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ABSTRACT

Source code summarization aims to generate natural language summaries from
structured code snippets for better understanding code functionalities. Recent works
attempt to encode programs into graphs for learning program semantics and yield
promising results. However, these methods only use simple code representations
(e.g., AST), which limits the capability of learning the rich semantics for complex
programs. Furthermore, these models primarily rely on graph-based message
passing, which only captures local neighborhood relations. To this end, in this
paper, we combine diverse representations of the source code (i.e., AST, CFG
and PDG) into a joint code property graph. To better learn semantics from the
joint graph, we propose a retrieval-augmented mechanism to augment source code
semantics with external knowledge. Furthermore, we propose a novel attention-
based dynamic graph to capture global interactions among nodes in the static
graph and followed a hybrid message passing GNN to incorporate both static and
dynamic graph. To evaluate our proposed approach, we release a new challenging
benchmark, crawled from 200+ diversified large-scale open-source C projects
(total 95k functions in the dataset). Our method achieves the state-of-the-art
performance, improving existing methods by 1.66, 2.38 and 2.22 in terms of
BLEU-4, ROUGE-L and METEOR metrics.

1 INTRODUCTION

With software growing in size and complexity, developers tend to spend nearly 90% Wan et al. (2018)
effort on software maintenance (e.g., version iteration and bug fix) in the completed life cycle of
software development. Source code summary, in the form of natural language, plays a critical role in
comprehension and maintenance process and greatly reduces the effort of reading and comprehending
programs. However, manually writing code summaries is tedious and time-consuming, and with the
acceleration of software iteration, it has become a heavy burden for software developers. Hence,
source code summarization which automates concise descriptions of programs is meaningful.

Automatic source code summarization is a crucial yet far from settled problem. The key challenge
is to learn the complex semantics from the source code. Conventionally, information retrieval (IR)
techniques have been widely used in code summarization Eddy et al. (2013); Haiduc et al. (2010);
Wong et al. (2015; 2013). Since code duplication Kamiya et al. (2002); Li et al. (2006) is common
in “big code” Allamanis et al. (2018), early works summarize the new programs by retrieving the
code snippet that is very similar with one of the existing code database, in which the summaries of
the source code are known. The retrieval-based approaches may achieve promising performance on
similar programs, but are limited in utility and generalization, i.e., they have poorer performance
on programs that are very different from the code database. Furthermore, these approaches utilize
text similarity matching, which may only capture simple semantics. To improve the generalization
performance, some works explore Seq2Seq architectures Bahdanau et al. (2014); Luong et al. (2015)
for summarization. These Seq2Seq-based approaches Iyer et al. (2016); Hu et al. (2018a); Alon
et al. (2018) usually treat the source code or abstract syntax tree (AST) parsed from programs as
a sequence and follow a paradigm of encoder-decoder with attention mechanism for generating a
summary. However, these works rely on sequential models, struggling to capture the rich semantics
of source code due to the complex control dependencies and data dependencies.
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Figure 1: The framework of our FusionGNN. Best viewed in color.

To better learn the semantics of the source code, Allamanis et al. Allamanis et al. (2017) lighted up
this field by representing programs as graphs. Some follow-up works LeClair et al. (2020); Fernandes
et al. (2018) attempted to encode code semantics into code graphs with graph neural networks (GNNs),
and achieved the state-of-the-art performance. However, existing graph-based approaches still have
the following limitations: 1) existing methods mainly use simple representations e.g., AST, to encode
semantics for GNNs. Although GNN-based techniques could improve the effectiveness than the
Seq2Seq model, it is still hard to learn full semantics of the program with the simple representation.
One way is to add more semantic knowledge to the graph by combining multiple representations,
e.g., control flow graph (CFG), program dependency graph (PDG) and AST. However, effectively
combining such representations is challenging. 2) Existing works Allamanis et al. (2017); Fernandes
et al. (2018); LeClair et al. (2020) convert code into graph-structured input during preprocessing,
and directly consume it via modern neural networks (e.g., GNNs) for computing node and graph
embeddings. However, most GNN-based encoders only allow message passing among nodes within
a k-hop neighborhood (where k is usually a small number), thus capture only local neighborhood
information and ignore global interactions among nodes. This might limit their model capacity of
fully encoding the source code semantics, especially for a large and complex program.

To address these challenges, we propose a framework for automatic code summarization via multi-
dimensional semantic fusing in GNN, namely FusionGNN. Specifically, to learn comprehensive code
semantics, we construct a joint code property graph (CPG) combining diverse program representations
e.g., AST, CFG and PDG. To better fuse the semantics of these representations, we construct a static
graph by leveraging a novel retrieval-augmented mechanism to augment source code semantics with
the injected retrieved semantics into CPG. In order to capture global relations in the program, we
further propose an attention-based dynamic graph by learning global attention scores (i.e., edge
weights) in the aforementioned static graph. Then, a hybrid message passing GNN is performed on
both static and dynamic graphs. Last, we release a new code summarization benchmark by crawling
data from 200+ popular and diversified libraries in C/C++ programming language and make it public
at c-c. Our main contributions are as follows:

• We propose to fuse diverse program representations (i.e., AST, CFG, PDG) into a joint graph with
a novel retrieval-augmented mechanism for better encoding code semantics.

• We innovate a hybrid message passing GNN performed on both static graph (based on code
property graph) and dynamic graph (via structure-aware global attention mechanism).

• We release a new challenging benchmark for the task of source code summarization.

• Our proposed model is end-to-end trainable, achieves the state-of-the-art performance and improves
existing approaches by 1.66, 2.38 and 2.22 in terms of BLEU-4, ROUGE-L and METEOR metrics.
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2 FusionGNN FRAMEWORK

In this section, we introduce our proposed FusionGNN framework, as shown in Figure 1, which
mainly includes four components: 1) Semantic-based Graph Construction, which encodes the source
code of a function into a code property graph with a novel semantic-augmented mechanism by
retrieving the similar code in the retrieval code database to augment code semantics. 2) Attention-
based Dynamic Graph Construction, which dynamically constructs a graph to capture the global
relations among nodes. 3) Hybrid Message Passing (HMP)-GNN Encoder, which fuses the messages
from the constructed semantic-based graph and attention-based graph to learn comprehensive code
semantics. 4) Decoder, which utilizes an attention-based BiLSTM to generate a summary.

2.1 PROBLEM FORMULATION

In this work, we focus on generating summaries for functions Wan et al. (2018); Zhang et al. (2020).
We define a dataset as D = {(c, s)|c ∈ C, s ∈ S}, where c is a source code in the function set
C, s represents its targeted summary in S. The task of code summarization is to generate the best
summary consisting of a sequence of tokens with T length Ŝ = {s1, s2, ..., sT } which maximize the
conditional likelihood Ŝ = argmaxSP (S|C).

2.2 SEMANTIC-BASED STATIC GRAPH CONSTRUCTION

2.2.1 CODE PROPERTY GRAPH

We leverage the Code Property Graph (CPG) Yamaguchi et al. (2014) to combine diverse graph
representations (i.e., AST, CFG, and PDG) into a single graph structure. Thus, CPG could capture
comprehensive semantics of a program from different perspectives. For more details on CPG with a
simple example, please refer to Appendix A. Here we describe each representation briefly as follows:

• Abstract Syntax Tree (AST). AST is a representation of the abstract syntactic structure of source
code, which omits irrelevant details that have no effect on the semantics. Each node in AST is
constituted by node type i.e., identifier, callee and the subsequence i.e., “a++” from the source
code “int b = a++”.

• Control Flow Graph (CFG). Compared with AST highlighting the syntactic structure, CFG
displays statement execution order, i.e., the possible order in which statements may be executed
and the conditions that must be met for this to happen. Each statement in the program is treated as
an independent node as well as a designated entry and exit node. Based on the keywords if, for,
goto, break and continue, control flow graphs can be easily built and “Flow to ” edge describes this
flow order between statements.

• Program Dependency Graph (PDG). PDG includes data dependencies and control dependen-
cies: 1) data dependencies are described as the definition of a variable in a statement reaches the
usage of the same variable at another statement. For example, a variable “b” is defined in the
statement “int b = a++” and used in “call (b)”. Hence, there is a “Reach” edge points from “int
b = a++” to “call (b)”. Furthermore, “Define/Use” edge denotes the definition and usage of the
variable. 2) different from CFG displaying the execution process of the complete program, control
dependencies define the execution of a statement may be dependent on the value of a predicate. For
instance, suppose there are two statements “int b = a++” and “call (b)” that are only performed
when “a” is even. Then, a “Control” edge points from “if (a % 2) == 0” to “int b = a++” and
“call (b)”.

Formally, one raw function c could be represented by a multi-edged CPG g(V,A). Let m be the total
number of nodes in V , A ∈ {0, 1}k×m×m is the adjacency matrix, where k is the total number of
edge types. An element aei,j ∈ A equal to 1 indicates that node vi, vj is connected via an edge of
type e, and 0 otherwise.

2.2.2 NODE INITIALIZATION REPRESENTATION

The nodes in CPG are represented by node type and their subsequences. To better capture the
dependency in the subsequence, we utilize a BiLSTM to initialize the node. We first embed the node
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type into label embedding, i.e., each node type is assigned a unique integer htype. Then a BiLSTM
is used to encode the subsequence within the node. Specifically, for a node v ∈ V , its subsequence is
defined as Sv = {sv,1, sv,2, ..., sv,l} where l is the length of sequence. Each sv,i is embedded with a
learnt embedding matrix E and we use a BiLSTM to encode Sv to get the final states hseq. Finally,
we concatenate node type representation with sequence representation and employ a linear projection
to represent node feature hv . The initial node feature hv ∈H can be expressed as follows:

hv,1, ...,hv,l = BiLSTM(Ev,1, ...,Ev,l) hseq = [h→v,1;h
←
v,l] hv = linear(concat[htype;hseq]) (1)

By node initialization, g(V,A) can be expressed as g(V,H,A), where H ∈ Rm×d is the initial
node feature matrix and each vertex v in V is represented by a d-dim real-valued vector hv ∈ Rd.

2.2.3 SEMANTIC-AUGMENTED MECHANISM

Suppose there is a CPG g(Vc,Hc,Ac) of source code c, our goal is to learn a function f to generate
s = f(g(Vc,Hc,Ac)), however, due to the complexity of learning code semantics, f is hard to learn.
Our novel semantic-augmented mechanism is motivated that for another known code-summary pair
(c′, s′) satisfies s′ = f(g(Vc′ ,Hc′ ,Ac′)), where c and c′ are similar. A simple linear transformation
can be performed s = f(g(Vc,Hc,Ac))− f(g(Vc′ ,Hc′ ,Ac′)) + s′. Compared to learn f directly
from g(Vc,Hc,Ac) to s, if we can make full use of f(g(Vc′ ,Hc′ ,Ac′)) and s′, it can be regraded as
a well supplementary for original c to learn the comprehensive semantics. Based on this, our novel
semantic-augmented mechanism is performed with three steps:

Step 1: Code Retriever. For each training sample (c, s) ∈ D, we retrieve the most similar sample:
(c′, s′) = argmax(c′,s′)∈D′cos_sim(c, c′), where c 6= c′, D′ is a given retrieval database and
cos_sim(c, c′) is the cosine similarity function. Following Liu et al. Liu et al. (2018), we treat the
raw source code c as a “bag of words” (BOW) vector and calculate the cosine similarity between the
source code c and the retrieved code c′ (i.e., cos_sim(c, c′) ).

Step 2: Complementary Graph. After retrieving the source code c′ for the training sample c, we
get their corresponding CPGs g(Vc,Hc,Ac) and g(Vc′ ,Hc′ ,Ac′). Then we build a complementary
graph by injecting the retrieved graph into the graph of the training sample.

• To capture the relevance between the two graphs, we design an attention function, which computes
the attention score matrix Ai,j for each pair of nodes vi ∈ Vc and vj ∈ Vc′ :

A ∝ exp(ReLU(WHc)ReLU(WHc′)
T ) (2)

where W ∈ Rd×d are weight matrices with d-dim size and ReLU is the rectified linear unit.
• Multiply the attention matrix A with the retrieved node representation Hc′ to inject retrieved node

features into Hc:
H ′c = zAHc′ (3)

where z = cos_sim(c, c′) is the similarity score, which is introduced to weaken the negative
impact of c′ on c, i.e., when the similarity of c and c′ is slow.

• Finally, we merge H ′c to the original Hc to get the final node representation.

comp = WcHc +W ′
cH
′
c (4)

where Wc,W
′
c ∈ Rd×d are weight matrices and comp is the semantic-augmented node represen-

tation, namely semantic-based static graph.

Step 3: Retrieved Summary Encoder. The retrieved summary (i.e., s′) may have a semantic overlap
with the targeted summary, especially when c and c′ are similar. Inspired by the existing work Yang
et al. (2019), we further encode the semantics of s′ with a BiLSTM model i.e., {hs′i

,∀s′i ∈ s′} and
fuse with the graph encoding results (i.e., the outputs of the GNN encoder) for the decoder, as shown
in Figure 1.

2.3 ATTENTION-BASED DYNAMIC GRAPH CONSTRUCTION

Due to that GNN-based encoders usually consider the k-hop neighborhood, the global relation among
nodes in the static graph (see Section 2.2) may be ignored. In order to better capture the global
semantics of source code, based on the static graph, we propose to dynamically construct a graph via
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structure-aware global attention mechanism, which allows message passing among any pair of nodes.
We expect this attention-based dynamic graph can better capture the global dependency among nodes,
and thus supplement the static graph.

Structure-aware Global Attention. The construction of the dynamic graph is motivated by the
structure-aware self-attention mechanism proposed in Zhu et al. (2019). Given the static graph,
we compute a corresponding dense adjacency matrix A based on a novel structure-aware global
attention mechanism and the constructed graph namely attention-based dynamic graph. Unlike
regular self-attention mechanisms, we consider not only the node semantics but also the edges in
the static graph when computing attention scores between any pair of nodes. We assume that the
static graph contains useful structure information which could be utilized for computing the global
relationship among nodes.

Ai,j =
ReLU(hiW

Q)(ReLU(hjW
K) + ReLU(eijW

R))√
d

(5)

where hi,hj ∈ comp are the node representation for any node pair (vi, vj), eij ∈ Rde is the con-
nected edge representation and WQ,WK ∈ Rd×d, WR ∈ Rde×d are parameter matrices. We also
separate two normalized adjacency matrices Aa and A` from A according to the incoming/outgoing
directions. The dynamic graph Aa, A` will be used to compute dynamic message passing (see
Section 2.4).

Aa = softmax(A) A` = softmax(AT ) (6)

2.4 HYBRID MESSAGE FUSION

To better incorporate the information of the static graph and the dynamic graph, we propose a novel
Hybrid Message Passing GNN (HMP-GNN), which are performed on both semantic-based static
graph and attention-based dynamic graph.

Static Message Passing. Since the semantics-based static graph is a directed and unweighted graph,
we opt to employ a bidirectional message passing GNN Chen et al. (2019) to encode the graph.
Specifically, for every node v at each computation hop k, where h0

v ∈ comp, we apply a simple mean
aggregation function that takes as input a set of incoming/outgoing neighboring node embeddings
computed from the previous hop, and outputs a backward/forward aggregated vector hk

Na(v)
/ hk
N`(v)

.
Then we fuse the above two aggregated vectors via a fusion function.

hk
Na(v)

= SUM({hk−1
u + ev,u,∀u ∈ Na(v)}) hk

N`(v)
= SUM({hk−1

u + ev,u,∀u ∈ N`(v)})

hk
sta = Fuse(hk

Na(v)
,hk
N`(v)

)

(7)
Here the fusion function is designed as a gated sum of two inputs.

Fuse(a,b) = z � a+ (1− z)� b z = σ(Wz[a; b;a� b;a− b] + bz) (8)

where � is the component-wise multiplication, σ is a sigmoid function and z is a gating vector.

Dynamic Message Passing. The node and edge information is propagated on the attention-based
dynamic graph with the normalization adjacency matrices Aa and A`, defined as

hk
va =

m∑
j=1

Aav,j(h
k−1
j W V + ev,jW

F ) hk
v` =

m∑
j=1

A`v,j(h
k−1
j W V + ev,jW

F ) (9)

where h0
j ∈ comp, m is the total number of nodes and k is the computation hop. Finally, we obtain

dynamic aggregated vectors hk
dyn by feeding hk

va and hk
v` with fusion function defined in Eq. (8).

Hybrid Message Passing. Given the static/dynamic aggregated vectors hk
sta/hk

dyn for static and
dynamic graphs, respectively, we fuse both vectors and feed the resulting vector to a Gated Recurrent
Unit (GRU) to update node representations.

hk
v = GRU(hk−1

v ,Fuse(hk
sta,h

k
dyn)) (10)

After n hops of GNN computation, we obtain the final node representation hn
v and then apply

max-pooling over all nodes {hn
v ,∀v ∈ V } to get a d-dim graph representation hg .
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Table 1: Automatic evaluation results (in %) on the CCSD test set.
In-domain Out-of-domain OverallMethods BLEU-4 ROUGE-L METEOR BLEU-4 ROUGE-L METEOR BLEU-4 ROUGE-L METEOR

TF-IDF 15.20 27.98 25.91 5.50 15.37 13.12 12.19 23.49 21.34
NNGen 15.97 28.14 26.11 5.74 16.33 14.27 12.76 23.93 21.96

CODE-NN 9.02 26.94 22.54 4.77 21.91 18.52 7.77 25.15 21.11
Hybrid-DRL 9.30 30.01 24.60 6.30 22.20 21.85 8.43 26.65 23.62
Transformer 11.82 23.25 20.22 4.76 13.80 11.35 9.64 19.88 17.06

Rencos 14.47 31.61 28.55 6.50 22.81 18.74 11.74 28.47 24.41
SeqGNN 10.51 29.84 25.04 4.94 22.80 19.17 8.87 27.34 22.97
AST2seq 11.59 29.98 26.03 5.68 22.54 20.06 9.82 27.35 23.92

FusionGNN 16.01 34.07 29.80 7.31 24.99 20.83 13.40 30.85 26.63

2.5 DECODER

The decoder is similar with other state-of-the-art Seq2seq models Bahdanau et al. (2014); Luong
et al. (2015) where an attention-based BiLSTM decoder is used. The decoder takes the graph-level
representation hg as initial hidden states and concatenate the node representations with retrieved
summary representations {hn

v ,∀v ∈ V } ∪ {hs′i
,∀s′i ∈ s′} as the attention memory and generate the

summary.

2.6 TRAINING AND INFERENCE

We train the model with regular cross-entropy loss, defined as L =
∑

t−logP (s∗t |V, s′, s∗<t), where
s∗t is the word at the t-th position of the ground-truth. To alleviate the exposure bias, we utilize
schedule teacher forcing Bengio et al. (2015). During the inference, we use beam search to generate
final results.

3 EXPERIMENTS

We evaluate our proposed model against a number of state-of-the-art methods on the benchmark. We
divide the existing baseline methods into three groups 1) Retrieval-based approaches: TF-IDF Haiduc
et al. (2010), NNGen Liu et al. (2018) 2) Sequence-based approaches: CODE-NN Iyer et al. (2016),
Transformer Vaswani et al. (2017), Hybrid-DRL Wan et al. (2018), Rencos Zhang et al. (2020) 3)
Graph-based approaches: SeqGNN Fernandes et al. (2018), AST2seq LeClair et al. (2020). Note that
Rencos Zhang et al. (2020) combines the retrieval information into Seq2Seq model, we classify it into
Sequence-based approaches. Detailed descriptions are provided in Appendix B. Experiments on Iyer
et al. (2016); Wan et al. (2018); Zhang et al. (2020) are conducted with the released code and Liu
et al. (2018); Fernandes et al. (2018); LeClair et al. (2020) are utilized with default settings from the
corresponding papers on our benchmark. For FusionGNN settings, please refer to Appendix C.

3.1 DATASETS AND EVALUATION METRICS

Existing benchmarks LeClair et al. (2020); Barone & Sennrich (2017); Hu et al. (2018b) are all based
on high-level programming language i.e., Java, Python. Furthermore, they have been confirmed
to have extensive duplication, making model overfit to the training data that overlapped with the
testset Fernandes et al. (2018); Allamanis (2019). We are the first to explore summarization on C/C++
programming language and make our benchmark public c-c to benefit the academia and industry. We
crawled 200+ popular C/C++ repositories on GitHub and extract function-summary pairs. After a
strict deduplication process, we kept 99k unique function-summary pairs and name it C/C++ Code
Summarization Dataset (CCSD). To testify model generalization ability, we randomly selected some
projects as the out-of-domain test set with 2,264 examples and the remaining were randomly split into
train/development/test with 82,656/4,340/4,124 examples, respectively. We also use the training set
as the retrieval database, i.e., D′ = D (see Step 1 in Section 2.2.3). The open-source code analysis
platform for C/C++ Joern Yamaguchi et al. (2014) was applied to construct code property graphs.
More details about data processing, please refer to Appendix D.

Similar to previous works Zhang et al. (2020); Wan et al. (2018); Fernandes et al. (2018); LeClair
et al. (2020); Iyer et al. (2016), BLEU Papineni et al. (2002). METEOR Banerjee & Lavie (2005)
and ROUGE-L Lin (2004) are used as our automatic evaluation metrics. These metrics are popular
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Table 2: Human evaluation results on the CCSD test set.
Methods Syntactically correct Semantically correct Releance Similarity
NNGen 3.88 3.80 3.16 3.08

Transformer 3.85 3.79 3.17 3.02
Rencos 3.96 3.84 3.31 3.16

AST2seq 3.82 3.82 3.46 3.14
FusionGNN 4.11 3.95 3.64 3.47

in machine translation, text summarization. Since these metrics are computed on text similarity, we
also conduct a human evaluation study to evaluate semantic similarity. We invite 5 Ph.D students
and 10 master students from computer science, who have rich C/C++ programming experiences
to rate generated summaries from a set of anonymized approaches based on syntactically correct,
semantically correct, relevant to the source code and similar to the ground-truth, ranking from 1 to 5
(i.e., 1: Poor, 2: Marginal, 3: Acceptable, 4: Good, 5: Excellent) on each category. Specifically, we
randomly choose 50 programs for per approach with the corresponding generated summaries and
ground-truths. Evaluators are required to rank the generated summary based on the defined categories.
Evaluation scores are collected and averaged as final scores, where higher scores mean better quality.

3.2 EXPERIMENTAL RESULTS

Table 1 shows the automatic evaluation results as compared to other state-of-the-art baselines. We
find that our proposed model outperforms existing methods by a significant margin on both in-domain
and out-of-domain datasets. First, on the in-domain dataset, since comprehensive semantics are
embedded into graphs for learning, the performance is superior to Seq2Seq models, i.e., CODE-NN,
Transformer, Rencos. Second, as we fuse the retrieved code semantics, the scores are also higher
than graph2seq models, i.e., SeqGNN, AST2Seq. On the out-of-domain dataset, the scores decrease
as models with no prior knowledge. The scores of retrieval methods, i.e., TF-IDF, NNGen, decrease
dramatically as compared to other methods. We attribute to more unseen programs are in the out-of-
domain dataset. Furthermore, an interesting phenomenon that Hybrid-DRL has a better performance
on the out-of-domain dataset comparing to the in-domain dataset. We ascribe to the advantages
of deep reinforcement learning to optimize evaluation metrics. On the overall dataset, combining
in-domain and out-of-domain testsets, our model achieves 13.40, 30.85 and 26.63, outperforming
existing methods by 1.66, 2.38 and 2.22 in terms of BLEU-4, ROUGE-L and METEOR metrics.

As shown in Table 2, we perform a human evaluation on the overall dataset to assess the quality of the
generated summaries by our model, NNGen, Transformer, Rencos and AST2seq in terms of syntax,
semantic, relevance and similarity. As depicted in Table 1, NNGen, Rencos and AST2seq are the best
retrieval-based, sequence-based, and graph-based approaches, respectively. We also compare with
Transformer as it has been widely used in natural language processing. Inspection on the results, we
can find that our approach can generate more natural (syntactically and semantically) summaries as
compared to other baselines. Furthermore, since comprehensive code semantics are embedded by our
approach, the generated summaries are more relevant to the source code.

3.3 ABLATION STUDY

We also conduct an ablation study to evaluate the impact of different components, e.g., semantic-
augmented mechanism, static graph and dynamic graph on the in-domain and overall dataset, as
shown in Table 3. Since the improvement between FusionGNN and other methods on the out-of-
domain dataset is not very obvious, due to the lack of prior knowledge, we omit this part to save space.
To testify our semantic-augmented mechanism, we also conduct an experiment, namely Semantic-
aug/Seq2Seq, which takes code sequences rather than graphs as the input H to compute comp and
followed by Seq2Seq model for the generation. The scores are higher than Rencos, shown in Table 1,
but lower than FusionGNN, which proves the effectiveness of the semantic-augmented mechanism.
Another experiment FusionGNN w/o summary-encoder is performed by closing retrieved summary
encoder to show both Complementary Graph, Retrieved Summary Encoder in the semantic-augmented
mechanism are effective in augmenting semantics. By turning off static graph (FusionGNN w/o
static) or dynamic graph (FusionGNN w/o dynamic), the performance decreases correspondingly,
which shows our hybrid message passing combining both static and dynamic graphs is effective.
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Table 3: Ablation study on the CCSD test set.
Methods In-domain Overall

BLEU-4 ROUGE-L METEOR BLEU-4 ROUGE-L METEOR
Semantic-aug/ Seq2Seq 15.21 32.88 28.87 12.62 29.12 25.28

FusionGNN w/o summary-encoder 13.26 32.24 27.77 11.16 28.54 24.72
FusionGNN w/o dynamic 15.37 32.79 28.85 12.72 29.32 25.68

FusionGNN w/o static 15.16 33.13 28.43 12.72 29.97 25.59
HMP-GNN w/ static 11.05 28.92 24.81 9.36 26.61 22.86

HMP-GNN w/ static-forward 10.77 28.29 24.45 9.11 25.90 22.31
HMP-GNN w/ static-backward 10.72 28.49 24.36 9.07 26.10 22.37

HMP-GNN w/ dynamic 11.01 28.37 24.38 9.26 25.83 22.08
HMP-GNN w/ dynamic-forward 10.70 28.50 24.44 9.07 25.80 22.19

HMP-GNN w/ dynamic-backward 10.71 28.15 24.05 9.03 25.64 21.90
HMP-GNN 11.49 29.20 25.25 9.61 27.41 23.23

HMP-GNN w/ src 12.46 31.57 27.33 10.91 27.76 24.03
FusionGNN 16.01 34.07 29.80 13.40 30.85 26.63

Table 4: Examples of generated summaries on the CCSD test set.
Example Example 1 Example 2

Source Code

static void strInit(Str *p){
p->z = 0;
p->nAlloc = 0;
p->nUsed = 0;

}

void ReleaseCedar(CEDAR *c){
if (c == NULL)

return;
if (Release(c->ref) == 0)

CleanupCedar(c);
}

Ground-Truth initialize a str object release reference of the cedar
NNGen free the string release the virtual host

Transformer initialize the string release cedar communication module
Rencos initialize a floating poing string release of the cancel object

AST2Seq initialize the string release cedar communication cedar
FusionGNN initialize a str object release reference of cedar

Consider the results of HMP-GNN, the static graph (HMP-GNN w/ static) performs slightly better
than dynamic graph (HMP-GNN w/ dynamic), but combining both (HMP-GNN) can achieve better
performance. We can also find that doing both forward and backward message passing is beneficial.
HMP-GNN achieves 11.49 and 9.61 in the BLEU-4 on the in-domain and overall data set, which
is lower than generation models (i.e., Transformer and AST2seq), shown in Table 1. However, as
compared to Transformer, ROUGE-L and METEOR of HMP-GNN are much higher on in-domain
and overall dataset and our FusionGNN outperforms Transformer by a significant margin. Since
AST2seq takes source code sequence as another input, we also perform a comparative experiment by
combining source code sequences with HMP-GNN (i.e., HMP-GNN w/ src). The results demonstrate
that HMP-GNN w/ src outperforms HMP-GNN and AST2seq.

3.4 CASE STUDY

To perform qualitative analysis, we present two examples with generated summaries by different
methods from the overall data set, shown in Table 4. More examples will be presented on our
website c-c. We can see that, in the first example, our approach learns more code semantics, i.e., p is
a self-defined struct variable. Thus, we could generate a token object for the variable p. However,
other models can only produce string. Example 2 is a more difficult function with the functionality to
“release reference”, as compared to other baselines, our approach effectively captures the functionality
and generates more precise summary.

4 RELATED WORK

Source Code Summarization Early works Eddy et al. (2013); Haiduc et al. (2010); Wong et al.
(2015; 2013) for code summarization focused on using information retrieval to retrieve summaries.
Later works attempted to employ attentional Seq2Seq model on the source code Iyer et al. (2016) or
some variants from code text, i.e., AST Hu et al. (2018a); Alon et al. (2018) to generate summaries.
However, these works are based on sequential models, ignoring rich code semantics. Some latest
attempts LeClair et al. (2020); Fernandes et al. (2018) embedded program semantics into graph neural
networks. However, these works mainly use simple representations, which are limited to learn full
program semantics.
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Graph Neural Networks Over the past few years, GNNs Li et al. (2015); Hamilton et al. (2017);
Kipf & Welling (2016) have attracted increasing attention with many successful applications in
computer vision Norcliffe-Brown et al. (2018), natural language processing Xu et al. (2018a).
Because by design GNNs can model graph-structured data, recently, some works have extended the
widely used Seq2Seq architectures to Graph2Seq architectures for various tasks including machine
translation Beck et al. (2018), and graph (e.g., AMR, SQL)-to-text generation Zhu et al. (2019); Xu
et al. (2018b). Some works have also attempted to encode programs with graphs for diverse tasks e.g.,
VARNAMING/VARMISUSE Allamanis et al. (2017), Source Code Vulnerability Detection Zhou
et al. (2019). As compared to these works, we innovate a hybrid message passing GNN performed on
both static graph and dynamic graph for better message fusion.

5 CONCLUSION AND FUTURE WORK

In this paper, we proposed to fuse diverse program representations into a joint graph with the
semantic-augmented mechanism for better source code summarization. To capture global semantics
among nodes, we developed a hybrid message passing GNN performed on both static and dynamic
graphs. The evaluation shows that our approach improves state-of-the-art techniques substantially.
Future directions include exploring more effective ways to learn graph structures, combining other
information, e.g., API knowledge for code summarization, and graph robustness analysis for GNN.
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void example ( )
{
   int a = rand( );
   if ( a % 2 == 0 )
   {
        int b = a++;
        call(b);
   }
}

A simple code example
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Figure 2: A example of code property graph (CPG)

Appendices
A DETAILS ON CODE PROPERTY GRAPH

Code Property Graph (CPG) Yamaguchi et al. (2014) combines diverse graph representations (i.e.,
AST, CFG, and PDG) into a single graph. We describe each representation combining with Figure 2
as follows:

• Abstract Syntax Tree (AST). AST contains syntactic information for a program and omits
irrelevant details that have no effect on the semantics. Figure 2 shows the completed AST nodes
on the left simple program and each node has a code sequence in the first line and type attribute in
the second line. The black arrows represent the child-parent relations among ASTs.

• Control Flow Graph (CFG). Compared with AST highlighting the syntactic structure, CFG
displays statement execution order, i.e., the possible order in which statements may be executed
and the conditions that must be met for this to happen. Each statement in the program is treated as
an independent node as well as a designated entry and exit node. Based on the keywords if, for,
goto, break and continue, control flow graphs can be easily built and “Flow to” with green dashed
arrows in Figure 2 represents this flow order.

• Program Dependency Graph (PDG). PDG includes data dependencies and control dependen-
cies: 1) data dependencies are described as the definition of a variable in a statement reaches the
usage of the same variable at another statement. In Figure 2, the variable “b” is defined in the
statement “int b = a++” and used in “call (b)”. Hence, there is a “Reach” edge with blue arrows
point from “int b = a++” to “call (b)”. Furthermore, Define/Use edge with orange double arrows
denotes the definition and usage of the variable. 2) different from CFG displaying the execution
process of the complete program, control dependencies define the execution of a statement may be
dependent on the value of a predicate. For instance, the statements “int b = a++” and “call(b)” are
only performed if a is even. Therefore, a red double arrow “Control” points from “if (a % 2) == 0”
to “int b = a++” and “call(b)”.

B DETAILS ON BASELINE METHODS

We compare our approach with existing baselines. They can be divided into three groups: Retrieval-
based approaches, Sequence-based approaches and Graph-based approaches. Experiments on Iyer
et al. (2016); Wan et al. (2018); Zhang et al. (2020) are conducted with released code and Liu
et al. (2018); Fernandes et al. (2018); LeClair et al. (2020) are utilized with default settings from the
corresponding papers on our benchmark.

B.1 RETRIEVAL-BASED APPROACHES

TF-IDF Haiduc et al. (2010) is the abbreviation of Term Frequency-Inverse Document Frequency,
which is adopted in the early code summarization Haiduc et al. (2010). It transforms programs
into weight vectors by calculating term frequency and inverse document frequency. We retrieve the
summary of the most similar programs by calculating the cosine similarity on the weight vectors.
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NNGen Liu et al. (2018) is a retrieved-based approach to produce commit messages for code changes.
We reproduce such an algorithm on code summarization. Specifically, we retrieve the most similar
top-k code snippets on a bag-of-words model and prioritizes the summary in terms of BLEU-4 scores
in top-k code snippets.

B.2 SEQUENCE-BASED APPROACHES

CODE-NN Iyer et al. (2016) is the first neural approach on source code summarization and adopts
an attention-based Seq2Seq model to generate summaries.

Transformer Vaswani et al. (2017) is a well-known architecture and achieves a promising perfor-
mance on machine translation. We use the open-source implementation provided by the OpenNMT
library and train the model from scratch as one of the baselines.

Hybrid-DRL Wan et al. (2018) is a reinforcement learning-based approach, which incorporates AST
and sequential code snippets into a deep reinforcement learning framework and employ evaluation
metrics e.g., BLEU as the reward.

Rencos Zhang et al. (2020) is the retrieval-based Seq2Seq model for code summarization. it utilized
a pretrained Seq2Seq model during the testing phase by computing a joint probability conditioned on
both the original source code and retrieved source code for the summary generation.

B.3 GRAPH-BASED APPROACHES

We also compared with two latest works, employing graph neural network for code summarization.
SeqGNN Fernandes et al. (2018) combines GGNNs and standard sequence encoders for summa-
rization. They take the code and relationships between elements of the code as input. Specially, a
BiLSTM is employed on the code sequence to learn representations and each source code token is
modelled as a node in the graph, and employed GGNN for graph-level learning. Since our node se-
quences are sub-sequence of source code rather than individual token, we adjust to slice the output of
BiLSTM and concatenate each token representation in node sequences as node initial representation
for summarization.

AST2seq LeClair et al. (2020) utilizes a recurrent layer for the source code sequence and a ConvGNN
for the AST nodes and edges and then combines both for summarization. We also reproduce this
approach on our benchmark.

C MODEL SETTINGS

We embed the most frequent 40,000 words in the training set with 512-dims and set the hidden size
of BiLSTM to 256 and the concatenated state size for both directions is 512. The dropout is set to
0.3 after word embedding layer and BiLSTM. We set GNN hops to 3 for the best performance. The
optimizer is selected with Adam with an initial learning rate 0.001. We also use teacher forcing
strategy with forcing probability equals to 0.8 and forcing decay is set to 0.9999. The batch size is set
to 64 and early stop for 10. The beam search width is set to 5 as usual. All experiments are conducted
on the dgx server with four Nvidia Graphics Tesla V100 and each epoch takes averagely 20min. All
hyperparameters are tuned with grid search Franceschi et al. (2017) on the validation set.

D DETAILS ON DATA PREPARATION

It is non-trivial to obtain high-quality datasets for code summarization. We noticed that despite
some previous works LeClair et al. (2020); Barone & Sennrich (2017); Hu et al. (2018b) released
their datasets, however, they are all based on high-level programming languages i.e. Java, Python.
Furthermore, they have been confirmed to have extensive duplication to make model overfit to the
training data that overlapped with the test set Fernandes et al. (2018); Allamanis (2019). We are the
first to explore summarization on C/C++ programming language and make our benchmark public to
benefit the community research.

We crawled 200+ popular C/C++ repositories (e.g., Linux and Redis) on GitHub, and then extracted
separate function-summary pairs from these projects. Specifically, we extracted functions and
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associated comments marked by special characters "/**" and "*/" over the function declaration. These
comments can be considered as explanations of the functions. We filtered out functions with line
exceeding 1000 and any other comments inside the function, and the first sentence was selected as
summary. A similar practice can be found in Jiang et al. (2017). We totally collected 360k raw
function-summary pairs. Furthermore, functions with token size greater than 150 were removed for
computational efficiency and there were 130k functions left. Since duplication is very common in
existing datasets Fernandes et al. (2018), we performed a strict deduplication process and removed
functions with text similarity over 80% and finally kept 99k unique functions. We name this dataset
C/C++ Code Summarization Dataset (CCSD). To testify model generalization ability, we randomly
selected some projects as the out-of-domain test set with 2,264 examples and the remaining were
randomly split into train/development/test with 82,656/4,340/4,124 examples. The open-source code
analysis platform for C/C++ Joern Yamaguchi et al. (2014) was applied to construct code property
graphs.
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