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Abstract

CLIP (Radford et al. 2021) enables strong performance
in zero-shot image classification and other single-modality
tasks through multi-modal pre-training. Recently, Clip-
Cap (Mokady, Hertz, and Bermano 2021) demonstrated
how the vision encoder of CLIP could be fed into
GPT-2 to perform image captioning. In this work, we
propose Unsupervised-ClipCap, which extends Clip-
Cap to perform unsupervised image captioning by train-
ing only on the text from image captions. During
training, Unsupervised-ClipCap encodes image cap-
tions using CLIP’s text encoder. Then, during inference,
Unsupervised-ClipCap encodes images using CLIP’s vi-
sion encoder. Due to CLIP’s joint embedding space for dif-
ferent modalities, the image and text representations are sim-
ilar and can be interchanged. Unsupervised-ClipCap out-
performs MAGIC (Su et al. 2022) substantially (which trains
only on textual image captions) and performs on par with ES-
PER (Yu et al. 2022) (which trains only on images) while be-
ing significantly simpler than both. We also analyze how the
performance of Unsupervised-ClipCap is affected by the
distribution shift between CLIP’s multi-modal embeddings
and investigate several ways of correcting the distribution
mismatch.

1 Introduction

The CLIP model (Radford et al. 2021) showed how con-
trastive multimodal pre-training can be used to produce
shared embeddings for vision and text in a joint embed-
ding space. Recently, Mokady, Hertz, and Bermano (2021)
introduced ClipCap, which combines the vision encoder of
CLIP and the text decoder of GPT-2 (Radford et al. 2019)
to perform image captioning. ClipCap is trained through
supervised text-caption pairs, which can be expensive to
collect. The fact that CLIP aims to produce text and im-
age embeddings in a shared space suggests the possibil-
ity that ClipCap could be trained on text alone. To ex-
plore this possibility, we propose Unsupervised-ClipCap
which extends ClipCap to unsupervised image captioning
by leveraging the joint embedding space of CLIP. Specif-
ically, Unsupervised-ClipCap trains on unpaired image
captions only by using CLIP’s text encoder to get a (multi-
modal) representation of text and then using GPT-2 to recon-
struct a different matching image caption that corresponds to
the same image. During inference, CLIP’s vision encoder
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Figure 1: Unsupervised-ClipCap is trained by feeding in
captions into CLIP and then decoding the text. During infer-
ence, it feeding in the image and decodes the text, leverag-
ing CLIP’s joint embedding space to swap encoders during
training and inference.

is used to get a multi-modal representation of an image
and then GPT-2 is used to generate the image caption. Our
method relies on the fact that CLIP’s vision and language en-
coder map to a shared embedding space, which implies that
the text encoder and vision encoder should be interchange-
able between training and inference (as shown in fig. 1). Our
approach enables training ClipCap with only unpaired tex-
tual image captions.

Experimentally, Unsupervised-ClipCap performs
strongly compared to contemporaneous methods for unsu-
pervised image captioning. Unsupervised-ClipCap out-
performs MAGIC (Su et al. 2022) substantially, which also
trains on unpaired image captions only. This improvement
could be thanks to the fact that Unsupervised-ClipCap
leverages additional supervision from matching captions
(i.e. paraphrases) that correspond to the same image,
which MAGIC cannot use. Unsupervised-ClipCap also
performs on par with ESPER (Yu et al. 2022), which trains
on images only, while being much simpler without requiring
any reinforcement learning to train.



Though Unsupervised-ClipCap attains reasonable un-
supervised image captioning performance, it does not match
the performance of supervised image captioning with Clip-
Cap. In line with recent work (Liang et al. 2022), this sug-
gests that CLIP’s representations are not truly multimodal.
We therefore perform additional analysis to understand the
distribution mismatch between image/caption pairs. We ex-
periment with three methods for correcting the distribu-
tion mismatch: aligning their means, aligning via rotations,
and aligning via optimal transport. Though none of these
methods can correct the distribution mismatch, aligning the
means performs the best and reduces the distribution mis-
match slightly.

2 Related Work

ClipCap. Our work is primarily based off ClipCap
(Mokady, Hertz, and Bermano 2021) which combines CLIP
and GPT-2 by connecting the vision encoder of CLIP and
the text decoder of GPT-2 using prompt tuning (Lester, Al-
Rfou, and Constant 2021). CLIP (Radford et al. 2021) trains
a vision and language encoder on images and their captions
using a contrastive loss that aims to images and text to a
shared embedding space. GPT-2 (Radford et al. 2019) is an
auto-regressive generative language model that was trained
on text scraped from the web.

Leveraging the Multimodality of CLIP. Nukrai,
Mokady, and Globerson (2022) concurrently propose
CapDec, which is very similar Unsupervised-ClipCap
but CapDec also injects noise into CLIP’s representa-
tions when training. While CapDec focuses on correcting
the modality mismatch during later fine-tuning by in-
jecting noise, we focus on aligning the mismatched
distributions between image/caption pairs. Song et al.
(2022) also propose a method with similar motivation to
Unsupervised-ClipCap that leverages the multimodality
of CLIP to swap the text encoder during training with the
image encoder during inference. However, they work on
a different task of visual entailment and therefore use a
completely different architecture based on CLIP.

Learning from Limited Labeled Examples. Tewel et al.
(2021) propose ZeroCap for zero shot image-to-text genera-
tion by using gradient information during inference. Frozen
(Tsimpoukelli et al. 2021) combines a vision model and a
pre-trained language model for few-shot learning, but does
not leverage the multimodality of any particular model.
There have been several works proposed for unsupervised
image captioning from images only (Yu et al. 2022) and
from image captions only (Su et al. 2022). Most of these
methods leverage CLIP to compute a similarity score be-
tween images and generated text as supervision for the
model while we focus on the joint embedding space of CLIP.

CLIP’s embeddings. There have been several recent
works analyzing CLIP’s embeddings. Liang et al. (2022)
showed CLIP’s text and image embeddings lie in two dif-
ferent cones that are separated by a gap. So et al. (2022)
propose closing the gap in embeddings between the differ-
ent modalities and improving zero-shot retrieval accuracy by

finetuning CLIP with Mixup of image and text representa-
tions.

3 Unsupervised-ClipCap

Before presenting Unsupervised-ClipCap, we provide a
detailed description of ClipCap, the method upon which
Unsupervised-ClipCap is based. Let f; and f, be the text
and vision encoders of the CLIP model respectively, f, be
the GPT-2 model, and assume we are given an image-text
pair (x,y), where x is an image, and y is the image caption
consisting of tokens yg, y1, -..¥,. ClipCap first computes the
representation of an image using CLIP: f,(z). Then, it adds
an MLP A which is trained to project CLIP’s representation
fu(x) of the paired image x into the same space as GPT’s
text embeddings. The loss is shown in eq. (1) where C'E cor-
responds to the cross entropy loss. The parameters in CLIP
are frozen while the parameters in GPT-2 and the MLP are
updated.
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Unsupervised-ClipCap is largely similar to ClipCap,
with the primary difference being that we train using an un-
supervised objective rather than a supervised cross-entropy
loss. During training, Unsupervised-ClipCap encodes a
given (unpaired) image caption with CLIP’s text encoder
to get a representation, feeds it through an MLP, and then
decodes a different caption corresponding to the same im-
age using GPT-2. Note that different captions correspond-
ing to the same image are available in the image captioning
datasets since they annotate each image with multiple cap-
tions. Let y' be a different image caption than y that also
corresponds to the image z. The loss is otherwise the same

except for the modified objective as shown in eq. (2)
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During inference, we encode a query image with CLIP’s im-
age encoder to get an image representation and then decode
the image representation using GPT-2. Because CLIP’s im-
age and text encoders produce embeddings in a joint space,
the representation for an image and its corresponding cap-
tion should ideally be similar and therefore decoding from
GPT-2 should produce the same output whether it is fed with
the image or caption embedding. Crucially, CLIP’s weights
are frozen so the text representation won’t be updated during
training. This prevents the text representations from drifting
away from the image representations.

4 Results

We run experiments for image captioning on MS-COCO
(Lin et al. 2014) and Flickr30k (Hodosh, Young, and Hock-
enmaier 2013). We use the standard evaluation metrics from

COCOEvaICap.l We compare against the following base-

! https://github.com/tylin/coco-caption
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Figure 2: We illustrate the training (fig. 2a) and inference (fig. 2b) of Unsupervised-ClipCap. During training, an image is
fed in through CLIP’s vision encoder and projected into a prompt embeddings for GPT-2 while during inference, an image
caption is fed in through CLIP’s text encoder and projected into a prompt embeddings for GPT-2.

Method BLEU@! BLEU@2 BLEU@3 BLEU@4 METEOR ROUGE-L CIDEr SPICE
MAGIC (Su et al. 2022)* 56.8 - - 12.9 17.4 39.9 49.3 11.3
ESPER (Yu et al. 2022)* - - - 21.9 219 - 78.2 -
Unsupervised-ClipCap 65.5 46.7 32.1 221 22.2 48.0 74.6 14.9
— matched captions 50.3 30.0 17.0 9.6 15.2 37.5 33.7 8.6
ClipCap (Mokady, Hertz, and Bermano 2021) 74.0 57.2 427 31.5 26.8 54.7 106.6 19.9

Table 1: Image captioning results on MS-COCO. ClipCap is trained on supervised data. Unsupervised-ClipCap and MAGIC
train on image captions only. ESPER trains on images only. ZeroCap does not have any training. * indicates reported numbers

from paper.
Method BLEU@1 BLEU@2 BLEU@3 BLEU@4 METEOR ROUGE-L CIDEr SPICE
MAGIC (Su et al. 2022) 44.5 - - 6.4 13.1 31.6 20.4 7.1
Unsupervised-ClipCap 53.2 359 23.7 15.7 19.3 41.8 36.5 129
ClipCap (Mokady, Hertz, and Bermano 2021) 68.0 49.6 352 24.8 222 48.6 57.9 15.8

Table 2: Image captioning results on Flickr30k. ClipCap is trained on supervised data. Unsupervised-ClipCap and MAGIC

train on image captions only.

lines:

* MAGIC (Su et al. 2022), which trains a language model
on the image captions and then steers the decoding dur-
ing inference based on the CLIP similarity of the image
and generated tokens.

¢ ESPER (Yu et al. 2022), which uses reinforcement learn-
ing to train a model on images only using CLIP’s similar-
ity of the image and generated text samples as a reward.

The MS-COCO results are shown in table 1 and the
Flickr30k results are shown in table 2. Overall, we see
Unsupervised-ClipCap outperforms other unsupervised
image captioning methods which train on captions only
and performs on par with ESPER which trains on im-
ages only and requires more complicated training with
reinforcement learning. However, it still lags a bit be-
hind ClipCap which is trained with full supervision. We
also see that removing matched captions significantly de-
creases the performance of Unsupervised-ClipCap. Un-
der this scenario, Unsupervised-ClipCap is trained by
just encoding and decoding the same caption. Because
Unsupervised-ClipCap uses CLIP directly in the model
(in contrast to other unsupervised image captioning methods
which use CLIP indirectly as a scoring function), it benefits
from the matched image captions that can improve CLIP’s
text representations.

5 Analysis

The fact that Unsupervised-ClipCap underperforms Clip-
Cap suggests that CLIP’s embeddings might not be truly
multimodal. We therefore analyze the distribution mismatch
between CLIP’s image and text representations to see the
effect it has on Unsupervised-ClipCap. To do so, we use
Mixup (Zhang et al. 2017; So et al. 2022) to interpolate im-
age/caption embeddings, where given an image representa-
tion x;, text representation x;, and mixup ratio )\, the inter-
polated representation is Ax; + (1—\)z;, where \ represents
the proportion of the final embeddings coming from the text
embedding.

Our results are shown in fig. 3. Unsupervised-ClipCap
evaluated on text does very well, but as we shift the evalua-
tion to images, performance monotonically decreases. This
can be due to either 1) the loss of information in the image
compared to the image caption or 2) a distribution mismatch
between text representation and mixup representation.

We determine the reason by looking at ClipCap evaluated
on Mixup representations. ClipCap does well when eval-
uated on images but does even better on a mixed up im-
age and text representation with A = 0.5. Even if we in-
troduce a distribution mismatch by evaluating on interpo-
lated embeddings, the extra information in the image cap-
tion nullifies any decrease in performance from the distribu-
tional mismatch and actually improves performance. How-
ever, this only holds till A = 0.5 and afterwards, the effect



of the distribution mismatch nullifies any gain from the im-
age caption. When we evaluate ClipCap on text, the per-
formance drops to roughly the same amount as when us-
ing Unsupervised-ClipCap. This means the distribution
mismatch between training and inference caused by the dis-
tribution mismatch between individual image caption pairs
may be the main cause for performance degradation between
ClipCap and Unsupervised-ClipCap.
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Figure 3: Performance of Unsupervised-ClipCap trained
with images or text and evaluated on mixed up image and
text representations.

Correcting the Distribution Mismatch

We study three methods for correcting the distribution
mismatch between CLIP’s image and text representations:
aligning the means of the distributions, aligning the repre-
sentations via rotations, and aligning the representations via
optimal transport.

Aligning the means. Previous works (Liang et al. 2022)
have shown that CLIP’s text and image representations are
separated by a modality gap and propose aligning the means
to remove this modality gap. Following (Liang et al. 2022),
we shift the image embeddings such that they have the same
mean as the text embeddings. The average performance of
Unsupervised-ClipCap improves from 40.8 to 42.1 but
still does not come close to ClipCap’s performance of 52.4.

Aligning via rotations. We also try aligning the represen-
tations by rotating them, motivated by PCA. PCA computes
principal directions, which are orthogonal directions ordered
by how much variance they explain. We want a rotation such
that the corresponding principal directions in each modal-
ity are aligned. For example, the top principal direction for
images should be aligned with the top principal direction
for text, the second principal direction for images should
be aligned with the second principal direction for text, and
so on. Rotating the representations in such a way requires
computing the principal component scores, or the magni-
tude of the representation in each of its principal directions.
The principal component scores can be computed efficiently

via SVD. Given a matrix X € R™P where N is the num-

ber of image/caption pairs and D is the dimension, SVD
computes the left singular, diagonal, and right singular ma-

trix U, D, V respectively where X = U DV The princi-
pal component score is UD. The average performance of
Unsupervised-ClipCap drops from 40.8 to 15.8 using ro-
tated representations. We hypothesize rotations do not work
well since it does not take into account the distribution of
points along each direction of variance

Aligning via Optimal Transport. Finally, we consider
aligning the representations in each modality via optimal
transport. Given two probability measures p; and p, and a
cost matrix C' where C;; represents the cost of moving ele-
ment 7 in the support of p; to element j in the support of po,
optimal transport computes a transport plan 7' where

lp1] 1p2]
T" = argn%in Z Z T;:C,.;
i=0 j=0

For the cost matrix, we use the L2 distance between the rep-
resentations where C;; represents the distance between the

it image representation and the j 7 text representation. We
assume uniform probability measures p; and py. To align
the image representations, we multiply them by 7. The av-
erage performance of Unsupervised-ClipCap drops from
40.8 to 0.0, where the model generates non-sensible text. We
hypothesize that optimal transport does not work in align-
ing the representations since the cost matrix alone, which is
all optimal transport knows about the distribution mismatch,
does not transmit enough information about the distribution
mismatch.

Overall, we find that though none of the three methods
proposed can correct the distribution mismatch completely,
aligning the means can improve performance slightly.

6 Conclusion

We present Unsupervised-ClipCap for unsupervised im-
age captioning based on ClipCap. Unsupervised-ClipCap
leverages the multimodality of CLIP by using the text en-
coder during training and the vision encoder during in-
ference. Despite its simplicity, Unsupervised-ClipCap
outperforms other unsupervised image captioning methods
trained on text and performs on par with other unsuper-
vised image captioning methods trained on images. How-
ever, Unsupervised-ClipCap does not perform as well as
ClipCap, which we conclude to be due to the distribution
mismatch between image/caption pairs. We experiment with
3 ways to correct the distribution mismatch including via ro-
tations and optimal transport and find that shifting the means
of the different modalities performs the best in reducing the
distribution mismatch. Future directions include other ways
to properly correct the distribution mismatch between im-
age/captions pairs such that Unsupervised-ClipCap can
perform on par with ClipCap and pre-training multimodal
embeddings without the distribution mismatch.
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