
LogiGAN: Learning Logical Reasoning via
Adversarial Pre-training

Anonymous Author(s)
Affiliation
Address
email

Abstract

We present LogiGAN, an unsupervised adversarial pre-training framework for im-1

proving logical reasoning abilities of language models. Upon automatic identifica-2

tion of logical reasoning phenomena in massive text corpus via detection heuristics,3

we train language models to predict the masked-out logical statements. Inspired4

by the facilitation effect of reflective thinking in human learning, we analogically5

simulate the learning-thinking process with an adversarial Generator-Verifier ar-6

chitecture to assist logic learning. LogiGAN implements a novel sequential GAN7

approach that (a) circumvents the non-differentiable challenge of the sequential8

GAN by leveraging the Generator as a sentence-level generative likelihood scorer9

with a learning objective of reaching scoring consensus with the Verifier; (b) is10

computationally feasible for large-scale pre-training with longer target length.11

Both base and large size language models pre-trained with LogiGAN demonstrate12

obvious performance improvement on 12 datasets requiring general reasoning13

abilities, revealing the fundamental role of logic in broad reasoning, as well as14

the effectiveness of LogiGAN. Ablation studies on LogiGAN components reveal15

the relative orthogonality between linguistic and logic abilities and suggest that16

reflective thinking’s facilitation effect might also generalize to machine learning 1.17

1 Introduction18

“Learning without thinking is labor lost; thinking without learning is perilous.” – Confucius19

Pre-trained Language Models (PLMs) (Devlin et al., 2018; Brown et al., 2020; Raffel et al., 2020) are20

approaching human-level performance in numerous tasks requiring basic linguistic abilities (Wang21

et al., 2018; Rajpurkar et al., 2016), setting off a huge wave of interest in Natural Language Processing22

(NLP). Despite the emerging fervor, researchers soon realized that PLMs are relatively incompetent23

in their reasoning abilities, which seems to be an insurmountable bottleneck for PLMs with even24

better linguistic abilities (Helwe et al., 2021; Kassner & Schütze, 2019). Following this, researchers25

delve into reasoning from multitudinous aspects, striving to improve PLMs’ reasoning abilities.26

From our perspective, reasoning (in natural language) is essentially an inferential process where27

an unstated statement is drawn based on several presented statements, and Logic is the systemic28

set of principles that provides reasoning with correctness and consistency assurance (Hurley, 1982).29

Regardless of the variability of contents, logical reasoning generally incorporates two invariant forms:30

drawing conclusions based on some premises (aka. deduction & induction, (Reichertz, 2013)), or31

hypothesizing premises to explain some conclusions (aka. abduction (Douven, 2021)). Most existing32

tasks requiring general reasoning ability, such as natural language inference (Nie et al., 2019) and33

complex machine reading comprehension (Lai et al., 2017), can be readily interpreted by this criterion.34

1We will release our data, codes and models upon acceptance to facilitate research on this line.
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Other tasks requiring specialized reasoning skills can be considered either as (i) providing sufficient35

premises but requiring specific ways of premise extraction to draw conclusions, such as multi-hop36

(Yang et al., 2018b) or hybrid (Chen et al., 2020) reasoning; or (ii) requires external knowledge, such37

as commonsense (Sap et al., 2020) or numerical (Dua et al., 2019) knowledge, as premises to draw38

conclusions, hence could also be interpreted by the two forms of logical reasoning. Following this39

analysis on the relation between logic and reasoning, Logic ability will be an essential foundation for40

a broad scope of reasoning, and should be prioritized in improving PLMs’ reasoning abilities 2.41

Conventional pre-training via randomized Masked Language Modeling (MLM) and auxiliary tasks42

are generally developed upon Firth (1957)’s distributional hypothesis of semantics – "a word is43

characterized by the company it keeps." Under this paradigm, models efficiently learn to capture44

grammatical structures and contextualized semantics. However, since logical consistency is beyond45

correctness on a linguistic level, it is less obvious how MLM could help with logical reasoning46

abilities. Do models harvest logic ability for free from MLM? Or is that something that needs further47

learning beyond language acquisition? Motivated by these questions, we propose an unsupervised48

pre-training method aiming at enhancing the logical reasoning ability of PLMs: we automatically49

identify occurrences of logical reasoning phenomena in large corpus via detection heuristics, and50

then require PLMs to predict the masked-out logical statements made in the original context (Section51

3). For example, in the case “Bob recently made up his mind to lose weight. Therefore, [MASK]”, the52

prediction goal is the masked original statement “he decides to go on a diet”.53

However, statements different from the original statement could also be logically consistent with54

respect to a given context. For example, “he decides to exercise from today on” is also a reasonable55

inference in the case above. Since Generators trained merely from recovering original statements56

are not encouraged to explore the possibilities of other reasonable statements, their overall learning57

effectiveness of logic could potentially be degraded. Therefore, it makes sense to provide additional58

feedback based on the degree of logical consistency between statements predicted beforehand and59

the original context – we realize this much resembles humans’ reflective thinking process. Inspired60

by research from cognitive psychology (Di Stefano et al., 2016; Moon, 2013; Boud et al., 2013)61

advocating for the vital role of reflective thinking in improving the experiential efficiency of human62

learning, we hypothesize that machines might also benefit from reflective thinking in their learning63

processes. Following this hypothesis, we analogically simulate humans’ learning-thinking process64

with a Generator-Verifier architecture, and propose LogiGAN, a novel adversarial training approach65

tailored for sequential GAN training to further facilitate the learning of logical reasoning.66

In LogiGAN’s design, the Generator learns not only to recover the original masked statements, but67

also to score candidate statements (based on their generative likelihood) in a manner that could reach68

scoring consensus with the Verifier, who learns to make judgments on the logical consistency between69

premises and conclusions. The more logically consistent the Verifier thinks of a statement w.r.t. the70

input context, the higher generative likelihood score is expected to be assigned by the Generator. To71

encourage the exploration of broader possibilities of reasonable statements other than the original one,72

we also apply a diversified sampling strategy for candidate statement generation. Both Generator and73

Verifier scoring processes are continuous throughout the adversarial training, thereby circumventing74

the non-differentiable barrier in sequential GAN posed by the discrete beam-search. Moreover,75

LogiGAN does not involve token-wise Monte Carlo Search for policy gradient estimation, and76

scoring processes of Generator and Verifier are decoupled, so that parallel score computation is77

possible. This makes large-scale pre-training with longer target length computationally feasible.78

To test the effectiveness of LogiGAN, we extensively experiment on 12 datasets requiring general79

reasoning ability. The apparent performance improvements of both base and large size PLMs across80

all tasks reveal models’ harvest of logic ability, shoring up the fundamental role of logic in general81

reasoning. We also carry out ablation studies to understand the functionality of LogiGAN components,82

the results of which shed light on the relative orthogonality between linguistic and logic ability and83

suggest that the facilitation effect of reflective thinking is also generalizable to machine learning.84

2 Logic Pre-training85

In this work, we primarily focus on improving PLMs’ ability of informal logic (Groarke, 2021). We86

include the three most classical types of logical reasoning: deductive, inductive, and abductive87

2We expand this analysis in-depth in App. A, and refer intrigued readers there.
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All men are mortal, and Socrates is a man.
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All men are mortal, and Socrates is a man.
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Figure 1: LogiGAN Overview. Generator targets to predict the masked-out logical statement and
scores candidate statements, while Verifier justifies the logical correctness of statements. The blue
path indicates the process where the Generator helps Verifier learning, while the yellow path denotes
the process of giving Verifier feedback for Generator training.

reasoning conducted in the form of natural language (Reichertz, 2004; Kennedy & Thornberg, 2018;88

Reichertz, 2007; Douven, 2021) in our consideration. Note that our coverage is broader than the89

informal logic strictly defined in the philosophy community (Munson, 1976) that primarily focuses on90

analyzing the soundness and cogency of the application of the aforementioned reasoning in real-life91

arguments. The other half of logic investigation – the theoretical study of formal or mathematical92

logic (typically conducted in a symbolic form), which usually deal with propositional logic (Buvac &93

Mason, 1993) (Smullyan, 1968), and fuzzy logic (Dote, 1995), is beyond the scope of this paper.94

Logic Indicators as Detection Heuristics. To set up an unsupervised pre-training aiming at improv-95

ing models’ logic ability, the very first step will be to identify logical reasoning phenomena from a96

vast-scale unstructured text corpus. While invocations of logic are not explicitly stated in most cases,97

writers’ usage of logic indicators usually marks their logical reasoning processes with high precision98

(Hurley, 1982), thereby serving as an ideal heuristic device for our detection purpose. We consider99

two standard types of logic indicators: (i) conclusion indicator such as “Therefore”, “We may infer100

that”, which denotes drawing conclusion deductively or inductively from given premises; And (ii)101

premise indicator such as “Due to”, “The reason that”, which denotes abductively hypothesizing102

premises that explain or provide evidence to some stated conclusions.103

Corpus Construction. For a text corpus, we detect every occurrence of pre-defined logic indicators104

(listed in App. C), and mask out (i.e., replace with [MASK]) the entire statement subsequent to105

the indicator (each training example will have exactly one masked-out statement). Then models’106

task will be to perform language modeling and predict the masked statement. We emphasize that107

statements are declarative sentences or declarative clauses, owning complete subject and predicate108

structures, and are capable of being factually true or false. To supply sufficient context information109

for these predictions, we keep x complete sentences previous to the [MASK], as well as y sentences110

after the [MASK], where x and y can be sampled from a geometric distribution with pre-defined111

hyper-parameters. Fig. 1 illustrates the input and output format, and we discuss details in Sec. 4.112

Masked Logical Statement Prediction. In the simplest setting, the Generator learns to infill the113

masked statement via a single-task pre-training, which fulfills the training process of a typical masked114

language modeling task. The only difference is that models no longer predict randomly masked115

tokens or spans but instead logic-targeted masked complete statements. Models are trained to116

perform Max Likelihood Estimation (MLE) for masked statements under a typical teacher forcing117

loss. Practically, generative pre-trained language models such as T5 (Raffel et al., 2020) could take118

up the position of Generator G. Given a single input context / output statement pair (c, s), the teacher119

forcing loss can be mathematically expressed as 3:120

Ltf (c, s) = − 1

T

T∑
t=1

log pGθ (wt(s) | w1:t−1(s); c) (1)

121

3wt(.) denotes the tth token of a input string.
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3 The Adversarial Training Framework122

Since Generators trained merely from recovering masked original statements miss out opportunities of123

exploring other reasonable statements, LogiGAN implements an adversarial mechanism for providing124

Generators with extra signals based on logical consistency between pseudo-statements (sampled from125

Eq. 3) and context to encourage explorations. The adversarial framework has two major components:126

(i) a Verifier V that learns to judge logical consistency between statements and context; (ii) a Generator127

G that learns both to recover masked original statements, and scores pseudo-statements (based on128

their generative likelihood) in a manner that could reach scoring consensus with the Verifier – The129

more logically consistent the Verifier thinks of a statement w.r.t. the input context, the more likely the130

Generator is expected to generate the statement under the input context (i.e., assign higher generative131

likelihood score). The overall objective of LogiGAN can be expressed as the minimax objective:132

JG∗.V∗
= min

θ
max

ϕ
Es+∼ptrue(.|c)[logVϕ(c, s

+)] + Es−∼pneg(.|Gθ,c,s
+)[log(1− Vϕ(c, s

−))]. (2)

where Gθ and Vϕ denote the Generator and the Verifier with model parameters θ and ϕ, respectively.133

s+/s− represents ground-truth statements from original text / sampled pseudo-statement 4. We134

discuss sampling details of pseudo-statements later in this section in Eq. 3.135

Classical GAN settings (Goodfellow et al., 2014; Zhu et al., 2017) fall short in sequential generation136

because the gradient propagation from the Verifier to the Generator is blocked by a non-differentiable137

beam-search during text generation. Previous approaches such as (Yu et al., 2017) address this chal-138

lenge by token-wise policy gradient estimation via Monte Carlo Search. However, since the sampling139

run-time grows exponentially with the length of the target sequence, their original implementations140

are not applicable to million-scale pre-training with relatively longer target length as in our scenario.141

Different from them, LogiGAN omits the token-wise Monte Carlo Search for policy gradient es-142

timation, and realizes a similar goal via measuring the similarity of scoring distributions between143

Verifier and Generator. The main procedures of LogiGAN can be summarized in four steps: (a)144

several candidate pseudo-statements are sampled on a sentence level; (b) the Verifier assigns the145

logical consistency scores Vscore based on how logical consistent these candidates are w.r.t the146

original context; (c) the Generator assigns the sentence-level generative likelihood score Gscore to147

each candidate to reflect how likely it will produce the pseudo-statement under the given context.148

(d) The similarity between Generator and Verifier score distributions is computed as a new signal149

to encourage the Generator to reach scoring consensus with the Verifier – i.e., the more logically150

consistent the Verifier thinks of the statement, the higher likelihood score the Generator is expected151

to assign. Since both scoring processes are continuous, the non-differentiable barrier is successfully152

bypassed. Meanwhile, this design does not involve sequential token-level sampling and decouples the153

Generator and Verifier scoring processes, thereby enabling parallel score computations. This makes154

large-scale pre-training with relatively longer target sequence length computationally feasible.155

The overall framework overview is illustrated in Fig. 1, and the detailed training procedure is156

summarized in Algorithm 1. To diversify the candidate pseudo-statements, we sample pseudo-157

statements from two sources: (i) self-sampling via diversified beam-search from the Generator; or (ii)158

retrieving similar statements from the corpus, and the sampling process can be summarized as:159

pneg(. | Gθ, c, s+) = {sα ∼ Gθ(. | c) ∪ sβ ∼ R(s+)}, (3)

where Gθ(. | c) denotes self-sampled statement sα given context c from Generator Gθ, and R(s+)160

denotes a retriever5 that retrieves textually similar statements sβ with ground-truth statement s+ from161

the corpus. Note that this process is conducted separately for the corpus of Verifier and Generator.162

3.1 Training of Verifier163

The Verifier serves as a critic to judge whether a statement is logically consistent w.r.t. the context.164

Therefore, the training task of Verifier can be viewed as a binary classification problem. Pre-trained165

language models that could perform discriminative classification tasks such as BERT (Devlin et al.,166

2018), ALBERT (Lan et al., 2019), and RoBERTa (Liu et al., 2019), will be suitable for the role of167

4Note: in real practice, there is a gap between sampled pseudo-statements s− and logically inconsistent
statements. We keep current symbolic denotations for simplicity only and discuss this issue in App. B.

5Any retriever is feasible and we adopt BM25 as the retrieving method here.
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Algorithm 1: Adversarial Training Process
Dependencies :(1) A Pre-trained Generative Language Model as Generator G0

(2) A Pre-trained Discriminative Language Model as Verifier V0
(3) Generator Source Training Coprus CG with size M
(4) Verifier Source Training Corpus CV with size N
(5) Pre-defined Warmup epochs E, max iterations of GAN training Q
(6) Pre-defined training sample size m, n for V , G per iteration

1 Random partition CG into CGα
, CGβ

with size Mα, Mβ ;
2 G0←Warmup Gα on CG0 for E epochs with Ltf ;
3 for i in 1:Q do
4 Gi ← Gi−1;
5 CV i, CG i ← Sample m examples from CV , and n examples from CGβ

, w/o replacement;
6 C̃V i, C̃G i ← Sample pseudo-statements for CV i, CG i with Gi and BM25, as in Eq. 3;
7 Vi ← Train Vi−1 on C̃V i for 1 epoch with Lver, as in Eq. 4; (Verifier Training)
8 for c̃ in batch ( C̃G i ) do
9 Vscore,Gscore ← Vi, Gi do scoring on c̃, as in Eq. 5 and 6;

10 Lgen ← λ1 Ltf (s
+ from c̃) + λ2 DKL(Vscore || Gscore) , as in Eq. 7;

11 Gi ← Update Gi for 1 step with Lgen; (Generator Training)
12 end
13 end

Verifier. With y = 1 for both ground-truth and logically consistent pseudo-statements, and y = 0168

for other pseudo-statements, the binary classification loss for a single pair of context/statement/label169

(c, s, y) of Verifier can be mathematically expressed as (omitting average):170

Lver(c, s, y) = −y logVϕ(y | [c; s])− (1− y) log(1− Vϕ(y | [c; s])), (4)

3.2 Training of Generator171

The Generator targets both to recover the original masked statements, and to score pseudo-statements172

based on their generative likelihood in a manner that could reach sentence-level scoring consensus173

with the Verifier. This corresponds to the two sources of learning signals received by the Generator:174

(i) the original generative objective with teacher forcing loss defined in Eq.1 as a signal; and (ii)175

the distribution similarity between sentence-level generative likelihood score assigned by Generator176

and logic consistency score assigned by Verifier. To achieve the goal of (ii), we first sample pseudo-177

statements {s−1 , ..., s−n } from pneg(. | Gθ, c, s+). Then the Verifier assigns logical consistency score178

Vscore based on how logically consistent the pseudo-statements are w.r.t. the context, expressed as:179

Vscore(c; s
−
1 , ..., s

−
n ) = [Vϕ(s−1 , c); Vϕ(s

−
2 , c); ...; Vϕ(s−n , c)], (5)

After this, the Generator assigns a sentence-level generative likelihood score Gscore for each pseudo-180

statement to reflect how likely the pseudo-statement will be produced under the given context:181

182

Gscore(c; s
−
1 , ..., s

−
n ) = [ℓθ(s

−
1 | c); ℓθ(s

−
2 | c); ...; ℓθ(s−n | c)], (6)

where ℓθ(s | c) is the accumulated log-likelihood of the statement s conditioned on the context c.183

Afterward, each statement with a high Verifier score Vϕ(s, c) is also expected to receive a high184

generative score ℓθ(s | c) to facilitate the Generator’s capturing of the Verifier’s judgment criterion185

based on logic consistency. KL-divergence (Kullback & Leibler, 1951) DKL is therefore a appropriate186

measure for the similarity between the score distribution of Vscore and Gscore. For the purpose of187

smoothing the gradient to stabilize the GAN training process, we gather both the ground-truth188

(learned with teacher-forcing loss) and pseudo statements (learned with KL loss) inside the same189

batch w.r.t. a single input context c. In our case, there is exactly one ground-truth statement and n190

pseudo-statements for each input context c. For a batch of (c; s+, s−1 , ..., s
−
n ), the overall objective of191

the Generator is defined as (in App. F we show how Eq. 7 commits to the optimization of Eq. 2):192

Lgen(c; s
+, s−1 , ..., s

−
n ) = λ1 Ltf (c, s

+) + λ2 DKL(Vscore(s
−
1 , ..., s

−
n )) || Gscore(s

−
1 , ..., s

−
n ). (7)
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Figure 2: Corpus statistics. Histograms on the left side display length of masked statements (bottom)
and prev-and-post statement context (top). The right-side pie chart displays indicators’ distribution.

4 Experiment Setup193

4.1 Datasets194

To test the effectiveness of LogiGAN, we extensively experiment on 12 datasets requiring reasoning195

via natural language. Specifically, ReClor (Yu et al., 2020), LogiQA (Liu et al., 2021a), Adversarial196

NLI - ANLI, (Nie et al., 2019), focuses especially on logical reasoning, TellMeWhy (Lal et al., 2021)197

on abuductive reasoning, HotpotQA (Yang et al., 2018a) on multi-hop reasoning, QuoRef (Dasigi198

et al., 2019) on reasoing with co-reference resolution, MuTual (Cui et al., 2020), DREAM (Sun et al.,199

2019)), SAMSum (Gliwa et al., 2019) on reasoning in conversational scenarios, and NarrativeQA200

(s Koˇ ciský et al., 2018), RACE (Lai et al., 2017), XSum (Narayan et al., 2018) on general verbal201

reasoning. These datasets make most, if not all, necessary premises for drawing logically consistent202

conclusions available in their provided context, and require few external premises like commonsense203

or numerical knowledge. Hence, they fit nicely for testing our hypothesis that LogiGAN brings PLMs204

logic ability beyond their intrinsic linguistic ability, which could benefit general reasoning processes.205

4.2 Pre-training Corpus206

We apply the corpus construction methodology (§ 2) on the widely used BookCorpus (Kobayashi,207

2018), which consists of e-books and movies with topics crawled from general domains. Although208

some corpus featuring debates and arguments (Walker et al., 2012; Abbott et al., 2016; Swanson et al.,209

2015) appears to be more suitable for our emphasis on logic, we do not elect them due to their high210

domain specificity in fields such as politics, law, and economics. We discard overly short statements211

and instances where indicators do not indicate logical reasoning (e.g., “since 2010” indicating a212

time point rather than premises, “so happy” indicating degree of the subsequent adjective rather213

than conclusions). This results in 3.14 million (1.43 and 1.71 million from conclusion and premise214

indicators, respectively) instances. Corpus statistics are visualized in Fig. 2.215

4.3 Models216

Baseline Choice. Since our primary goal of the experiment is to test the effectiveness of LogiGAN217

and test our hypothesis that logic ability can be further enhanced beyond PLMs’ intrinsic linguistic218

ability, we only compare models pre-trained with LogiGAN against their vanilla versions. After219

LogiGAN pre-training, we discard the auxiliary Verifier (discussed in Sec. 6) and employ the220

Generator only to solve all downstream tasks in a purely end-to-end manner. For our main experiments,221

we initialize Generators from both base and large size pre-trained T5 (Raffel et al., 2020), and Verifier222

from pre-trained ALBERT-large (Lan et al., 2019). We leave discussions of the rest implementation223

details and hyper-parameter settings of pre-training and downstream fine-tuning in Appendix D.224
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Elastic Search vs. Self Sampling. As stated earlier in section 3.2, candidate pseudo-statements225

have two possible sources – they could either be sampled via beam search from the Generator’s self-226

distribution, or could be retrieved from some external resources. We carry out two variant versions227

of LogiGAN whose Generator is trained purely from self-sampled sentences as pseudo-statements228

(LogiGAN base(ss)), and from extra pseudo-statements retrieved from corpus by Elastic Search229

Gormley & Tong (2015) (LogiGAN base(ss+es)). For the large model, we use LogiGAN large (es+ss)230

as default. Our database consists of 3.14 million sentences discovered by the corpus construction231

process, and we keep the top-5 similar retrieved sentences along with self-samples from Generator.232

5 Experiments233

5.1 Experimental Results234

Table 1: Main results of LogiGAN on 12 downstream tasks (development sets).

Multiple Choice & Classification Datasets

Models / Dataset ReClor LogiQA RACE DREAM ANLI MuTual Avg.
Metrics Acc Acc Acc Acc Acc Acc

Vanilla T5 base 35.20 27.19 63.89 59.36 44.10 67.38 49.52
LogiGAN base (ss) 40.20 34.72 67.13 63.38 49.50 69.41 54.06

LogiGAN base (ss+es) 40.00 37.02 67.27 63.73 49.70 69.98 54.62

Vanilla T5 large 50.40 38.56 78.99 78.98 58.00 76.41 63.56
LogiGAN large 54.80 40.55 80.67 81.42 63.50 77.88 66.47

Generation Datasets

Models / Dataset QuoRef HotpotQA NarrativeQA TellMeWhy SAMSum XSum Avg.
Metrics EM / F1 EM / F1 RougeL RougeL RougeL RougeL

Vanilla T5 base 70.76 / 74.58 61.11 / 74.86 48.11 30.03 39.32 29.14 36.65
LogiGAN base (ss) 75.02 / 78.68 62.68 / 76.14 49.44 31.18 39.92 30.26 37.70

LogiGAN base (ss+es) 74.94 / 78.40 62.80 / 76.18 49.46 31.15 40.21 30.27 37.77

Vanilla T5 large 80.06 / 83.25 66.11 / 79.80 51.09 31.42 41.40 31.58 38.87
LogiGAN large 81.92 / 85.25 67.04 / 80.36 51.79 32.72 43.13 33.49 40.28

As presented in Table 1, both base and large size PLMs further pre-trained with LogiGAN surpass235

their vanilla baselines across both discriminative and generative task formats, through a wide scope236

of downstream tasks requiring general reasoning abilities. We can make the following observations:237

Among all observed improvements, those on tasks with particular emphasis on logic (ReClor, LogiQA,238

and ANLI) are most noticeable. These positive results manifest the effectiveness of LogiGAN in239

injecting logic ability into PLMs, while testifying to our primary hypothesis that logic ability is240

fundamental to general reasoning as well. This conclusion answers the two questions in the intro241

section 6, suggesting that randomized MLM pre-training might fall short in endowing language242

models with logic ability, and a logic-targeted pre-training approach like LogiGAN may further243

assist logic learning beyond language acquisition. Furthermore, extra retrieved pseudo-statements244

(ss+es) bring some additional performance improvement compared with the pure self-sampling (ss)245

LogiGAN variant, revealing the important role of pseudo-statements’ diversity in adversarial training.246

5.2 Ablation Study and Analysis247

Observing the apparent performance enhancement, we now aim at pinpointing the truly functional248

components of LogiGAN through ablation studies and deriving the origins of observed improvements.249

For fair comparison purposes, we hold all pre-training and downstream settings (including hyper-250

parameters, implementation designs, and evaluations) unchanged from full LogiGAN. All variations251

are initialized from T5base, and we report performance variance on 7 datasets.252

I. Random Masked Sentence Prediction Pre-training. To explain the observed improvements, our253

first hypothesis is: Models harvest extra linguistic ability from masked statement prediction compared254

with masked token (or span) prediction. Quite intuitively, filling entire sentences with complete255

subject-predicate structures might put additional demands on models to capture more abundant256

syntactic information beyond the coverage of masked token (or span) prediction. Since LogiGAN257

involves recovering masked sentences, it is then necessary to determine to what degree, if any, that258

6Is logic ability obtained for free from MLM? Could it be further learned beyond language acquisition?
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Table 2: Ablation Results on 7 datasets. The last column shows average performance variance, along
with relative percentage improvement against vanilla T5base as the baseline.

Models / Dataset ReClor LogiQA RACE DREAM ANLI QuoRef NarrativeQA —
Metrics Acc Acc Acc Acc Acc EM / F1 RougeL Average

Vanilla T5 base 35.20 27.19 63.89 59.36 44.10 70.76 / 74.58 48.11 49.80(+0.0%)

LogiGAN base (ss+es) 40.00 37.02 67.27 63.73 49.70 74.94 / 78.40 49.46 54.59(+9.6%)

I. Random Sentence 36.00 30.56 61.26 58.15 45.40 70.96 / 74.50 48.38 50.10(+0.6%)

II. MLE Logic Pre-train 38.80 35.02 64.55 61.71 46.00 73.61 / 76.96 49.30 52.71(+5.9%)

III. Iterative Multi-task 37.20 34.25 64.01 62.06 46.20 71.67 / 75.14 49.15 52.08(+4.6%)

the observed performance gain is attributable to models’ plausible linguistic ability improvement. We259

therefore carry out a variant pre-training where the prediction objects are randomly masked sentence.260

Results (shown in Table 2) displays that masked sentence prediction training barely brings im-261

provement against the vanilla baseline. This suggests it is unlikely that masked sentence prediction262

empowers PLM trained from masked token prediction significantly better linguistic ability, nor likely263

that the extra pre-training corpus per se significantly raises the performance. Therefore, we reject the264

first hypothesis and conclude that observed improvements should derive from somewhere else.265

II. MLE-only Logic Pre-training. Our second hypothesis is that logic-guided masked statement266

prediction enhances models’ intrinsic ability of logical reasoning, thereby lifting the downstream267

performance. Having addressed the potential impact of learning randomized complete sentence268

generation, we next aim to check how learning logic-targeted statement generation affects models’269

behavior. We ablate the entire adversarial training process, and train models to perform maximum270

likelihood estimation (MLE) with teacher-forcing loss only on masked-out logical statements.271

Results 2 of MLE-only logic pre-training reveals quite a notable improvement across almost all272

datasets against both vanilla baseline and I., suggesting that learning to generate logical statements273

indeed injects extra abilities into the model. Since results of I. eliminate the possibility that models274

harvest stronger linguistic abilities from complete sentence prediction, it is safe to partially ascribe275

the better downstream performance to models’ enhanced ability in modeling logical reasoning.276

This reveals the relative orthogonality between logic ability and models’ inherent linguistic ability,277

suggesting that logic ability could be enhanced through further logic-targeted pre-training.278

III. Iterative Multi-task Pre-training. Since II. only partially explains the observed improvements,279

here is our last hypothesis: the adversarial training procedure of LogiGAN explains the unexplained280

rest part beyond the coverage of II. Here a multi-task pre-training with both generation and verification281

tasks will be the most natural intermediate setting between the single-model generation-only setting282

of II. and LogiGAN’s dual-model adversarial setting. However, since the verification task relies on283

Generator’s self-sampled statements, we adopt an iterative self-critic pre-training manner following284

Nijkamp et al. (2021). Unlike typical multi-tasking training that simultaneously carries different tasks285

and then sums the losses, our generation and verification tasks happen alternately 7.286

Surprisingly, the iterative multi-task pre-training barely brings any positive effects to models’ down-287

stream performance compared with II. One possible explanation for this might be that the drastically288

different mechanisms between the verification and generations task intervene with each other, making289

the single-model & multi-task setting non-beneficial. Now that we have confirmed that an extra290

verification task fails to explain the rest improvement, we can accept our final hypothesis and conclude291

that it is indeed the adversarial mechanism between the Generator and Verifier that truly facilitate292

learning of logical reasoning, thereby further improving the downstream performance beyond II.293

6 Discussion294

Adversarial Training Might Assist Downstream Generation Tasks. Although in our experi-295

ments, we discard the Verifier and solve downstream tasks with the Generator only, some previous296

works (Shen et al., 2021; Cobbe et al., 2021) reveal that the Verifier can be used for ranking multiple297

generation results, thereby effectively enhancing overall downstream accuracy. However, in their298

paradigm, the information propagates unidirectionally from the Generator to the Verifier, and the299

Generator cannot directly benefit from the Verifier’s discriminative feedback. In contrast, our Logi-300

7Verification is formulated as a generation task – model outputs natural language token “good” and “bad”.
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GAN adversarial training paradigm surmounts the non-differentiable obstacle and could potentially301

enlighten a new paradigm of both pre-training and downstream fine-tuning.302

Improving Logical Pre-training. Our paper demonstrates that PLMs’ logic ability can be further303

enhanced beyond their inherent linguistic ability, and adversarial training may bring extra benefits304

beyond the learning of logic-targeted masked statement prediction. However, our heuristic-based305

approach to identifying logical phenomena in a text corpus and the single mask prediction setting306

can be further improved. Logic recognition methods with higher recall and better unsupervised307

task designs (e.g., logical indicator prediction, or logic-guided sentence shuffling) are worthwhile to308

explore in the further work. Besides, since we are adopting a general domain pre-training corpus (i.e.,309

BookCorpus) with bare emphasis on logic, understanding the impacts of extending pre-training to the310

domain-specific corpus (e.g., law corpus) or others emphasizing logical reasoning is also substantial.311

7 Related Works312

Generative Adversarial Training in NLP. Unlike conventional GAN (Goodfellow et al., 2014;313

Mirza & Osindero, 2014; Zhu et al., 2017) that generates continuous output such as images, sequential314

GAN generates discrete sequences via non-differential searches. This makes feedback from the315

discriminator not propagatable to the generator. To tackle this challenge, SeqGAN (Yu et al., 2017)316

borrows an idea from reinforcement learning, treating each output token as a single action, and317

estimates token-wise policy gradient via Monte Carlo search. RankGAN (Lin et al., 2017) adopts a318

similar approach but breaks the binary-classification assumption of discriminator task design, and a319

ranker provides feedback to the generator. Their generator attempts to generate verisimilar sentences320

to deceive the ranker into ranking synthetic sentences higher over multiple human-written ones. In321

our scenario, however, the gold ranking is hard to determine because measuring which statements are322

more logically consistent w.r.t. context than others is non-trivial, and multi-gold cases are possible.323

While successfully enabling communication between generator and discriminator, the original designs324

of SeqGAN, RankGAN, as well as other works such as (Rekabdar et al., 2019; Fedus et al., 2018;325

Caccia et al., 2018; Guo et al., 2017), generally formulate text generation as a sequential action326

decision problem, thereby involving heavy sampling for policy gradient estimation, and are sensitive327

to the length of the target sequence. Since large-scale pre-training (with arbitrary target length) puts328

a high demand on scalability and computational efficiency, the above approaches are not readily329

applicable in our scenario. Furthermore, previous work leverages adversarial training to improve330

qualities of generated examples, whereas our focus is on enhancing models’ intrinsic logic ability.331

A recent work, AR2 (Zhang et al., 2021), leverages adversarial training to improve dense document332

retrieval. With a retriever-ranker architecture, the learning objective of retriever is to maximize333

the agreeableness between its own score assignment and that of the ranker for input documents.334

This is conceptually similar to LogiGAN, as our Generator also aims at reaching consensus with335

Verifier. However, AR2 does not fall into the sequential GAN paradigm, since it does not involve any336

sequential text generation, and there is no non-differentiable barrier between the retriever and ranker.337

Pre-training for Reasoning Ability Improvement. Previous works have extensively investigated338

the possibility of injecting specific type of reasoning via pre-training, such as numerical (Pi et al.,339

2022; Geva et al., 2020; Yoran et al., 2021), commonsense (Tamborrino et al., 2020; Staliunaite et al.,340

2021; Zhong et al., 2019), formal logic (Wang et al., 2021; Pi et al., 2022), multi-hop (Deng et al.,341

2021; Zhong et al., 2022), and tabular (Liu et al., 2021b) reasoning. Different from them, LogiGAN342

focuses on logic reasoning, which plays a fundamental role in general reasoning via natural language.343

8 Conclusion344

In this work, we hypothesize that (i) logic ability plays a key role in a wide scope of tasks requiring345

general reasoning; and (ii) PLMs’ logic ability can be further improved beyond their original linguistic346

ability. We correspondingly propose LogiGAN, an unsupervised adversarial pre-training framework347

for logical reasoning enhancement. LogiGAN circumvents the non-differentiable challenge of348

sequential GAN via a novel Generator-Verifier scoring consensus mechanism, and enables large-349

scale pre-training with longer target length. Extensive experiments and ablation studies reveal the350

effectiveness and functional components of LogiGAN, providing evidence to our major hypothesis.351
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