a prediction point. The overall framework
is outlined in Figure 1.
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Figure 1: Our approach first predicts the weighted conditional marginal probability of each variable
utilizing a graph neural networks (GNN) model with graph convolution and multi-layer perceptron
(MLP) modules, and then searches for near optimal solutions to the original MILP problem within
a well defined trust region.

The commonly used end-to-end approaches usually directly fix variables by the prediction, such as
in Nair et al. (2020) and Yoon (2022). However, such approaches could lead to sub-optimal or even
infeasible sub-problems. Rather than forcibly fixing variables, our search module looks for high-
quality solutions in a sub-set of the original feasible region, which allows better feasibility while
maintaining optimality.

The distinct contributions of our work can be summarized as follows.

• We propose a novel predict-and-search framework that first trains GNNs to predict the
weighted conditional marginal probability of each variable and then constructs a trust re-
gion to search for high quality feasible solutions.

• We demonstrate the ability of our proposed framework to provide equivalently good or
better solutions than fixing-based end-to-end approaches.

• We conduct comprehensive computational studies on several public benchmarks datasets
and the computational results show that our proposed framework achieves 51% and 9%
smaller primal gaps than state-of-the-art general-purpose optimization solvers SCIP and
Gurobi, respectively.

We make our code publicly available at https://anonymous.4open.science/r/predict-and-search-0F6F

2 PRELIMINARIES

Given a vector v ∈ Rn and an index set I ⊆ {1, 2, ..., n}, let vI ∈ R|I| denote a subvector that
corresponds to I .

2.1 MIXED-INTEGER LINEAR PROGRAMMING

MILP techniques are used to model combinatorial optimization problems, and an MILP instance
can be formulated as: min

x∈D
c⊤x, where D ≡ {x ∈ Zq × Rn−q : Ax ≤ b, l ≤ x ≤ u} denotes a set

of feasible solutions. There are n variables, with c, l, u ∈ Rn being their objective coefficients,
lower and upper bounds, respectively. Without loss of generality, the first q variables are discrete.
A ∈ Rm×n denotes the coefficient matrix while b ∈ Rm represents the right hand side vector. For
convenience, let M ≡ (A, b, c, l, u, q) denote an MILP instance. For the sake of interest, we only
consider discrete variables to be binary, i.e. xi ∈ {0, 1} for 1 ≤ i ≤ q. Besides, considering
continuous variables will not change either the methodology or the outcome of our approach.
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2.2 NODE BIPARTITE GRAPH

Gasse et al. (2019) proposed a bipartite graph representation for MILP problems. Specifically, let
G ≡ (V, E), where V ≡ {v1, ..., vn, vn+1, ..., vn+m} denotes the set of n variable nodes and m
constraint nodes, and E represents the set of edges that only connect between nodes of different
types. Variable nodes and constraint nodes are individually associated with the instance information
e.g. degrees and coefficients (see appendix). The adjacency matrix A is a |V| × |V| matrix that
represents the connectivity of G, as shown by Equation (1).

A ≡
[
0 C⊤

C 0

]
where Ci,j = 1Ai,j ̸=0. (1)

2.3 GRAPH NEURAL NETWORKS

Let N(vi) ≡ {vj ∈ V : Ai,j ̸= 0} denote the set of neighbors of node vi. We construct a k-layer
GNN as follows:

hk
vi = fk

2

({
h(k−1)
vi , fk

1

({
h(k−1)
u : u ∈ N(vi)

})})
,

where function fk
1 aggregates the feature information over the set of neighboring nodes and function

fk
2 combines the nodes’ hidden features from iteration (k − 1) with the aggregated neighborhood

features, and hk
vi denotes the hidden state of node vi in the kth layer. Initially, h0

vi is the output of
an embedding function g (·). Note that the bipartite graph associated with an MILP instance does
not include edges between variable nodes as well as constraint nodes. In order to enable information
aggregation across all nodes, we use two interleaved half-convolutions Gasse et al. (2019) to replace
the graph convolution. After that, the GNN we used can be formulated as:

h(k)
vi = MLP(k)

c

h(k−1)
vi ,

∑
u∈N(vi)

h(k−1)
u

 i ∈ {n, n+ 1, ..., n+m− 1, n+m},

h(k)
vi = MLP(k)

v

h(k−1)
vi ,

∑
u∈N(vi)

h(k−1)
u

 i ∈ {1, 2, ..., n},

(2)

where MLP(k)
c , MLP(k)

v and g (·) are 2-layer perceptrons with ReLU activation functions. That
is, a half-convolution is performed to promote each constraint node aggregating information from
its relevant variable nodes; after that, another one is performed on each variable node to aggregate
information from its relevant constraint nodes and variable nodes.

2.4 TRUST REGION METHOD

The trust region method is designed for solving non-linear optimization problems as follows:

min
x∈H

f(x), (3)

where H ⊆ Rn denotes a set of feasible solutions. The main idea is to convert the originally dif-
ficult optimization problem into a series of simple local search problems. Specifically, it iteratively
searches for trial steps within the neighborhood of the current iterate point Yuan (2015). The trial
step dk is obtained by solving the following trust region problem:

min
d∈Hk

f̃k(d),

s.t. ∥d∥Wk
≤ ∆k

(4)

where f̃k(d) is an approximation of the objective function f(xk + d), Hk denotes a shifted H − xk

of the set H , ∥.∥Wk
is a norm of Rn, and ∆k denotes the radius of the trust region. After solving the

problem in the kth iteration, xk+1 is updated to xk + dk or xk accordingly. Then, new ∥.∥Wk+1
and

∆k+1 are selected along with a new approximation f̃k+1(d).
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3 PROPOSED FRAMEWORK

The supervised learning task in end-to-end approaches maps the instance-wise information to a high-
dimensional vector. Ding et al. (2020) predicts optimal solutions based on a GNN that learns the
values of variables that stay unchanged across collected solutions. However, such a group of vari-
ables does not necessarily exist for many combinatorial optimization problems. Another approach
is to learn distributions rather than directly learning solution mappings; Li et al. (2018) predict a set
of probability maps for variables, and then utilize such maps to conduct tree search for maximum
independent set problems. This work, while obtained remarkable results, is designed for specific
tree search algorithm, while we aim at developing a general method that is suitable for most of the
MILP problems. A more general case is raised by Nair et al. (2020) to learn the conditional prob-
ability distribution in the solution space of an MILP instance; guided by a neural network, a subset
of variables is fixed to reduce the problem size. The fixing strategy can potentially accelerate the
solving process, however, it assigns values to variables without explicitly considering constraints,
such that the resulting sub-problem becomes infeasible.

To alleviate these issues, we adopt the idea of trust region method and design a novel approach
that searches for near-optimal solutions within a properly defined region. Specifically, we propose
a predict-and-search framework that: (i) predicts weighted conditional marginal probabilities of all
binary variables in a given MILP instance by a trained GNN model; (ii) searches for near-optimal
solutions within the trust region constructed from the prediction.

3.1 PREDICT

In this part, we aim at training a GNN by supervised learning to predict weighted conditional
marginal probability distribution for MILP instances. To this end, we define the conditional proba-
bility distribution learning. On this basis, we present the training label in the form of a vector, i.e.
weighted conditional marginal probabilities.

3.1.1 DISTRIBUTION LEARNING

A probability distribution learning model outputs the conditional probability distribution on the
entire solution space of an MILP instance M . A higher conditional probability is expected when
the corresponding solution is more likely to be optimal. Nair et al. (2020) proposed a method to
construct the probability distribution with objective values, and for a solution x, the conditional
probability p(x|M) can be calculated by:

op(x;M) ≡ exp(−E(x;M))∑
x′ exp(−E(x′;M))

, where E(x;M) ≡
{
c⊤x if x is feasible,
+∞ otherwise.

(5)

This implies that an infeasible solution leads to a probability of 0, while the optimal solution induces
the highest probability value. Note that each instance corresponds to only one distribution, hence,
the training task transforms the one-to-many learning into one-to-one learning.

For the collected dataset {(M i, Li)}Ni=1, Li ≡ {xi,j}Ni
j=1 denotes the set of Ni feasible solutions

to instance M i. The probability of each solution in the dataset can be calculated by Equation (5).
In general, the distance between two distributions can be measured by Kullback-Leible divergence.
Thus, the loss function for the supervised learning task is defined as:

L(θ) ≡ −
N∑
i=1

Ni∑
j=1

wi,j logPθ(x
i,j ;M i), where wi,j ≡ exp(−ci

⊤
xi,j)∑Ni

k=1 exp(−ci
⊤
xi,k)

. (6)

Pθ(x
i,j ;M i) is the prediction from the GNN denoted as Fθ with learnable parameters θ. The con-

ditional probability distribution of an MILP problem can be approximated by a part of the entire
solution space. Consequently, The number of samples to be collected for training is remarkably
reduced.

3.1.2 WEIGHT-BASED SAMPLING

To further investigate the learning target and align labels with outputs, we propose a vector form
of the label. With the learning task specified in Equation (6), a new challenge arises that high-

4



Under review as a conference paper at ICLR 2023

dimensional sampling for solution acquiring is computationally prohibitive. A common technique
is to reduce the dimension by decomposing the high-dimensional distribution into low-dimensional
distributions. Given an instance M , let xd denote the dth dimension of a solution x, Nair et al.
(2020) assume that variables are independent of each other, i.e.,

Pθ(x;M) =

n∏
d=1

pθ(xd;M). (7)

With this assumption, the high-dimensional sampling problem is decomposed into n 1-
dimensional sampling problems for each xi according to their probabilities pθ(xi|M). Since
pθ(xi = 1;M) = 1− pθ(xi = 0;M), we only need pθ(xi = 1;M) for i ∈ {1, 2, ..., n} to rep-
resent the conditional probability Pθ(x;M). Then the conditional probability distribution mapping
outputs a n−dimension vector (pθ(x1 = 1;M), ..., pθ(xn = 1;M)). Hence, the prediction of the
GNN model can be represented as Fθ(M) ≡ (p̂1, p̂2, ..., p̂n), where p̂id ≡ pθ(xd = 1;M) for
d ∈ {1, 2, ..., n}.

Let Si
d ⊆

{
1, 2, ..., N i

}
denote the set of indices in Li with their dth component being 1.

pid ≡
∑
j∈Si

d

wi,j , (8)

where pid is normalized by |Li| to a value between 0 and 1. Given an MILP instance M , we can
calculate a corresponding learning target in the form of vector, i.e, P ≡ (p1, p2, ..., pq), where each
component is calculated by Equation (8). This equation calculates the weighted conditional marginal
probability, where the weight is 1 if the variable holds a value of 1 in the corresponding solution and
vice versa. We define such a learning target in the form of a vector as weighted conditional marginal
probability distribution. When the weighting coefficients wij are the same, each individual solution
contributes equally to the loss function; when larger weighting coefficients are given to high-quality
feasible solutions, this means they play more important roles in the loss function.

For the loss function shown in Equation (6), based on the assumption in Equation (7) and the calcu-
lation of probabilities in Equation (6), we have:

L(θ) = −
N∑
i=1

n∑
d=1

Ni∑
j=1

wi,j logpθ(x
i,j
d ;M i)

= −
N∑
i=1

n∑
d=1

∑
j∈Si

d

wi,j logpθ(x
i,j
d ;M i) +

∑
j /∈Si

d

wi,j logpθ(x
i,j
d ;M i)


= −

N∑
i=1

n∑
d=1

{pidlog(p̂id) + (1− pid)log(1− p̂id)}.

This indicates that the loss function can be derived as approximating the weighted conditional
marginal probability of each component in a cross-entropy format. Thus, with assumption (7), the
conditional probability distribution learning is converted to a weighted conditional marginal proba-
bilities learning.

3.2 SEARCH

With weighted conditional marginal probabilities as inputs, we adopted a trust region like method
to carry out a search algorithm. In this section, we first introduce our observation that the distance
between the solution obtained from a rounded learning target and the optimal solution can be very
insignificant. Finally, we adopt a trust region like method to address such an issue and present a
proposition to manifest the superiority of our framework. The complete framework can be found in
Algorithm 1.

3.2.1 OBSERVATION

A variable’s weighted conditional marginal probability is closer to 1 if it’s more likely to be 1 in the
optimal solution, and vice versa. Given an MILP instance M and its learning target P , we set the
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partial solution size parameter (k0, k1) to represent the numbers of 0’s and 1’s in a partial solution.
Let I0 denote the set of indices of the k0 smallest components of P , and I1 denote the set of indices
of the k1 largest components of P . If d ∈ I ≡ I1 ∪ I0, we get a partial solution xI by:

xd ≡
{
0 if d ∈ I0,
1 if d ∈ I1.

(9)

Let x∗ denote an optimal solution to M , empirically, we found xI is close to x∗
I as discussed in

Section 5.2. Explicitly, we define the distance by ℓ1 norm, and there still exists a small ∆ > 0,
such that ∥xI − x∗

I∥1 < ∆ while (k0 + k1) is a large number. We speculate that, since the optimal
solution has the largest weight as shown in equation (8), it is closer to the learning target than all
other solutions. As a result, we hypothesize that similar phenomena can be observed with a slightly
larger ∆ and the same (k0, k1) when obtaining the set of indices I based on prediction Fθ(M).

With this observation, it is reasonable to accelerate the solving process for MILP problems by fixing
variables in the partial solution. Specifically, the sub-problem of an instance M using the fixing
strategy with the partial solution xI can be formulated as:

min
x∈D∩S(xI)

c⊤x, (10)

where S (xI) ≡ {x ∈ Rn : xI = xI}. However, once xI ̸= x∗
I , the fixing strategy may well lead

the above sub-problem to sub-optimal and even infeasible, which can also be observed in Figure ??.

3.2.2 SEARCH WITHIN A TRUST REGION

Under the above observation and analysis, we design a more practicable method. Inspired by the
trust region method, we use the partial solution as the starting point to establish a trust region and
search for a trial step, and then the trial step can be applied to the starting point to generate a new
solution.

Specifically, given instance M , we acquire the set I via the prediction Fθ(M) from a trained GNN,
and get a partial solution x̂I by equation (9) to construct the trust region problem for a trail step
d∗ similar to problem (3), (4). At last, output the point updated by trail step. Such a trust region
problem is equivalent to following:

min
x∈D∩B(x̂I ,∆)

c⊤x, (11)

where B (x̂,∆) ≡ {x ∈ Rn : ∥x̂I − xI∥1 ≤ ∆}. In order to reduce computational costs, we
solve this problem only once to find a near-optimal solution. The pseudo-implementation of such
an algorithm can be found in the appendix. We show that our proposed method always outperforms
fixing-based methods under a fixed method of variable selection in Proposition 1.

Proposition 1. let zFix and zSearch denote optimal values to Equation (10) and (11) respectively.
zSearch ≤ zFix, if they have same partial solution x̂I .

Proof. Note that S(x̂I) = B(x̂I , 0) ⊂ B(x̂I ,∆), it is obvious

min
x∈D∩B(x̂I ,∆)

c⊤x ≤ min
x∈D∩S(x̂I)

c⊤x,

i.e. zSearch ≤ zFix

□

This proposition demonstrates the advantage of our proposed search strategy over fixing strategy;
that is, when fixing strategies lose optimality or feasibility as a consequence of inappropriate fixing,
applying such a trust region search approach can always add flexibility to the sub-problem. Empiri-
cally, results given in computational studies also support this proposition.
Algorithm 1 details the search algorithm of the proposed framework. It takes the prediction Fθ(M)
as input, and acquires a partial solution xd and neighbor constraints. A complete solution x is then
attained by solving the modified instance M ′ with neighbor constraints added. The solving process
is denoted by SOLV E(M ′), i.e. using SCIP/Gurobi to solve instance M ′.
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Algorithm 1 Search Algorithm
Parameter: size {k0, k1}, Radius of the Area: ∆
Input: Instance M , Probability prediction Fθ(M)
Output: Solution x ∈ Rn

1: Sort the components in Fθ(M) from smallest to largest to obtain sets I0 and I1.
2: for d = 1 : n do
3: if d ∈ I0 ∪ I1 then
4: create binary variable δd
5: if d ∈ I0 then
6: create constraint

xd ≤ δd
7: else
8: create constraint

1− xd ≤ δd
9: end if

10: end if
11: end for
12: create constraint

∑
d∈I0∪I1

δd ≤ ∆

13: Let M ′ be M with added constraints and variables
14: Let x = SOLV E(M ′)
15: return x

4 COMPUTATIONAL STUDIES

We conduct extensive experiments on four public datasets with fixed testing environments to ensure
the fairness of comparisons. Detailed model structures are also introduced in this section.

Benchmark Problems Four MILP benchmark datasets are considered in our computational studies.
Two minimizing problems come from the ML4CO 2021 competition Gasse et al. (2022), including
the Balanced Item Placement (denoted by IP) dataset and the Workload Appointment (denoted
by WA) dataset (Gasse et al., 2022). Then we generated two maxmization problems: Independent
Set (IS) and Combinatorial Auction (CA) using Ecole library (Prouvost et al., 2020) referencing
instances used by Gasse et al. (2019). Set Covering and Capacitated Facility Location are not chosen
since they can be easily solved by Gurobi and SCIP. Detailed dimensions of selected datasets can be
found in the appendix.

Graph neural networks A single layer perceptron embeds feature vectors so they have the same
dimension of 64, and the layer normalization Ba et al. (2016) is applied for a better performance
of the network. Then we adopted 2 half-convolution layers from Gasse et al. (2019) to conduct
information aggregation between nodes. Finally, weighted conditional marginal probabilities are
obtained by feeding the aggreated variable nodes into a 2-layer perceptron followed by a sigmoid
activation function.

Training protocol Each dataset contains 400 instances, including 240 instances in the training set,
60 instances in the validation set, and 100 instances in the test set. All reported numerical results
are running in the test set. Our model is constructed with the PyTorch framework, and the training
process runs on GPUs. The loss function is specified in Equation (6) and (7) with a batch size of
8. The ADAM optimizer Kingma & Ba (2014) is used for optimizing the loss function with a start
learning rate of 0.003.

Evaluation metrics We use the primal objective values obtained by running single-thread default
Gurobi for 3, 600 seconds as the performance baseline. To measure the performance of a given
approach, we calculate the average objective values (OBJ) obtained by the approach within a certain
amount of time across instances of different datasets. For each instance, we compare objective
values obtained by different approaches, and choose the best one as the best known solution (BKS).
With that, the performance gap can be formulated as: gapavg ≡ |OBJ − BKS| /

(
|BKS|+ 10−10

)
.

We compare our approach with SCIP and Gurobi by measuring their performance gaps from the
BKS, and compute the improvement ratio. Similarly, we can assess the performance gap gapp
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between any two approaches by replacing BKS and OBJ with their average primal gaps, i.e. gapp ≡
|OBJa − OBJb| /

(
|OBJa|+ 10−10

)
for approach a and b.

Evaluation Configurations For detailed configurations, please check the appendix.
Data collection Details will be provided in the appendix.

5 RESULTS AND DISCUSSION

In order to investigate the benefits of applying such a predict-and-search framework, we carried out
comprehensive computational studies that: (1) compare our framework with SCIP and Gurobi; (2)
measure the distance between rounded label and the optimal solution to support Proposition 1; (3)
demonstrate the advantages of our approach over fixing based methods. The rest of the comparison
experiments (e.g. against Neural Diving (Nair et al., 2020)), and implementation details can be
found in the appendix. For the sake of simplicity, we denote the predict-and-search framework as
PS in Figures and Tables.

Table 1: Average objective values given by different approaches at 1,000 seconds.

dataset BKS
SCIP PS+SCIP Gurobi PS+Gurobi

obj. gap obj. gap
gapp obj. gap obj. gap

gapp

IP 12.02 19.43 7.41 15.46 3.45 0.53 12.65 0.64 12.71 0.69 -0.07
WA 700.94 704.23 3.29 702.35 1.41 0.57 701.24 0.30 701.22 0.28 0.01
IS 685.04 684.94 0.10 685.03 0.01 0.90 685.04 0.00 685.04 0.00 0.00
CA 23,680.01 23,671.66 8.39 23,671.95 8.11 0.03 23,635.07 44.98 23,654.47 25.59 0.43

AVG 50.8% 9.3%

5.1 COMPARING AGAINST STATE-OF-THE-ART SOLVERS

We implement the predict-and-search approach with both SCIP and Gurobi to ensure the fairness.
Figure 2 exhibit in line plots the tendency of average primal gap as the solving process goes on. In
Figure 2a, we observed a huge performance improvement of our framework (blue) comparing to the
default SCIP (green), and such an improvement also exists for WA, CA and IS datasets as shown in
2b, 2c and 2d. Changing the under-laying solver does not dramatically diminish the performance; in
Figure 2a, 2c and 2d, our approach (red) also outperforms Gurobi (black), and it is remarkable that,
in Figure 2d, the predict-and-search framework obtained optimal solutions to IS problems within 10
seconds. Our framework exposed a performance drawback in the early solving stage as shown in
Figure 2b, but the performance is quickly restored within 100 seconds. We present detailed objective
values for a time limit of 1, 000 seconds in Table 1, and the objective value gaps are calculated, along
with improvement ratios. Larger gap means better performance. Our framework outperforms SCIP
and Gurobi with improvements of 50.8% and 9.3%, respectively. We noticed that the enhancement
for Gurobi is not as significant as for SCIP; it is due to the fact that Gurobi can quickly obtain
high-quality solutions.

5.2 COMPARING TO FIXING STRATEGIES

In this part, we compare our framework with fixing strategies to show the advantages. We directly
use the learning target to define confidence scores, and we obtain partial solutions by setting different
size parameters (k0, k1) as stated in Section 3.2.1. ℓ1 norms are computed to measure such distances.
We selected (700, 0), (750, 0), (800, 0), (850, 0), and (900, 0) as size parameters and obtained their
corresponding ℓ1 distances as 0.00, 0.04, 1.20, 35.26, and 85.01. We observed that such distances
can be insignificant if only a small portion of variables are taken into consideration. However, as we
enlarge the number of involved variables, the distance increases dramatically. Hence, the predict-
and-search approach can involve larger set of variables than fixing strategy does while still retaining
the optimality.

To testify this argument, we directly compare the performance of the fixing strategy and our ap-
proach. Figure 3 shows the average primal gap achieved by different approaches, where the numbers
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Figure 2: Performance comparisons between PS, Gurobi and SCIP, where the APG is averaged
across 100 instances; each plot represents one benchmark dataset. PS implemented with different
solvers are denoted as PS+Solver. The result shows a generally better performance of the proposed
framework.

of selected variables are fixed for both approaches. One can spot the dominance of our approach
over fixing strategy from Figure 3a; this implies that fixing strategy only leads to mediocre solu-
tions, while the search method (red) achieves much better qualities. In Figure 3d, both approaches
are capable of finding optimal solutions instantly, but the ones obtained by fixing method is far from
optimal solutions to original problems. We notice that in Figure 3b and 3c, our framework struggles
to find good solution in the early solving phases, but produces equivalent or better solutions within
1, 000 seconds comparing to the fixing method. A possible reason is that our solution results in larger
feasible regions comparing to the fixing strategy. Conclusively, our framework always outperforms
the fixing strategy.
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Figure 3: This figure shows average primal gaps achieved by the search method and the fixing
method under the same partial solution. The primal gap is averaged across 100 instances, and each
plot represents one dataset. The proposed framework shows a constantly dominant performance
over the fixing-based method. Detailed parameters and settings can be found in the appendix.

6 CONCLUSIONS

We propose a predict and search framework for tackling difficult MILP problems that are routinely
solved. A GNNs model was trained under a supervised learning setting to map from bipartite graph
representations of MILP problems to weighted conditional marginal probabilities. The key contribu-
tion of this work is that we design a trust region based algorithm to search for high-quality feasible
solutions with the guidance of such a mapping. Both theoretical and empirical supports are provided
to illustrate the superiority of this framework over fixing-based strategies. With an extensive set of
publicly available MILP datasets, we demonstrate the effectiveness of our proposed framework in
quickly recognizing high-quality feasible solutions. Overall, our proposed framework achieved 51%
and 9% better primal gaps comparing to SCIP and Gurobi, respectively.
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